Dissertations / Theses on the topic 'Semiconducting Nanostructures'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 33 dissertations / theses for your research on the topic 'Semiconducting Nanostructures.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Buccheri, Alexander. "Modelling the optical properties of semiconducting nanostructures." Thesis, University of Oxford, 2016. https://ora.ox.ac.uk/objects/uuid:67d66b15-c5b1-4bb1-806c-6cc22d0eb482.
Full textBalakrishnan, Kaushik. "Self-assembly of organic semiconducting molecules into one-dimensional nanostructures /." Available to subscribers only, 2008. http://proquest.umi.com/pqdweb?did=1594481341&sid=10&Fmt=2&clientId=1509&RQT=309&VName=PQD.
Full textBrewster, Megan Marie. "The interplay of structure and optical properties in individual semiconducting nanostructures." Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/69662.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from PDF version of thesis. Vita.
Includes bibliographical references (p. 163-174).
Semiconductor nanostructures exhibit distinct properties by virtue of nano-scale dimensionality, allowing for investigations of fundamental physics and the improvement of optoelectronic devices. Nanoscale morphological variations can drastically affect overall nanostructure properties because the investigation of nanostructure assemblies convolves nanoscale fluctuations to produce an averaged result. The investigation of individual nanostructures is thus paramount to a comprehensive analysis of nanomaterials. This thesis focuses on the study of individual GaAs, AlGaAs, and ZnO nanostructures to understand the influence of morphology on properties at the nanoscale. First, the diameter-dependent exciton-phonon coupling strengths of individual GaAs and AlGaAs nanowires were investigated by resonant micro-Raman spectroscopy near their direct bandgaps. The one-dimensional nanowire architecture was found to affect exciton lifetimes through an increase in surface state population relative to volume, resulting in Fröhlich coupling strengths stronger than any previously observed. Next, ZnO nanowire growth kinetics and mechanisms were found to evolve by altering precursor concentrations. The cathodoluminescence of nanowires grown by reaction-limited kinetics were quenched at the nanowire tips, likely due to point defects associated with the high Zn supersaturation required for reaction-limited growth. Further, cathodoluminescence was quenched in the vicinity of Au nanoparticles, which were found on nanowire sidewalls due to the transition in growth mechanism, caused by excited electron transfer from the ZnO conduction band to the Au Fermi level. Finally, ZnO nanowalls were grown by significantly increasing precursor flux and diffusion lengths over that of the ZnO nanowire growth. Nanowall growth began with the Au-assisted nucleation of nanowires, whose growth kinetics was a combination of Gibbs- Thomson-limited and diffusion-limited, followed by the domination of non-assisted film growth to form nanowalls. Nanoscale morphological variations, such as thickness variations and the presence of dislocations and Au nanoparticles, were directly correlated with nanoscale variations in optical properties. These investigations prove unequivocally that nanoscale morphological variations have profound consequences on optical properties on the nanoscale. Studies of individual nano-objects are therefore prerequisite to fully understanding, and eventually employing, these promising nanostructures.
by Megan Marie Brewster.
Ph.D.
Jones, Eric James Ph D. Massachusetts Institute of Technology. "Nanoscale quantification of stress and strain in III-V semiconducting nanostructures." Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/98578.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 142-149).
III-V semiconducting nanostructures present a promising platform for the realization of advanced optoelectronic devices due to their superior intrinsic materials properties including direct band gap energies that span the visible light spectrum and high carrier mobilities. Additionally, the inherently high surface-to-volume ratio of nanostructures allows for the efficient relaxation of stress enabling the realization of defect free heterostructures between highly mismatched materials. As a result, nanostructures are being investigated as a route towards the direct integration of III-V materials on silicon substrates and as platforms for the fabrication of novel heterostructures not achievable in a thin film geometry. Due to their small size, however, many of the methods used to calculate stress and strain in 2D bulk systems are no longer valid as free surface effects allow for relaxation creating more complicated stress and strain fields. These inhomogeneous strain fields could have significant impacts on both device fabrication and operation. Therefore, it will be vital to develop techniques that can accurately predict and measure the stress and strain in individual nanostructures. In this thesis, we demonstrate how the combination of advanced transmission electron microscopy (TEM) and continuum modeling techniques can provide a quantitative understanding of the complex strain fields in nanostructures with high spatial resolutions. Using techniques such as convergent beam electron diffraction, nanobeam electron diffraction, and geometric phase analysis we quantify and map the strain fields in top-down fabricated InAlN/GaN high electron mobility transistor structures and GaAs/GaAsP core-shell nanowires grown by a particle-mediated vapor-liquid-solid mechanism. By comparing our experimental results to strain fields calculated by finite element analysis, we show that these techniques can provide quantitative strain information with spatial resolutions on the order of 1 nm. Our results highlight the importance of nanoscale characterization of strain in nanostructures and point to future opportunities for strain engineering to precisely tune the behavior and operation of these highly relevant structures.
by Eric James Jones.
Ph. D.
Lefeuvre, Emmanuel. "Organized growth of semiconducting one-dimensional nanostructures in vertical porus templates for the fabrication of field effect transistors." Palaiseau, Ecole polytechnique, 2012. https://pastel.archives-ouvertes.fr/pastel-01063869.
Full textAmjadipour, Mojtaba. "Epitaxial graphene growth on 3C-SiC/Si(111): Towards semiconducting graphene." Thesis, Queensland University of Technology, 2018. https://eprints.qut.edu.au/122962/1/Mojtaba_Amjadi%20Pour_Thesis.pdf.
