Dissertations / Theses on the topic 'Self-supervised learninig'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 41 dissertations / theses for your research on the topic 'Self-supervised learninig.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Vančo, Timotej. "Self-supervised učení v aplikacích počítačového vidění." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2021. http://www.nusl.cz/ntk/nusl-442510.
Full textKhan, Umair. "Self-supervised deep learning approaches to speaker recognition." Doctoral thesis, Universitat Politècnica de Catalunya, 2021. http://hdl.handle.net/10803/671496.
Full textLos avances recientes en Deep Learning (DL) para el reconocimiento del hablante están mejorado el rendimiento de los sistemas tradicionales basados en i-vectors. En el reconocimiento de locutor basado en i-vectors, la distancia coseno y el análisis discriminante lineal probabilístico (PLDA) son las dos técnicas más usadas de puntuación. La primera no es supervisada, pero la segunda necesita datos etiquetados por el hablante, que no son siempre fácilmente accesibles en la práctica. Esto crea una gran brecha de rendimiento entre estas dos técnicas de puntuación. La pregunta es: ¿cómo llenar esta brecha de rendimiento sin usar etiquetas del hablante en los datos de background? En esta tesis, el problema anterior se ha abordado utilizando técnicas de DL sin utilizar y/o limitar el uso de datos etiquetados. Se han realizado tres propuestas basadas en DL. En la primera, se propone una representación vectorial de voz basada en la máquina de Boltzmann restringida (RBM) para las tareas de agrupación de hablantes y seguimiento de hablantes en programas de televisión. Los experimentos en la base de datos AGORA, muestran que en agrupación de hablantes los vectores RBM suponen una mejora relativa del 12%. Y, por otro lado, en seguimiento del hablante, los vectores RBM,utilizados solo en la etapa de identificación del hablante, muestran una mejora relativa del 11% (coseno) y 7% (PLDA). En la segunda, se utiliza DL para aumentar el poder discriminativo de los i-vectors en la verificación del hablante. Se ha propuesto el uso del autocodificador de varias formas. En primer lugar, se utiliza un autocodificador como preentrenamiento de una red neuronal profunda (DNN) utilizando una gran cantidad de datos de background sin etiquetar, para posteriormente entrenar un clasificador DNN utilizando un conjunto reducido de datos etiquetados. En segundo lugar, se entrena un autocodificador para transformar i-vectors en una nueva representación para aumentar el poder discriminativo de los i-vectors. El entrenamiento se lleva a cabo en base a los i-vectors vecinos más cercanos, que se eligen de forma no supervisada. La evaluación se ha realizado con la base de datos VoxCeleb-1. Los resultados muestran que usando el primer sistema obtenemos una mejora relativa del 21% sobre i-vectors, mientras que usando el segundo sistema, se obtiene una mejora relativa del 42%. Además, si utilizamos los datos de background en la etapa de prueba, se obtiene una mejora relativa del 53%. En la tercera, entrenamos un sistema auto-supervisado de verificación de locutor de principio a fin. Utilizamos impostores junto con los vecinos más cercanos para formar pares cliente/impostor sin supervisión. La arquitectura se basa en un codificador de red neuronal convolucional (CNN) que se entrena como una red siamesa con dos ramas. Además, se entrena otra red con tres ramas utilizando la función de pérdida triplete para extraer embeddings de locutores. Los resultados muestran que tanto el sistema de principio a fin como los embeddings de locutores, a pesar de no estar supervisados, tienen un rendimiento comparable a una referencia supervisada. Cada uno de los enfoques propuestos tienen sus pros y sus contras. El mejor resultado se obtuvo utilizando el autocodificador con el vecino más cercano, con la desventaja de que necesita los i-vectors de background en el test. El uso del preentrenamiento del autocodificador para DNN no tiene este problema, pero es un enfoque semi-supervisado, es decir, requiere etiquetas de hablantes solo de una parte pequeña de los datos de background. La tercera propuesta no tienes estas dos limitaciones y funciona de manera razonable. Es un en
Korecki, John Nicholas. "Semi-Supervised Self-Learning on Imbalanced Data Sets." Scholar Commons, 2010. https://scholarcommons.usf.edu/etd/1686.
Full textGovindarajan, Hariprasath. "Self-Supervised Representation Learning for Content Based Image Retrieval." Thesis, Linköpings universitet, Statistik och maskininlärning, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-166223.
Full textZangeneh, Kamali Fereidoon. "Self-supervised learning of camera egomotion using epipolar geometry." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-286286.
