Contents
Academic literature on the topic 'Semi-targeted profiling'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Semi-targeted profiling.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Semi-targeted profiling"
Ontiveros-Rodríguez, Julio C., José I. Serrano-Contreras, José Roberto Villagómez-Ibarra, Hugo A. García-Gutiérrez, and L. Gerardo Zepeda-Vallejo. "A semi-targeted NMR-based chemical profiling of retail samples of Mexican gordolobo." Journal of Pharmaceutical and Biomedical Analysis 212 (April 2022): 114651. http://dx.doi.org/10.1016/j.jpba.2022.114651.
Full textProtti, Michele, Marco Cirrincione, Sarah Palano, Eleonora Poeta, Giorgia Babini, Maria Chiara Magnifico, Simona Nicole Barile, et al. "Targeted quantitative metabolic profiling of brain-derived cell cultures by semi-automated MEPS and LC-MS/MS." Journal of Pharmaceutical and Biomedical Analysis 236 (November 2023): 115757. http://dx.doi.org/10.1016/j.jpba.2023.115757.
Full textChatterjee, Niladri S., Akanksha Singh, K. V. Vishnu, K. K. Ajeeshkumar, R. Anandan, K. Ashok Kumar, and Suseela Mathew. "Authentication of Two Bio-Active Fish Oils by Qualitative Lipid Profiling Using Semi-Targeted Approach: An Exploratory Study." Journal of AOAC INTERNATIONAL 103, no. 1 (January 1, 2020): 78–82. http://dx.doi.org/10.5740/jaoacint.19-0208.
Full textCiubotaru, Ramona Mihaela, Mar Garcia-Aloy, Domenico Masuero, Pietro Franceschi, Luca Zulini, Marco Stefanini, Michael Oberhuber, Peter Robatscher, Giulia Chitarrini, and Urska Vrhovsek. "Semi-Targeted Profiling of the Lipidome Changes Induced by Erysiphe Necator in Disease-Resistant and Vitis vinifera L. Varieties." International Journal of Molecular Sciences 24, no. 4 (February 17, 2023): 4072. http://dx.doi.org/10.3390/ijms24044072.
Full textMireault, Myriam, Vivaldy Prinville, Leanne Ohlund, and Lekha Sleno. "Semi-Targeted Profiling of Bile Acids by High-Resolution Mass Spectrometry in a Rat Model of Drug-Induced Liver Injury." International Journal of Molecular Sciences 24, no. 3 (January 27, 2023): 2489. http://dx.doi.org/10.3390/ijms24032489.
Full textViejo-Boyano, Iris, Marta Isabel Roca-Marugán, María Peris-Fernández, Julián Luis Amengual, Ángel Balaguer-Timor, Marta Moreno-Espinosa, María Felipe-Barrera, et al. "Early Metabolomic Profiling as a Predictor of Renal Function Six Months After Kidney Transplantation." Biomedicines 12, no. 11 (October 22, 2024): 2424. http://dx.doi.org/10.3390/biomedicines12112424.
Full textKarnachuk, Olga V., Inna A. Panova, Vasilii L. Panov, Olga P. Ikkert, Vitaly V. Kadnikov, Igor I. Rusanov, Marat R. Avakyan, et al. "Active Sulfate-Reducing Bacterial Community in the Camel Gut." Microorganisms 11, no. 2 (February 4, 2023): 401. http://dx.doi.org/10.3390/microorganisms11020401.
Full textFunke, Sebastian, Carsten Schmelter, Sascha D. Markowitsch, Natarajan Perumal, Janis C. Heyne, Katharina Bell, Norbert Pfeiffer, and Franz H. Grus. "Comparative Quantitative Analysis of Porcine Optic Nerve Head and Retina Subproteomes." International Journal of Molecular Sciences 20, no. 17 (August 29, 2019): 4229. http://dx.doi.org/10.3390/ijms20174229.
Full textAltomare, Alessandra, Giovanna Baron, Marta Balbinot, Alessandro Pedretti, Beatrice Zoanni, Maura Brioschi, Piergiuseppe Agostoni, Marina Carini, Cristina Banfi, and Giancarlo Aldini. "In-Depth AGE and ALE Profiling of Human Albumin in Heart Failure: Ex Vivo Studies." Antioxidants 10, no. 3 (February 27, 2021): 358. http://dx.doi.org/10.3390/antiox10030358.
Full textDerveaux, Elien, Michiel Thomeer, Liesbet Mesotten, Gunter Reekmans, and Peter Adriaensens. "Detection of Lung Cancer via Blood Plasma and 1H-NMR Metabolomics: Validation by a Semi-Targeted and Quantitative Approach Using a Protein-Binding Competitor." Metabolites 11, no. 8 (August 12, 2021): 537. http://dx.doi.org/10.3390/metabo11080537.
Full textDissertations / Theses on the topic "Semi-targeted profiling"
Bettioui, Terkia. "Lipidomique du globule rouge par des techniques de spectrométrie de masse et d'imagerie infrarouge : Application à l'étude de la maladie de Gaucher." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASF085.
Full textRed blood cells attract particular clinical interest due to their biological significance. It has recently been demonstrated that certain erythrocyte pathologies may be associated with abnormal lipid composition. Among these pathologies is Gaucher's disease, a rare lysosomal disorder caused by a deficiency in β-glucocerebrosidase, an enzyme whose absence leads to excessive accumulation of certain sphingolipids in the body. This lipid overload alters the morphological and rheological properties of red blood cells, causing hematological and vascular abnormalities.In this thesis, we studied the link between the lipid composition of red blood cells and its implication in Gaucher's disease. In particular, we focused on two categories of lipids: sphingolipids and phospholipids, which play a key role in the erythrocyte alterations observed. Two complementary approaches were used: the first uses mass spectrometry with the aim of identifying new biomarkers. The second uses infrared imaging techniques at different scales to study the distribution of lipids in red blood cells.We developed a rapid sample preparation method compatible with liquid chromatography coupled to mass spectrometry (SPE-HPLC-MS/MS) to quantify 30 sphingolipids and phospholipids in less than 15 minutes. This method was then applied to quantify the 30 lipid species in the plasma and red blood cell pellet of control subjects and Gaucher patients Among these lipid species, some were overexpressed and were not associatedAfter this quantification, we focused on exploring the lipidome of healthy red blood cells and comparing it to that of Gaucher red blood cells. To achieve this, a semi-targeted approach was conducted using a triple-quadrupole analyzer, which allowed us to identify more than 266 molecular species spread across 12 different lipid classes.These results have contributed to a better understanding of the lipidome of healthy red blood cells and are promising for the identification of new biomarkers and the diagnosis of various pathologies affecting the erythrocyte lipidome.As a complement to this approach, we focused on the morphological and chemical study of red blood cells using vibrational infrared imaging techniques at different resolutions: microscopic with Fourier-transform infrared spectroscopy (FTIR), submicron with optical photothermal infrared imaging (O-PTIR), and nanometric with atomic force microscopy (AFM-IR).Our study was structured around three steps: (1) developing a preparation protocol allowing the fixation of red blood cells, (2) evaluating their chemical and morphological stability, and finally (3) conducting a multi-scale analysis comparing healthy red blood cells with those affected by Gaucher's disease.Due to our fixation protocol, we were able to preserve red blood cells without degradation for 10 days, which enabled us to successfully conduct the multi-scale analysis. AFM-IR proved to be the only technique capable of highlighting significant differences between healthy and Gaucher red blood cells. AFM-IR allowed us to visualize the distinct morphologies of Gaucher cells and to compare lipid distribution through chemical mapping, revealing areas of interesting in the erythrocyte membrane