Full textBartoš, Dušan. "Nanostrukturované vrstvy polovodivých oxidů kovů v plynových senzorech." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2014. http://www.nusl.cz/ntk/nusl-220925.
Full textZhang, Yu. "Fabrication, structural and spectroscopic studies of wide bandgap semiconducting nanoparticles of ZnO for application as white light emitting diodes." Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEI046.
Full textThe present thesis studies ZnO nanoparticles embedded in a mesospheric polyacrylic acid (PAA) matrix synthesized via a hydrolysis protocol. The mesospheric ZnO/PAA hybrid structure was previously proved efficient in emitting visible light in a broad range, which results from the deep-level intrinsic defects in ZnO nanocrystals. To further tune the photoluminescence (PL) spectrum and improve the PL quantum yield (PL QY) of the material, metal-doped ZnO and silica-coated ZnO/PAA are fabricated independently. For ZnO doped with metallic elements, the nature, concentration, size and valence of the dopant are found to affect the formation of the mesospheres and consequently the PL and PL QY. Ions larger than Zn2+ with a higher valence tend to induce larger mesospheres and unembedded ZnO nanoparticles. Doping generally leads to the quenching of PL, but the PL spectrum can still be tuned in a wide range (between 2.46 eV and 2.17 eV) without degrading the PL QY by doping small ions at a low doping concentration (0.1 %). For silica-coated ZnO/PAA, an optimal coating correlatively depends on the amount of TEOS and ammonia in the coating process. The amount of TEOS does not affect the crystal structure of ZnO or the PL spectrum of the material, but high concentration of ammonia can degrade the PAA mesospheres and thicken the silica shell. A thin layer of silica that does not absorb too much excitation light but completely covers the mesospheres proves to be the most efficient, with a drastic PL QY improvement of six times. Regarding the application, the materials suffer from thermal quenching at temperatures high up to 100°C, at which white light emitting diodes (WLEDs) generally operates. However, silica-coated ZnO/PAA induces higher emission intensity at room temperature to make up for the thermal quenching
Savu, Raluca [UNESP]. "Síntese de nanofios de óxidos semicondutores para aplicações em dispositivos ópticos e eletrônicos." Universidade Estadual Paulista (UNESP), 2009. http://hdl.handle.net/11449/100917.
Full textFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
A presente pesquisa teve como principal objetivo a obtenção de estruturas nanométricas de óxido de índio, óxido de estanho e óxido de zinco por evaporação térmica e síntese hidrotérmica e a construção e teste de sensores de gases e de fotodetectores de ultravioleta baseados nessas nanoestruturas. Foram realizados estudos da influência dos parâmetros experimentais das duas rotas de síntese usadas sobre as morfologias e as propriedades das estruturas. Para a obtenção das camadas nanoestruturadas por evaporação térmica foi especialmente construído um forno tubular que permitiu o controle da temperatura de deposição independente da temperatura de evaporação e da distância entre a fonte de evaporação e o substrato. Esses parâmetros, pouco explorados nas pesquisas reportadas na literatura, exerceram uma grande influência sobre a morfologia e as propriedades dos nanofios obtidos. O equipamento permitiu ainda um controle preciso da composição da atmosfera e da pressão de síntese. Na síntese química em solução, a construção de um reator hidrotérmico permitiu o estudo da influência da taxa de resfriamento sobre as dimensões, cristalinidade, morfologia e propriedades das nanoestruturas. Esse estudo, o primeiro do gênero na literatura, ressaltou a importância no controle deste parâmetro para sintetizar estruturas com propriedades melhoradas. As demais variáveis estudadas foram: a concentração das soluções, as camadas catalisadoras, a temperatura e o tempo de síntese. Foram testadas duas estratégias para a obtenção dos filmes nanoestruturados: spin-coating de suspensões de nanoestruturas sobre substratos de silício oxidado ou o crescimento das mesmas, durante a síntese, sobre substratos com camadas catalisadoras de zinco. Os nanofios e as camadas funcionais foram caracterizados por Difração de Raios-X (DRX), Microscopia Eletrônica de Varredura...
The subject of this thesis covers the synthesis and growth of indium, tin and zinc oxide nanostructures by thermal evaporation and hydrothermal synthesis and the fabrication and testing of gas sensors and ultraviolet photodetectors based on these nanosized structures. For both chemical and physical routes, the influence of processing conditions over the morphology, dimensions and electrical properties of the nanowires was investigated. In order to obtain nanostructured layers by thermal evaporation a tubular furnace was specifically builti, allowed the control of the source-substrate distance and the deposition temperature independently of the evaporation one. These parameters, slightly explored in the literature, granted a big influence over the nanowires morphology and properties. Moreover, the equipment permitted the control of deposition atmosphere and pressure. The design and assembly of a hydrothermal reactor allowed studying the influence of the cooling rate over the dimension, morphology, cristallinity and, consequently, the properties of the nanostructures. This study highlighted the importance of controlling this particular parameter in the hydrothermal process, yielding nanostructured materials with enhanced properties. Variables such as solution concentration, synthesis temperature and time, surfanctants and precursors were also explored in the hydrothermal process. In order to obtain nanostructured thin films using the chemical bath deposition, two processing techniques were employed: spin-coating of powder suspensions over oxidized silicon substrates and nanostructured anisotropic growth directly from solution using zinc coated substrates. The nanowires and the functional nanostructured layers were characterized by X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FE - SEM), Transmission Electron Microscopy (TEM) and X-ray Photoelectron Spectroscopy (XPS)... (Complete abstract click electronic access below)
Savu, Raluca. "Síntese de nanofios de óxidos semicondutores para aplicações em dispositivos ópticos e eletrônicos /." Bauru : [s.n.], 2009. http://hdl.handle.net/11449/100917.