Full textVisuell odometri är en av de vanligast förekommande teknikerna för positionering av autonoma agenter utrustade med kameror. Flera senare arbeten inom detta område har på olika sätt försökt utnyttja kapaciteten hos djupa neurala nätverk för att förbättra prestandan hos lösningar baserade på visuell odometri. Ett av dessa tillvägagångssätt består i att använda en inlärningsbaserad lösning för att härleda kamerans rörelse utifrån en sekvens av bilder. Gemensamt för de flesta senare lösningar är en självövervakande träningsstrategi som minimerar det uppfattade fotometriska fel som uppskattas genom att syntetisera synvinkeln utifrån givna bildsekvenser. Eftersom detta fel är en funktion av den estimerade kamerarörelsen motsvarar minimering av felet att nätverket lär sig uppskatta kamerarörelsen. Denna inlärning kräver dock även information om djupet i bilderna, vilket fås genom att introducera ett nätverk specifikt för estimering av djup. Detta innebär att för uppskattning av kamerans rörelse krävs inlärning av ytterligare en uppsättning parametrar vilka inte används i den slutgiltiga uppskattningen. I detta arbete föreslår vi en ny inlärningsstrategi baserad på epipolär geometri, vilket inte beror på djupskattningar. Empirisk utvärdering av vår metod visar att dess resultat är jämförbara med tidigare metoder som använder explicita djupskattningar för träning.
Sharma, Vivek [Verfasser], and R. [Akademischer Betreuer] Stiefelhagen. "Self-supervised Face Representation Learning / Vivek Sharma ; Betreuer: R. Stiefelhagen." Karlsruhe : KIT-Bibliothek, 2020. http://d-nb.info/1212512545/34.
Full textCoen, Michael Harlan. "Multimodal dynamics : self-supervised learning in perceptual and motor systems." Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/34022.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Includes bibliographical references (leaves 178-192).
This thesis presents a self-supervised framework for perceptual and motor learning based upon correlations in different sensory modalities. The brain and cognitive sciences have gathered an enormous body of neurological and phenomenological evidence in the past half century demonstrating the extraordinary degree of interaction between sensory modalities during the course of ordinary perception. We develop a framework for creating artificial perceptual systems that draws on these findings, where the primary architectural motif is the cross-modal transmission of perceptual information to enhance each sensory channel individually. We present self-supervised algorithms for learning perceptual grounding, intersensory influence, and sensorymotor coordination, which derive training signals from internal cross-modal correlations rather than from external supervision. Our goal is to create systems that develop by interacting with the world around them, inspired by development in animals. We demonstrate this framework with: (1) a system that learns the number and structure of vowels in American English by simultaneously watching and listening to someone speak. The system then cross-modally clusters the correlated auditory and visual data.
(cont.) It has no advance linguistic knowledge and receives no information outside of its sensory channels. This work is the first unsupervised acquisition of phonetic structure of which we are aware, outside of that done by human infants. (2) a system that learns to sing like a zebra finch, following the developmental stages of a juvenile zebra finch. It first learns the song of an adult male and then listens to its own initially nascent attempts at mimicry through an articulatory synthesizer. In acquiring the birdsong to which it was initially exposed, this system demonstrates self-supervised sensorimotor learning. It also demonstrates afferent and efferent equivalence - the system learns motor maps with the same computational framework used for learning sensory maps.
by Michael Harlan Coen.
Ph.D.
Nyströmer, Carl. "Musical Instrument Activity Detection using Self-Supervised Learning and Domain Adaptation." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-280810.
Full textI och med de ständigt växande media- och musikkatalogerna krävs verktyg för att söka och navigera i dessa. För mer komplexa sökförfrågningar så behövs det metadata, men att manuellt annotera de enorma mängderna av ny data är omöjligt. I denna uppsats undersöks automatisk annotering utav instrumentsaktivitet inom musik, med ett fokus på bristen av annoterad data för modellerna för instrumentaktivitetsigenkänning. Två metoder för att komma runt bristen på data föreslås och undersöks. Den första metoden bygger på självövervakad inlärning baserad på automatisk annotering och slumpartad mixning av olika instrumentspår. Den andra metoden använder domänadaption genom att träna modeller på samplade MIDI-filer för detektering av instrument i inspelad musik. Metoden med självövervakning gav bättre resultat än baseline och pekar på att djupinlärningsmodeller kan lära sig instrumentigenkänning trots att ljudmixarna saknar musikalisk struktur. Domänadaptionsmodellerna som endast var tränade på samplad MIDI-data presterade sämre än baseline, men att använda MIDI-data tillsammans med data från inspelad musik gav förbättrade resultat. En hybridmodell som kombinerade både självövervakad inlärning och domänadaption genom att använda både samplad MIDI-data och inspelad musik gav de bästa resultaten totalt.