Full textAbstract: The subject of this thesis covers the synthesis and growth of indium, tin and zinc oxide nanostructures by thermal evaporation and hydrothermal synthesis and the fabrication and testing of gas sensors and ultraviolet photodetectors based on these nanosized structures. For both chemical and physical routes, the influence of processing conditions over the morphology, dimensions and electrical properties of the nanowires was investigated. In order to obtain nanostructured layers by thermal evaporation a tubular furnace was specifically builti, allowed the control of the source-substrate distance and the deposition temperature independently of the evaporation one. These parameters, slightly explored in the literature, granted a big influence over the nanowires morphology and properties. Moreover, the equipment permitted the control of deposition atmosphere and pressure. The design and assembly of a hydrothermal reactor allowed studying the influence of the cooling rate over the dimension, morphology, cristallinity and, consequently, the properties of the nanostructures. This study highlighted the importance of controlling this particular parameter in the hydrothermal process, yielding nanostructured materials with enhanced properties. Variables such as solution concentration, synthesis temperature and time, surfanctants and precursors were also explored in the hydrothermal process. In order to obtain nanostructured thin films using the chemical bath deposition, two processing techniques were employed: spin-coating of powder suspensions over oxidized silicon substrates and nanostructured anisotropic growth directly from solution using zinc coated substrates. The nanowires and the functional nanostructured layers were characterized by X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FE - SEM), Transmission Electron Microscopy (TEM) and X-ray Photoelectron Spectroscopy (XPS)... (Complete abstract click electronic access below)
Orientador: Maria Aparecida Zaghete Bertochi
Coorientador: Elson Longo
Banca: Antonio Ricardo Zanatta
Banca: Mônica Alonso Cotta
Banca: Talita Mazon Anselmo
Banca: Sidney José Lima Ribeiro
O Programa de Pós-Graduação em Ciência e Tecnologia de Materiais, PosMat, tem caráter institucional e integra as atividades de pesquisa em materiais de diversos campi da Unesp
Doutor
Ruiz, Preciado Marco Alejandro. "Synthèse, caractérisation et réponse photocatalytique des oxydes semi-conducteurs à base de NiTiO3." Thesis, Le Mans, 2016. http://www.theses.fr/2016LEMA1037/document.
Full textThe thesis work is devoted to the synthesis of NiTiO3-based semiconductive structures, i.e. powders and thin films, and the investigation of their related properties with the aim of their applications in photocatalysis. Theoretical approach and numerical simulations of the electronic, vibrational and optical properties of bulk and nanosized NiTiO3 structures have been carried out in order to deepen the understanding of the experimental results. The synthesis of NiTiO3 powders has been achieved by sol-gel and solid state reaction, while NiTiO3 thin films have been grown by rf-sputtering.Characterizations on their structural, vibrational and optical properties confirm the stabilization of polycrystalline NiTiO3 in its ilmenite phase in both powders and thin films as well. The determination of a band gap at 2.25 eV suggests the feasibility to implement the synthesized materials as visible-light-active photocatalysts. This feature has been tested in thedegradation of methylene blue in aqueous solution using rf-sputtered NiTiO3 thin films irradiated with visible light,achieving the degradation of 60% of the initial concentration of the colorant in 300 minutes. In addition, the electro-oxidation of methanol has been accomplished by applying an external voltage on an electrode containing NiTiO3 powders in alkaline media. The Ni ions present in the catalyst have been identified as the active species with the oxidation of the organic molecules on the surface of Ni3+ sites. As a main achievement, NiTiO3 has been synthesized as powders and thin films with suitable characteristics for efficient heterogeneous photocatalysis and the catalytic capabilities of NiTiO3 have beendemonstrated on the photodegradation of Methylene Blue and the electro-oxidation of methanol
Golub, A. S., N. D. Lenenko, E. P. Krinichnaya, O. P. Ivanova, I. V. Klimenko, and T. S. Zhuravleva. "Nanostructured Films of Semiconducting Molybdenum Disulfide Obtained Through Exfoliation-Restacking Method." Thesis, Sumy State University, 2013. http://essuir.sumdu.edu.ua/handle/123456789/35055.
Full textParkinson, Patrick. "Ultrafast electronic processes at nanoscale organic-inorganic semiconductor interfaces." Thesis, University of Oxford, 2009. http://ora.ox.ac.uk/objects/uuid:e68168c6-bcc0-437d-9133-1bfaf955c80a.
Full textMartinez-Morales, Alfredo Adolfo. "Synthesis, characterization and applications of novel nanomaterial systems and semiconducting nanowires." Diss., [Riverside, Calif.] : University of California, Riverside, 2010. http://proquest.umi.com/pqdweb?index=0&did=2019838541&SrchMode=2&sid=2&Fmt=2&VInst=PROD&VType=PQD&RQT=309&VName=PQD&TS=1273864032&clientId=48051.