Nett, Ryan. "Dataset and Evaluation of Self-Supervised Learning for Panoramic Depth Estimation." DigitalCommons@CalPoly, 2020. https://digitalcommons.calpoly.edu/theses/2234.
Full textBaleia, José Rodrigo Ferreira. "Haptic robot-environment interaction for self-supervised learning in ground mobility." Master's thesis, Faculdade de Ciências e Tecnologia, 2014. http://hdl.handle.net/10362/12475.
Full textThis dissertation presents a system for haptic interaction and self-supervised learning mechanisms to ascertain navigation affordances from depth cues. A simple pan-tilt telescopic arm and a structured light sensor, both fitted to the robot’s body frame, provide the required haptic and depth sensory feedback. The system aims at incrementally develop the ability to assess the cost of navigating in natural environments. For this purpose the robot learns a mapping between the appearance of objects, given sensory data provided by the sensor, and their bendability, perceived by the pan-tilt telescopic arm. The object descriptor, representing the object in memory and used for comparisons with other objects, is rich for a robust comparison and simple enough to allow for fast computations. The output of the memory learning mechanism allied with the haptic interaction point evaluation prioritize interaction points to increase the confidence on the interaction and correctly identifying obstacles, reducing the risk of the robot getting stuck or damaged. If the system concludes that the object is traversable, the environment change detection system allows the robot to overcome it. A set of field trials show the ability of the robot to progressively learn which elements of environment are traversable.
Coursey, Kino High. "An Approach Towards Self-Supervised Classification Using Cyc." Thesis, University of North Texas, 2006. https://digital.library.unt.edu/ark:/67531/metadc5470/.
Full textLin, Lyu. "Transformer-based Model for Molecular Property Prediction with Self-Supervised Transfer Learning." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-284682.
Full textPrediktion av molekylers egenskaper har en stor mängd tillämpningar inom kemiindustrin. Kraftfulla metoder för att predicera molekylära egenskaper kan främja vetenskapliga experiment och produktionsprocesser. Ansatsen i detta arbete är att använda överförd inlärning (eng. transfer learning) för att predicera egenskaper hos molekyler. Projektet är indelat i två delar. Den första delen fokuserar på att utveckla och förträna en modell. Modellen består av Transformer-lager med attention- mekanismer och förtränas genom att återställa maskerade kanter i molekylgrafer från storskaliga mängder icke-annoterad data. Efteråt utvärderas prestandan hos den förtränade modellen i en mängd olika uppgifter baserade på prediktion av molekylegenskaper vilket bekräftar fördelen med överförd inlärning.Resultaten visar att modellen efter självövervakad förträning besitter utmärkt förmåga till att generalisera. Den kan finjusteras med liten tidskostnad och presterar väl i specialiserade uppgifter. Effektiviteten hos överförd inlärning visas också i experimenten. Den förtränade modellen förkortar inte bara tiden för uppgifts-specifik inlärning utan uppnår även bättre prestanda och undviker att övertränas på grund otillräckliga mängder data i uppgifter för prediktion av molekylegenskaper.
Syrén, Grönfelt Natalie. "Pretraining a Neural Network for Hyperspectral Images Using Self-Supervised Contrastive Learning." Thesis, Linköpings universitet, Datorseende, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-179122.
Full textDoersch, Carl. "Supervision Beyond Manual Annotations for Learning Visual Representations." Research Showcase @ CMU, 2016. http://repository.cmu.edu/dissertations/787.
Full textPannu, Husanbir Singh. "Semi-supervised and Self-evolving Learning Algorithms with Application to Anomaly Detection in Cloud Computing." Thesis, University of North Texas, 2012. https://digital.library.unt.edu/ark:/67531/metadc177238/.
Full textRosell, Mikael. "Semi-Supervised Learning for Object Detection." Thesis, Linköpings universitet, Reglerteknik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-113560.
Full textWalsh, Andrew Michael Graduate school of biomedical engineering UNSW. "Application of supervised and unsupervised learning to analysis of the arterial pressure pulse." Awarded by:University of New South Wales. Graduate school of biomedical engineering, 2006. http://handle.unsw.edu.au/1959.4/24841.