Full textIncludes abstract. Available via ProQuest Digital Dissertations. Title from first page of PDF file (viewed May 14, 2010). Includes bibliographical references. Also issued in print.
Jeon, Taewoo. "Nanostructured hybrid solar cells based on PECVD grown SiNWs and organic semiconducting polymers." Palaiseau, Ecole polytechnique, 2013. http://pastel.archives-ouvertes.fr/docs/00/91/78/26/PDF/Thesis_Taewoo_JEON_EP_PICM.pdf.
Full textSolar cells are an exciting alternative energy technology due to the infinite energy source, the Sun. Many types of solar cells based on inorganic or organic materials are currently developed with the objective of higher efficiency and lower cost. In this context, this thesis suggests to study nano-structured hybrid solar cells based on silicon nanowires (SiNWs) and organic active materials to benefit advantages of both materials. SiNWs are grown by PECVD on transparent conducting oxide via Vapor-Liquid-Solid (VLS) mechanism with careful control of their nano-morphology. The organic materials made of polymers or blend polymers are then deposited by spin-coating on top of SiNWs. In these hybrid solar cells the SiNWs are used as light-trapping medium and/or electron acceptor material. For better solar cell performance, the optimization of SiNWs array is carried out by removing residual catalyst and etching parasitic hydrogenated amorphous silicon. Their effects on hybrid solar cells have been fully analyzed and discussed. Furthermore, the electron-acceptor properties of the nano-structured SiNWs have been estimated with Bismuth-doped n-type SiNWs. The results clearly reveal the potential of this type of hybrid solar cells, namely, 1) power conversion efficiency improvement by enhancing external quantum efficiency in longer wavelength regime and 2) variety uses of SiNWs by tuning their electrical property and morphology
Tournier-Colletta, Cédric. "Etude par spectroscopies d'électrons d'interfaces métalliques et semiconductrices." Thesis, Nancy 1, 2011. http://www.theses.fr/2011NAN10109/document.
Full textThis thesis is devoted to the electronic properties of low-dimensional systems based on metal and semiconducting materials. The first part deals with the Shockley state confinement in Ag(111) nanostructures, by means of very-low temperature (5 K) STM/STS measurements. We study the electronic structure and spatial distribution of the confined modes. Then the discrete nature of the electronic spectrum allows one to yield the quasiparticule lifetime. A Fermi-liquid behaviour is evidenced and we show that the dominant decay mechanism is attributed to the electron-phonon coupling. The extrinsic contribution arising from the partial confinement of the electronic wave is obtained as well. A scaling law with the nanostructure width is demonstrated, from which we deduce a higher reflection amplitude than in monoatomic islands. In the second part of the thesis, we study semiconducting ultra-thin films produced by alkali (K, Rb, Cs) deposition on the Si(111):B-[root of]3 surface. This work solves the controversy concerning the ground state of this system, and especially the nature of the 2[root of]3 surface recontruction obtained at saturation coverage. Prior understanding of the crystallographic structure allows to elucidate the electronic properties. We show that a one-electron picture, leading to a band insulator scenario, gives a good description of the system, in spite of strong polaronic effects. This conclusion results from an in-depth, combined study of complementary techniques (LEED, ARPES, XPS, STM/STS and DFT calculations)
Yuen, Mai-yan, and 袁美恩. "Semiconducting and electroluminescent cyclometalated platinum (II) complexes: from molecular functionalmaterials to supramolecular architecture and self-assemblednanomaterials." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2010. http://hub.hku.hk/bib/B44758121.
Full textSirota, Benjamin. "Investigation into the Semiconducting and Device Properties of MoTe2 and MoS2 Ultra-Thin 2D Materials." Thesis, University of North Texas, 2018. https://digital.library.unt.edu/ark:/67531/metadc1157626/.
Full textGirard, Adrien. "Étude du confinement acoustique dans des nano-structures métalliques et semiconductrices par diffusion Raman basse fréquence." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSE1106/document.
Full textInelastic light scattering spectroscopies (Raman/Brillouin) are a versatile tool to study thermal phonons at various scales. In nano-granular media, the study of acoustic phonons with a wavelength much greater than the grain diameter D (?/D >> 1) allows one to characterize the macroscopic elasticity governed by Hertz law of the contact. The validity of Hertz law is studied for powders made of oxide nanoparticles a few nanometers in diameter. When the phonon half-wavelength reaches the confinement dimension (diameter D for spheres, thickness e for plates) propagation is forbidden and mechanical resonances occur. Low frequency Raman spectroscopy has been used to characterize the acoustic resonances of semiconducting nanoplatelets “dressed” with an organic surfactant layer. When the thickness becomes thin enough (e ~ 1 nm), the resonance frequency is significantly downshifted compared to a free platelet, attributed to a mass load effect due to the organic molecules. When the confining object is a metallic nano-dimer, both plasmonic and acoustic hybridization occur at the same time. The resonant excitation of the dimeric plasmon allows one to observe down to single nano-object scale the inelastic scattering by dimer hybridized dipolar vibration modes l=1 as well as non-hybridized modes with higher angular momentum l >2, known to be Raman inactive in this size range according to previously established selection rules. Possibilities for a new plasmon-vibration coupling mechanism are discussed
Liu, Simin. "Photocatalytic hydrogen production with iron oxide under solar irradiation." Thesis, Queensland University of Technology, 2010. https://eprints.qut.edu.au/43666/1/Simin_Liu_Thesis.pdf.