Full textLiu, Xialei. "Visual recognition in the wild: learning from rankings in small domains and continual learning in new domains." Doctoral thesis, Universitat Autònoma de Barcelona, 2019. http://hdl.handle.net/10803/670154.
Full textLas redes neuronales convolucionales profundas (CNNS) han alcanzado resultados muy positivos en diferentes aplicaciones de reconocimiento visual, tales como clasificación, detección o segmentación de imágenes. En esta tesis, abordamos dos limitaciones de las CNNs. La primera, entrenar CNNs profundas requiere grandes cantidades de datos etiquetados, los cuales sonmuy costosos y arduos de conseguir. La segunda es que entrenar en sistemas de aprendizaje continuo es un problema abierto para la investigación. El olvido catastrófico en redes es muy común cuando se adapta un modelo entrenado a nuevos entornos o nuevas tareas. Por lo tanto, en esta tesis, tenemos como objetivo mejorar las CNNs para aplicaciones con datos limitados y adaptarlas de forma continua a nuevas tareas. El aprendizaje auto-supervisado compensa la falta de datos etiquetados con la introducción de tareas auxiliares en las cuales los datos están fácilmente disponibles. En la primera parte de la tesis, mostramos cómo los ránquings se pueden utilizar de forma parecida a una tarea auto-supervisada para los problemas de regresión. Después, proponemos una técnica de propagación hacia atrás eficiente para redes siamesas que previene el computo redundante introducido por las arquitecturas de red multi-rama. Además, demostramos quemedir la incertidumbre de las redes en las tareas parecidas a las auto-supervisadas, es una buena medida de la cantidad de información que contienen los datos no etiquetados. Dicha medida puede ser entonces usada para la ejecución de algoritmos de aprendizaje activo. Estosmarcos que proponemos los aplicamos entonces a dos problemas de regresión: Evaluación de Calidad de Imagen (IQA) y el contador de personas. En los dos casos, mostramos cómo generar de forma automática grupos de imágenes ranqueadas para los datos no etiquetados. Nuestros resultados muestran que las redes entrenadas para la regresión de las anotaciones de los datos etiquetados, a la vez que para aprender a ordenar los ránquings de los datos no etiquetados, obtienen resultados significativamente mejores al estado del arte. También demostramos que el aprendizaje activo utilizando ránquings puede reducir la cantidad de etiquetado en un 50% para ambas tareas de IQA y contador de personas. En la segunda parte de la tesis, proponemos dos métodos para evitar el olvido catastrófico en escenarios de aprendizaje secuencial de tareas. El primer método deriva del de Consolidación Elástica de Pesos, el cuál utiliza la diagonal de laMatriz de Información de Fisher (FIM) para medir la importancia de los pesos de la red. No obstante, la aproximación asumida no es realista. Por lo tanto, diagonalizamos la aproximación de la FIM utilizando un grupo de parámetros de rotación factorizada proporcionando una mejora significativa en el rendimiento de tareas secuenciales para el caso del aprendizaje continuo. Para el segundo método, demostramos que el olvido se manifiesta de forma diferente en cada capa de la red y proponemos un método híbrido donde la destilación se utiliza para el extractor de características y la rememoración en el clasificador mediante generación de características. Nuestro método soluciona la limitación de la rememoración mediante generación de imágenes y la destilación de probabilidades (como la utilizada en elmétodo Aprendizaje Sin Olvido), y puede añadir de forma natural nuevas tareas en un único clasificador bien calibrado. Los experimentos confirman que el método propuesto sobrepasa las métricas de referencia y parte del estado del arte.