Full textKöhler, Christopher [Verfasser], Andreas [Akademischer Betreuer] Knorr, Andreas [Gutachter] Knorr, and Ermin [Gutachter] Malic. "Phonon-induced ultrafast relaxation processes and local enhancement of electric fields : a theoretical work on semiconducting carbon nanotubes and nanostructured electrodes / Christopher Köhler ; Gutachter: Andreas Knorr, Ermin Malic ; Betreuer: Andreas Knorr." Berlin : Technische Universität Berlin, 2016. http://d-nb.info/1152969412/34.
Full textLu, Ming-Yen, and 呂明諺. "Semiconducting ZnS-based Nanostructures: Synthesis, Characterization, and Properties." Thesis, 2009. http://ndltd.ncl.edu.tw/handle/41725076094283518231.
Full textChan, Ching-Hsiang, and 詹景翔. "Optical Characterization of Bi2O3, In2O3 and NiO Semiconducting Oxide Nanostructures." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/54304417134311679000.
Full text國立臺灣科技大學
電子工程系
101
In this dissertation, a detailed characterization focusing on the surface morphology, stoichiometry, structural, orientations and vibration modes of the metal-oxide thin film nanostructures of alpha-Bi2O3, c-In2O3 and NiO with one-dimensional morphology have been carried out by means of field emission scanning electron microscopy (FESEM), field emission transmission electron microscopy (FETEM), and micro-Raman scattering. The bismuth oxide and indium oxide thin-film nanostructures have been grown by vapor transport method driven with vapor-liquid-solid mechanism on Si(100) substrate. Nickel oxide thin-film nanostructures were grown by hot-filament chemical vapor deposition method on sapphire(100) substrates. The optical properties of these metal-oxide thin film nanostructures have been investigated. Several optical characterization techniques, such as thermoreflectance (TR) and photoluminescence (PL) were performed to characterize the optical properties of these samples. The near-band-edge and above-band-edge transitions, such as excitonic transitions, direct band gap and direct band gap with Burstein-Moss shift (BMS) effect of degenerate semiconductor have been determined by TR. PL measurements revealed the near-band-edge emissions and defect emissions of these metal-oxide thin film nanostructures. The visible active semiconducting alpha-Bi2O3 and c-In2O3 may be applied in solid-state white lighting optoelectronics. Furthermore, the excitonic emissions of c-In2O3 and NiO revealed similar characters, which are also similar to other transparent conducting oxide (i.e. ZnO).
Cheng, Chung-Liang, and 程仲良. "Fabrication and Characterization of One-Dimensional II-VI Semiconducting Nanostructures." Thesis, 2009. http://ndltd.ncl.edu.tw/handle/84363897496837645468.
Full text國立臺灣大學
物理研究所
97
Motivated by a desire to understand the basic concepts of one-dimensional nanostructure growth, the research described in this thesis aims at understanding the basic mechanisms controlling the synthesis and formation of a specific group of II-VI semiconducting nanostructures. In particular, this thesis examines one-dimensional nanostructures and different morphologies of semiconductors that lead to the novel properties of the materials at the nanoscale. In order to understand how to manipulate the properties of the grown nanostructures, this thesis focuses on having an understanding of the growth mechanism that dictates the morphology and structure. In addition, we also try to understand the impact changes on the nanoscopic scale of the nanomaterials due to the macroscopic setup in the experiment. Having a better understanding and exerting more precise control over the growth of nanomaterials will allow a higher level of selectivity, more control over dimensionality and the type of morphology, easier manipulation, and the simpler incorporation of these structures into a nanotechnological device. In general, this thesis covers the synthesis and characterization of the following nanomaterials: (1) ZnO nanodendrites and nanotowers, (2) ZnSe nanowires, (3) ZnO nanobottles decorated with ZnO nanotips, (4) metal (Zn, Sn) nanotubes and metal (Cu, Ag) nanotube/nanowire junctions, and (5) ZnO nanotubes. Efforts have been made to pinpoint the underlying science and to exploit their possible engineering applications.
Hou, Te-Chien, and 侯德謙. "Synthesis and Applications of Semiconducting CrSi2 and CdTe-based Nanostructures." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/68380176485220053168.
Full text國立清華大學
材料科學工程學系
101
Synthesis, characterizations, and physical properties of CrSi2 and CdTe-based nanostructures have been investigated. Both materials have attracted intensive research effort in recent years, owing to their semiconducting properties and various practical applications. The design and development in functional nanodevices based on these two materials are of current interest. Furthermore, the possible further advanced applications of these structures are also proposed. Free-standing CrSi2/SiO2 nanocables have been synthesized via a simple atmospheric pressure chemical vapor deposition (APCVD) method. High quality nanocables were produced by a chemical vapor transport based method without using metal catalysts. The nanocables were formed by a direct reaction of CrCl2 vapor and a Si substrate in one single step. Structural characterization confirms the core of these nanocables to be hexagonal CrSi2, grown in the [001] direction. The room temperature ferromagnetism in CrSi2/SiO2 nanocables is discovered for the first time and the hysteresis loops show shape anisotropy effect when the applied magnetic field is perpendicular or parallel to the substrate. Through first-principles calculation, we found that the Cr atoms at the interface between CrSi2 and SiO2 layers possess a significant high saturation magnetization up to 2.202 B, while the Cr atoms in the middle of CrSi2 layer have a negligible magnetic moment (0.002 B). The calculated total saturation magnetization of the measured sample is close to the measured value obtained by superconducting quantum interference device (SQUID). The room temperature ferromagnetism in CrSi2/SiO2 nanocables is attributed to unpaired Cr atoms at the interface and high surface-to-volume ratio of these 1D nanostructures. Surface spins of pure CrSi2 nanowires after the removal of outer SiO2 layer also contribute large magnetic moment. Moreover, a comparison of measured values for CrSi2/SiO2 nanocables with different aspect ratios indicates that the magnetization is indeed proportional to interface area. The results obtained from the present fundamental studies shall lend substantial support to the development of future dilute magnetic semiconductor devices. Thermoelectric and mechanical properties of an individual CrSi2 nanowiwre were investigated. ZT value ~0.30+/-0.01 for a single CrSi2 NW with ~70 nm in diameter can be directly assessed by employing Harmon method. A remarkable enhancement of ~15 % for ZT value up to ~0.35+/-0.01 can be achieved due to reduced thermal conductivity by roughening the surface of NW because of higher surface-to-volume ratio. ZT value was found to increase with decreasing diameter. On the other hand, elastic modulus of CrSi2 NWs is first investigated in the present study. The elastic modulus was found to be independent of diameter and the averaged modulus value of ~225 GPa is obtained. The enhancement of the thermoelectric properties of CrSi2 nanowires with robust mechanical properties may lead to their practical applications in advanced thermoelectric devices in the future. A zinc blende structure based nanogenerator were developed. Here, free-standing CdTe microwires/nanowires (MWs/NWs) have been synthesized with a facile one-step hydrothermal method. The structural analysis shows that the synthesized materials (which consist of wires and particles) are composed of multiple phases with much more zinc blende CdTe than wurtzite CdTe. This coexistence of two phases was also confirmed using high resolution transmission electron microscopy (HRTEM). A laterally packaged nanogenerator (NG) can generate up to 0.3 V and 40 nA when strain is applied on the individual MW. Due to the high stability, the MW can be used in piezoelectric applications under various circumstances. Through these combined properties, zinc blende-based CdTe material appears to be promising for application in self-powered system in energy harvesting.
Lin, Yen-Fu, and 林彥甫. "Electrical transport of semiconducting nanostructures and impact of nanocontact on nanoelectronics." Thesis, 2010. http://ndltd.ncl.edu.tw/handle/80631434740521009192.
Full text國立交通大學
電子物理系所
98
Various semiconductor nanowires have been synthesized by using either physical or chemical growth methods in the past decades. These nanowires applied to single electron transistors, field-effect transistors, optoelectronics, and nanoelectronics through top-down or bottom-up assembling approaches has been immediately demonstrated. Because of most nanoscale electronics having two-probe configuration as the source and drain electrodes, identification and determination of intrinsic electrical properties of nanowires and the contribution of nanocontact through a systematic procedure of this two-probe approach become very important. Although a lot of two-probe nanoelectronics and applications have been demonstrated in previous reports, the electrical properties bringing either from the nanocontacts or from the nanowires have not been uncovered clear yet. In this work, a two-probe technique was adopted to explore electrical properties of ZnO, InP, GaP nanowires and polyaniline nanofibers. The first portion of this work is to utilize high quality ZnO nanowires to fabricate two-probe nanodevices and to survey the impact of nanocontact on nanowire based nanoelectronics. According to temperature behaviors of current-voltage curves and resistances, the devices could be grouped into three types, including two Ohmic contacts, one Ohmic and one Schottky contacts, and two back-to-back Schottky contacts. The nanocontact could be treated as disordered system and be explained by Mott variable range hopping model for electrons of the form . The exponential parameters of Mott variable range hopping theory rises from 2 to 4 with an increase of specific contact resistivity at room temperature, implying a change from one- to three-dimensional hopping. Moreover, after understanding how to distinguish the nanowire- and contact-dominated nanodevices, we demonstrate that the two-probe measurement can be applied to the exploration of the intrinsic properties of semiconductor nanowires. This two-probe measurement approach also works on highly resistive nanowires without an Ohmic contact issue. By using this method, electron transport behaviors, resistivity, and carrier concentrations of ZnO, InP, and GaP semiconductor nanowires have been investigated. The interface problems in nanowire-based electronics play important roles due to the reason that the reduced contact area in nanoelectronics multiplies enormously the contribution of electrical contact properties. The second portion is to illustrate the sensitivity difference in response to light and oxygen gas between the nanowire- and contact-dominated InP nanowire devices. By using a standard electron-beam lithography technique, two-probe InP nanowire devices were fabricated. Although the InP were picked up from the same source sample and the dimensions of the nanowires and nanodevices were also kept the same, the room-temperature resistance of these devices varied considerably. It was conjectured the difference of room-temperature comes from the contribution of contact resistance. According to the temperature behaviors, the nanowire devices can be categorized into nanowire- and contact-dominated ones. The temperature dependent resistances follow the thermally activated and three-dimensional Mott variable range hopping transport at high and low temperatures, respectively. Both nanowire- and contact-dominated devices were exposed to light and oxygen gas to see any difference. In comparison with the nanowire-dominated devices, the contact-dominated InP nanowire devices always exhibit a much higher ratio of resistance changes in response to either light or oxygen gas exposures. The last portion of this work is to study the electrical transport of polyaniline nanofibers. Polyaniline nanofibers were synthesized by using polymerization at the interface of immiscible solvents. They exhibit a uniform nanoscale morphology rather than agglomeration with granular structures as that produced via conventional chemical oxidation. The as-synthesized polyaniline nanofibers are doped (dedoped) with an HCl acid (NH3 base) and their temperature behaviors of resistances all follow an exponential function with an exponent of T-1/2. To achieve the measurement of conduction mechanism in a single nanofiber, the dielectrophoresis technique is implemented to position nanofibers on top of and across two Ti/Au electrodes patterned by electron-beam with a nanogap of 100-200 nm. Their temperature behaviors and electric field dependences are unveiled and the experimental results agree well with the theoretical model of charge-energy-limited-tunneling. Through fitting to this transport model, the size of conductive grain, the separation distance between two-grains, and the charging energy per grain in a single polyaniline nanofiber are estimated to be about 5 nm, 3 nm, and 78 meV, respectively. This nanotechnological approach has been applied to determination of mesoscopic charge transport in the polyaniline conducting polymer.