Deep convolutional neural networks (CNNs) have achieved superior performance in many visual recognition application, such as image classification, detection and segmentation. In this thesis we address two limitations of CNNs. Training deep CNNs requires huge amounts of labeled data, which is expensive and labor intensive to collect. Another limitation is that training CNNs in a continual learning setting is still an open research question. Catastrophic forgetting is very likely when adapting trainedmodels to new environments or new tasks. Therefore, in this thesis, we aim to improve CNNs for applications with limited data and to adapt CNNs continually to new tasks. Self-supervised learning leverages unlabelled data by introducing an auxiliary task for which data is abundantly available. In the first part of the thesis, we show how rankings can be used as a proxy self-supervised task for regression problems. Then we propose an efficient backpropagation technique for Siamese networks which prevents the redundant computation introduced by the multi-branch network architecture. In addition, we show that measuring network uncertainty on the self-supervised proxy task is a good measure of informativeness of unlabeled data. This can be used to drive an algorithm for active learning. We then apply our framework on two regression problems: Image Quality Assessment (IQA) and Crowd Counting. For both, we show how to automatically generate ranked image sets from unlabeled data. Our results show that networks trained to regress to the ground truth targets for labeled data and to simultaneously learn to rank unlabeled data obtain significantly better, state-of-the-art results. We further show that active learning using rankings can reduce labeling effort by up to 50% for both IQA and crowd counting. In the second part of the thesis, we propose two approaches to avoiding catastrophic forgetting in sequential task learning scenarios. The first approach is derived from ElasticWeight Consolidation, which uses a diagonal Fisher InformationMatrix (FIM) tomeasure the importance of the parameters of the network. However the diagonal assumption is unrealistic. Therefore, we approximately diagonalize the FIM using a set of factorized rotation parameters. This leads to significantly better performance on continual learning of sequential tasks. For the second approach, we show that forgetting manifests differently at different layers in the network and propose a hybrid approach where distillation is used in the feature extractor and replay in the classifier via feature generation. Our method addresses the limitations of generative image replay and probability distillation (i.e. learning without forgetting) and can naturally aggregate new tasks in a single, well-calibrated classifier. Experiments confirmthat our proposed approach outperforms the baselines and some start-of-the-art methods.
Buttar, Sarpreet Singh. "Applying Machine Learning to Reduce the Adaptation Space in Self-Adaptive Systems : an exploratory work." Thesis, Linnéuniversitetet, Institutionen för datavetenskap och medieteknik (DM), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-77201.
Full textBraga, Ígor Assis. "Aprendizado semissupervisionado multidescrição em classificação de textos." Universidade de São Paulo, 2010. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-02062010-160019/.
Full textSemi-supervised learning algorithms learn from a combination of both labeled and unlabeled data. Thus, they can be applied in domains where few labeled examples and a vast amount of unlabeled examples are available. Furthermore, semi-supervised learning algorithms may achieve a better performance than supervised learning algorithms trained on the same few labeled examples. A powerful approach to semi-supervised learning, called multi-view learning, can be used whenever the training examples are described by two or more disjoint sets of attributes. Text classification is a domain in which semi-supervised learning algorithms have shown some success. However, multi-view semi-supervised learning has not yet been well explored in this domain despite the possibility of describing textual documents in a myriad of ways. The aim of this work is to analyze the effectiveness of multi-view semi-supervised learning in text classification using unigrams and bigrams as two distinct descriptions of text documents. To this end, we initially consider the widely adopted CO-TRAINING multi-view algorithm and propose some modifications to it in order to deal with the problem of contention points. We also propose the COAL algorithm, which further improves CO-TRAINING by incorporating active learning as a way of dealing with contention points. A thorough experimental evaluation of these algorithms was conducted on real text data sets. The results show that the COAL algorithm, using unigrams as one description of text documents and bigrams as another description, achieves significantly better performance than a single-view semi-supervised algorithm. Taking into account the good results obtained by COAL, we conclude that the use of unigrams and bigrams as two distinct descriptions of text documents can be very effective
Araújo, Hiury Nogueira de. "Utilizando aprendizado emissupervisionado multidescrição em problemas de classificação hierárquica multirrótulo." Universidade Federal Rural do Semi-Árido, 2017. http://bdtd.ufersa.edu.br:80/tede/handle/tede/839.