Yi-Han, Yang. "Syntheses and Characterizations of One-Dimensional Semiconducting Nanostructures: Si Wires, SiO2 Tubes, SnO2 Belts and CuInSe2 Rods." 2006. http://www.cetd.com.tw/ec/thesisdetail.aspx?etdun=U0001-2506200620071600.
Full textYang, Yi-Han, and 楊逸涵. "Syntheses and Characterizations of One-Dimensional Semiconducting Nanostructures: Si Wires, SiO2 Tubes, SnO2 Belts and CuInSe2 Rods." Thesis, 2006. http://ndltd.ncl.edu.tw/handle/29024323655992210524.
Full text國立臺灣大學
化學研究所
94
As the improvement in the nanoscience and nanotechnology, the synthesis and technology for the fabrication of nanosized materials have great development and become more complete than the past few years. In addition, it also has more structural changes in its dimensionality and size. In this thesis, four kinds of different one-dimensional semiconducting nanomaterials have been successfully fabricated using different physical or chemical synthetic methods and these nanomaterials are single-crystalline silicon nanowires, amorphous silicon dioxide nanotubes, single-crystalline tin dioxide nanobelts and single-crystalline copper indium diselenides nanorods. By mixing the pure silicon powders and the catalysts (including metal or silicon dioxide powders) and with assistance for the laser ablation technology, the single-crystalline silicon nanowires (SiNWs) can be fabricated with the diameters reach 5-40 nm and the lengths extend to tens of micrometers. While the metal powders (like Fe, Ru and Pr) are used as the catalysts for the syntheses of SiNWs, the most stable Si {111} facets are grown and the growth direction for the SiNWs is parallel to the facets growth direction, i.e., the wire growth direction is <111> for the metal-catalyzed SiNWs. Such SiNWs are grown via the typical vapor-liquid-solid (VLS) growth mechanism that existing the eutectic liquid droplet formation during the synthesis. On the other hand, as the silicon dioxide (SiO2) used as the catalysts for the fabrication of SiNWs, the Si {111} facets also grow; however, the wire growth direction, as the <112> direction, is perpendicular to the lattice plane growth direction. The SiNWs catalyzed by SiO2 follow an oxide-assisted (OA) growth mechanism during their growths. Furthermore, based on the different chamber pressure used during the experiments, it can be found that with the increasing of the pressure, the diameters for SiNWs enlarge and the lengths for SiNWs shorten. The Raman spectra for the different diameter SiNWs are measured and the most intense F2g phonon mode, which is located ~ 520 cm-1, can be found that with decreasing for the diameter of SiNWs, the red-shifted behavior of the F2g mode is clearly seen from the corresponding Raman spectra. By using the chemical vapor deposition method, the one-dimensional silicon dioxide nanotubes (SiO2NTs) are produced on the silicon substrate coated with Au nanoparticles which are preannealed at high temperature. The SiO2NTs can reach to 40-100 nm in diameters and extend to few micrometers in lengths. According to the electron diffraction (ED) pattern for the SiO2NTs, it can be confirmed that these nanotubes are amorphous. Besides this, the nanotubes can be separated into two groups, as thick- and thin-walled SiO2NTs, based on their different synthesis temperatures. Moreover, with the different reaction temperatures, the different shapes of Au nanoparticles are grown and this causes the different thicknesses of the SiO2NTs. With detailed analysis on the SiO2NTs, it can be figured out that the SiO2 species are diffused from the Au {111} facets and the walls of SiO2NTs are along the <022> direction of the thick-walled SiO2NTs while the <200> direction of the thin-walled SiO2NTs. Moreover, with the higher reaction temperature, the amorphous silicon dioxide nanowires (SiO2NWs) are synthesized on the silicon substrate. The Raman spectra of SiO2NTs and micro-crystallite SiO2 powders are taken and used for the characterization and both have the intense Raman peak (Si-O phonon mode) at ~ 467 cm-1. With the thermal evaporation-condensation method, the high purity single-crystalline tin dioxide nanobelts (SnO2NBs) are fabricated via the thermal heating of tin monoxide (SnO) powders in high temperature. The SnO2NBs have their belt width for 30-90 nm, the belt thickness for 20-30 nm and the belt length for tens of micrometers. Based on the X-ray diffraction (XRD) measurements of the SnO2NBs, it can be confirmed that the nanobelts are the pure rutile tetragonal structures. From the high-resolved transmission electron microscopic images, the {111} lattice planes are clearly seen and the SnO2 nanobelt grows along the <130> direction indexed from the corresponding ED pattern. The growth of the SnO2NBs can be attributed to the self-disproportion reaction of SnO bulk powders via the vapor-solid (VS) growth mechanism. In the Raman spectrum measurement, the rutile SnO2NBs have good signal to noise ratio and the peaks at 475.9, 635.5, and 777.2 cm-1 are resolved which are corresponding to the Eg, A1g, and B2g phonon modes, respectively. The last part in this thesis is the fabrication of the copper indium