Full textApproved for entry into archive by Vanessa Christiane (referencia@ufersa.edu.br) on 2018-06-18T16:58:58Z (GMT) No. of bitstreams: 1 HiuryNA_DISSERT.pdf: 3188162 bytes, checksum: d40d42a78787557868ebc6d3cd5af945 (MD5)
Approved for entry into archive by Vanessa Christiane (referencia@ufersa.edu.br) on 2018-06-18T16:59:18Z (GMT) No. of bitstreams: 1 HiuryNA_DISSERT.pdf: 3188162 bytes, checksum: d40d42a78787557868ebc6d3cd5af945 (MD5)
Made available in DSpace on 2018-06-18T16:59:31Z (GMT). No. of bitstreams: 1 HiuryNA_DISSERT.pdf: 3188162 bytes, checksum: d40d42a78787557868ebc6d3cd5af945 (MD5) Previous issue date: 2017-11-17
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Data classification is a task applied in various areas of knowledge, therefore, the focus of ongoing research. Data classification can be divided according to the available data, which are labeled or not labeled. One approach has proven very effective when working with data sets containing labeled and unlabeled data, this called semi-supervised learning, your objective is to label the unlabeled data by using the amount of labeled data in the data set, improving their success rate. Such data can be classified with more than one label, known as multi-label classification. Furthermore, these data can be organized hierarchically, thus containing a relation therebetween, this called hierarchical classification. This work proposes the use of multi-view semi-supervised learning, which is one of the semissupervisionado learning aspects, in problems of hierarchical multi-label classification, with the objective of investigating whether semi-supervised learning is an appropriate approach to solve the problem of low dimensionality of data. An experimental analysis of the methods found that supervised learning had a better performance than semi-supervised approaches, however, semi-supervised learning may be a widely used approach, because, there is plenty to be contributed in this area
classificação de dados é uma tarefa aplicada em diversas áreas do conhecimento, sendo assim, foco de constantes pesquisas. A classificação de dados pode ser dividida de acordo com a disposição dos dados, sendo estes rotulados ou não rotulados. Uma abordagem vem se mostrando bastante eficiente ao se trabalhar com conjuntos de dados contendo dados rotulados e não rotulados, esta chamada de aprendizado semissupervisionado, seu objetivo é classificar os dados não rotulados através da quantidade de dados rotulados contidos no conjunto, melhorando sua taxa de acerto. Tais dados podem ser classificados com mais de um rótulo, conhecida como classificação multirrótulo. Além disso, estes dados podem estar organizados de forma hierárquica, contendo assim, uma relação entre os mesmos, esta, por sua vez, denominada classificação hierárquica. Neste trabalho é proposto a utilização do aprendizado semissupervisionado multidescrição, que é uma das vertentes do aprendizado semissupervisionado, em problemas de classificação hierárquica multirrótulo, com o objetivo de investigar se o aprendizado semissupervisionado é uma abordagem apropriada para resolver o problema de baixa dimensionalidade de dados. Uma análise experimental dos métodos verificou que o aprendizado supervisionado obteve melhor desempenho contra as abordagens semissupervisionadas, contudo, o aprendizado semissupervisionado pode vir a ser uma abordagem amplamente utilizada, pois, há bastante o que ser contribuído nesta área
2018-03-14
Coletta, Luiz Fernando Sommaggio. "Abordagens para combinar classificadores e agrupadores em problemas de classificação." Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-24032016-102229/.
Full textUnsupervised learning models can provide a variety of supplementary constraints to improve the generalization capability of classifiers. Based on this assumption, an existing algorithm, named C3E (from Consensus between Classification and Clustering Ensembles), receives as inputs class probability distribution estimates for objects in a target set as well as a similarity matrix. Such a similarity matrix is typically built from clusterers induced on the target set, whereas the class probability distributions are obtained by an ensemble of classifiers induced from a training set. As a result, C3E provides refined estimates of the class probability distributions, from the consensus between classifiers and clusterers. The underlying idea is that similar new objects in the target set are more likely to share the same class label. In this thesis, a simpler version of the C3E algorithm, based on a Squared Loss function (C3E-SL), was investigated from an approach that enables the automatic estimation (from data) of its critical parameters. This approach uses a new evolutionary strategy designed to make C3E-SL more practical and flexible, making room for the development of variants of the algorithm. To address the scarcity of labeled data, a new algorithm that performs semi-supervised learning was proposed. Its mechanism exploits the intrinsic structure of the data by using the C3E-SL algorithm in a self-training procedure. Such a notion inspired the development of another algorithm based on active learning, which is able to self-adapt to learn new classes that may emerge when classifying new data. An extensive experimental analysis, focused on real-world problems, showed that the proposed algorithms are quite useful and promising. The combination of supervised and unsupervised learning yielded classifiers of great practical value and that are less dependent on user-defined parameters. The achieved results were typically better than those obtained by traditional classifiers.
de, Carvalho Emanuel. "Relatório no âmbito da unidade curricular prática de ensino supervisionada, realizada na Escola Secundária/3 Rainha Santa Isabel de Estremoz." Master's thesis, Universidade de Évora, 2016. http://hdl.handle.net/10174/20092.
Full textGotab, Pierre. "Classification automatique pour la compréhension de la parole : vers des systèmes semi-supervisés et auto-évolutifs." Phd thesis, Université d'Avignon, 2012. http://tel.archives-ouvertes.fr/tel-00858980.
Full textDuarte, Maisa Cristina. "Aprendizado semissupervisionado através de técnicas de acoplamento." Universidade Federal de São Carlos, 2011. https://repositorio.ufscar.br/handle/ufscar/474.
Full textMachine Learning (ML) can be seen as research area within the Artificial Intelligence (AI) that aims to develop computer programs that can evolve with new experiences. The main ML purpose is the search for methods and techniques that enable the computer system improve its performance autonomously using information learned through its use. This feature can be considered the fundamental mechanisms of the processes of automatic learning. The main goal in this research project was to investigate, propose and implement methods and algorithms to allow the construction of a continuous learning system capable of extracting knowledge from the Web in Portuguese, throughout the creation of a knowledge base which can be constantly updated as new knowledge is extracted.
O Aprendizado de Máquina (AM) pode ser visto como uma área de pesquisa dentro da Inteligência Artificial (IA) que busca o desenvolvimento de programas de computador que possam evoluir à medida que vão sendo expostos a novas experiências. O principal objetivo de AM é a busca por métodos e técnicas que permitem a concepção de sistemas computacionais capazes de melhorar seu desempenho, de maneira autônoma, usando informações obtidas ao longo de seu uso; tal característica pode, de certa forma, ser considerada como um dos mecanismos fundamentais que regem os processos de aprendizado automático. O principal objetivo da pesquisa descrita neste documento foi investigar, propor e implementar métodos e algoritmos que permitissem a construção de um sistema computacional de aprendizado contínuo capaz de realizar a extração de conhecimento a partir da Web em português, por meio da criação de uma base de conhecimento atualizada constantemente à medida que novos conhecimentos vão sendo extraídos.
Sasko, Dominik. "Segmentace lézí roztroušené sklerózy pomocí hlubokých neuronových sítí." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2021. http://www.nusl.cz/ntk/nusl-442379.
Full textButtar, Sarpreet Singh. "Applying Artificial Neural Networks to Reduce the Adaptation Space in Self-Adaptive Systems : an exploratory work." Thesis, Linnéuniversitetet, Institutionen för datavetenskap och medieteknik (DM), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-87117.
Full textPiteira, Patrícia Isabel Beiçudo. "Prática de ensino supervisionada em educação pré-escolar e ensino do 1º ciclo do ensino básico: avaliar para aprender." Master's thesis, Universidade de Évora, 2015. http://hdl.handle.net/10174/15914.
Full textGueleri, Roberto Alves. "Agrupamento de dados baseado em comportamento coletivo e auto-organização." Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-29072013-164559/.
Full textMachine learning consists of concepts and techniques that enable computers to improve their performance with experience, i.e., enable computers to learn from data. Data clustering (or just clustering) is one of its main topics, which aims to group data according to their similarities. Regardless of its simple definition, clustering is a complex computational task. Its relevance and challenges make this field an environment of intense research. The class of natural phenomena known as collective behavior has also attracted much interest. This is due to the observation that global patterns may spontaneously arise from local interactions among large groups of individuals, what is know as self-organization (or emergence). The challenges and relevance of the subject are encouraging its research in many branches of science and engineering. At the same time, techniques based on collective behavior are being employed in machine learning tasks, showing to be promising. The objective of the present work was to develop clustering techniques based on collective behavior. Each dataset item corresponds to an individual. Once the local interactions are defined, the individuals begin to interact with each other. It is expected that the patterns arising from these interactions match the patterns originally present in the dataset. Approaches based on dynamics of energy exchange have been proposed. The data are kept fixed in their feature space, but they carry some sort of information (the energy), which is progressively exchanged among them. The groups are established among data that take similar energy states. This work has also addressed the semi-supervised learning task, which aims to label data in partially labeled datasets. In this case, it has been proposed an approach based on the motion of the data themselves around the feature space. More than just providing new machine learning techniques, this research has tried to show how the techniques behave in different scenarios, in an effort to show where lies the advantage of using collective dynamics in the design of such techniques
Martínez, Brito Izacar Jesús. "Quantitative structure fate relationships for multimedia environmental analysis." Doctoral thesis, Universitat Rovira i Virgili, 2010. http://hdl.handle.net/10803/8590.