diselenide nanorods (CuInSe2NRs) which are commonly used in the solar cell technology. During the synthesis works, two ways are used for producing the CuInSe2 nanostructures, including the laser ablation/anodic aluminum oxide (AAO) membranes and the solvothermal methods. In the laser ablation/AAO membranes method, the AAO membranes have the highly uniform pore distribution and the CuInSe2 species can diffuse into the hollow channels to form the eutectic composites with the metal catalysts coated on the membranes and grow the one-dimensional CuInSe2 nanorods. The diameters of the CuInSe2NRs can reach 150-200 nm, however, the lengths of the can only extend ~2 micrometers. On the other hand, the CuInSe2NRs can also be synthesized by the solvothermal method, but the total reaction time is needed for at least 36 hours. Due to the long reaction time, the better aspect ratio and the product yield for the CuInSe2NRs can be acquired. The CuInSe2NRs fabricated by the solvothermal method have the diameter size of 50-100 nm and the lengths can extend to tens of micrometers. Moreover, from the high resolution image, the {112} lattice planes are found in the nanorods and can be indexed that the nanorods grow along the <331> direction. The Raman spectrum for CuInSe2NRs is taken and can be found that the most intense A1 phonon mode located at 175.1 cm-1 is clearly verified. This is another evidence tells us that the nanorods are purely with the CuInSe2 structures for the chemical composition.
Chen, Cheng-Ying, and 陳政營. "Optoelectronic Properties and Electronic Structures of One-dimensional Semiconducting/Piezoelectric Nanostructures with Sizes beyond the Quantum Confinement Regime." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/79291308013792594781.
Full text國立臺灣大學
電機工程學研究所
100
In this thesis, we studied optoelectronic properties and electronic structures of one-dimensional (1-D) semiconducting/piezoelectric nanostructures with sizes beyond the quantum confinement regime and discussed their superior optoelectronic/photonic features as compared to their thin film of bulk counterpart. First of all, since 1-D nanostructures have subwavelength diameters and large aspect ratios, which combined with the high permittivity of semiconductors lead to a strong optical anisotropy, we report a novel optically anisotropic metamaterial based on single crystalline ZnO nanowire arrays (NWAs) with highly oblique angles (75o–85o), exhibiting giant in-plane birefringence and optical polarization degree in photoluminescence emission. The in-plane birefringence ( 0.11) of oblique-aligned ZnO NWAs is almost one order of magnitude higher than that of ZnO bulk. The oblique-aligned NWAs not only allow important technological applications in passive photonic components but also benefit the development of the optoelectronic devices in polarized light sensing and emission. Second, in 1-D nanostructures, with large surface-to-volume ratios and Debye lengths comparable to their diameters, their electronic and optoelectronic properties are strongly affected by the electronic structures at their surfaces. Here we systematically and in-depth investigated the correlation between electronic structures (especially at the surface) of 1-D (Er-doped) ZnO nanostrucrures and their optoelectronic properties through the following four subjects: (1) in situ probing the surface band bending (SBB) of the ZnO NWs using photoelectron spectroscopy in conjunction with the field-effect transistor measurements; (2) correlation between electronic structures of Er-Doped ZnO nanorod arrays and efficiency of 1.54 μm emission by studied by X-ray absorption spectroscopy; (3) enhanced near-band-edge emission of ZnO nanorods via the surface passivation; (4) correlation between photoresponse of ZnO nanobelts and the surface/interface effects. These studies are greatly beneficial for the 1-D nanostructure based device design of sensor and optoelectronic applications. Finally, since ZnO is the wurtzite polar semiconductor and has the electromechanical coupling effect, piezoelectric characteristics of well-aligned ZnO NWAs were investigated for energy-harvesting nanodevices via its piezoelectricity. Besides, lead zirconate titanate [PbZr1−xTixO3 (PZT)] is a typical piezoelectric material, so the PbZr02Ti0.8O3 NWAs were also studied. This study is useful for optimizing the performance for nanogenerator applications.
"Ferroelectric Lithium Niobate Surfaces for Depositions of Metallic Nanostructure and ZnO Semiconducting Thin Film." Doctoral diss., 2011. http://hdl.handle.net/2286/R.I.9290.
Full textDissertation/Thesis
Ph.D. Physics 2011
Goßler, Fabian Rainer. "Spectroscopic Properties of Self-Assembled Plasmonic and Semiconductive Nanocrystals for Nanophotonic Applications." 2020. https://tud.qucosa.de/id/qucosa%3A73097.
Full textBiswas, Kanishka. "Synthesis, Characterization, Properties And Growth Of Inorganic Nanomaterials." Thesis, 2008. https://etd.iisc.ac.in/handle/2005/706.
Full textBiswas, Kanishka. "Synthesis, Characterization, Properties And Growth Of Inorganic Nanomaterials." Thesis, 2008. http://hdl.handle.net/2005/706.
Full text