Full textLas propiedades fisicoquímicas de un gran espectro de contaminantes químicos son desconocidas. Esta tesis analiza la posibilidad de evaluar la distribución ambiental de compuestos utilizando algoritmos de aprendizaje supervisados alimentados con descriptores moleculares, en vez de modelos ambientales multimedia alimentados con propiedades estimadas por QSARs. Se han comparado fracciones másicas adimensionales, en unidades logarítmicas, de 468 compuestos entre: a) SimpleBox 3, un modelo de nivel III, propagando valores aleatorios de propiedades dentro de distribuciones estadísticas de QSARs recomendados; y, b) regresiones de vectores soporte (SVRs) actuando como relaciones cuantitativas de estructura y destino (QSFRs), relacionando fracciones másicas con pesos moleculares y cuentas de constituyentes (átomos, enlaces, grupos funcionales y anillos) para compuestos de entrenamiento. Las mejores predicciones resultaron para compuestos de test y validación correctamente localizados dentro del dominio de aplicabilidad de los QSFRs, evidenciado por valores bajos de MAE y valores altos de q2 (en aire, MAE≤0.54 y q2≥0.92; en agua, MAE≤0.27 y q2≥0.92).
Ghemmogne, Fossi Leopold. "Gestion des règles basée sur l'indice de puissance pour la détection de fraude : Approches supervisées et semi-supervisées." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSEI079.
Full textThis thesis deals with the detection of credit card fraud. According to the European Central Bank, the value of frauds using cards in 2016 amounted to 1.8 billion euros. The challenge for institutions is to reduce these frauds. In general, fraud detection systems consist of an automatic system built with "if-then" rules that control all incoming transactions and trigger an alert if the transaction is considered suspicious. An expert group checks the alert and decides whether it is true or not. The criteria used in the selection of the rules that are kept operational are mainly based on the individual performance of the rules. This approach ignores the non-additivity of the rules. We propose a new approach using power indices. This approach assigns to the rules a normalized score that quantifies the influence of the rule on the overall performance of the group. The indexes we use are the Shapley Value and Banzhaf Value. Their applications are 1) Decision support to keep or delete a rule; 2) Selection of the number k of best-ranked rules, in order to work with a more compact set. Using real credit card fraud data, we show that: 1) This approach performs better than the one that evaluates the rules in isolation. 2) The performance of the set of rules can be achieved by keeping one-tenth of the rules. We observe that this application can be considered as a task of selection of characteristics: We show that our approach is comparable to the current algorithms of the selection of characteristics. It has an advantage in rule management because it assigns a standard score to each rule. This is not the case for most algorithms, which focus only on an overall solution. We propose a new version of Banzhaf Value, namely k-Banzhaf; which outperforms the previous in terms of computing time and has comparable performance. Finally, we implement a self-learning process to reinforce the learning in an automatic learning algorithm. We compare these with our power indices to rank credit card fraud data. In conclusion, we observe that the selection of characteristics based on the power indices has comparable results with the other algorithms in the self-learning process
Chen, L., W. Tang, Tao Ruan Wan, and N. W. John. "Self-supervised monocular image depth learning and confidence estimation." 2019. http://hdl.handle.net/10454/17908.
Full textWe present a novel self-supervised framework for monocular image depth learning and confidence estimation. Our framework reduces the amount of ground truth annotation data required for training Convolutional Neural Networks (CNNs), which is often a challenging problem for the fast deployment of CNNs in many computer vision tasks. Our DepthNet adopts a novel fully differential patch-based cost function through the Zero-Mean Normalized Cross Correlation (ZNCC) to take multi-scale patches as matching and learning strategies. This approach greatly increases the accuracy and robustness of the depth learning. Whilst the proposed patch-based cost function naturally provides a 0-to-1 confidence, it is then used to self-supervise the training of a parallel network for confidence map learning and estimation by exploiting the fact that ZNCC is a normalized measure of similarity which can be approximated as the confidence of the depth estimation. Therefore, the proposed corresponding confidence map learning and estimation operate in a self-supervised manner and is a parallel network to the DepthNet. Evaluation on the KITTI depth prediction evaluation dataset and Make3D dataset show that our method outperforms the state-of-the-art results.
"Self-supervised Representation Learning via Image Out-painting for Medical Image Analysis." Master's thesis, 2020. http://hdl.handle.net/2286/R.I.62756.
Full textDissertation/Thesis
Masters Thesis Computer Science 2020
Neves, Tiago Costa. "Learning Self-Supervised Deep Feature Descriptors for SLAM in Autonomous Vehicles." Dissertação, 2020. https://hdl.handle.net/10216/128537.
Full textNeves, Tiago Costa. "Learning Self-Supervised Deep Feature Descriptors for SLAM in Autonomous Vehicles." Master's thesis, 2020. https://hdl.handle.net/10216/128537.
Full textSHEN, YI-TING, and 沈怡廷. "Self-Supervised Learning of Domain-Specific Depth for Transferable Traversability Estimation with a Single Fisheye Camera." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/d45us8.
Full text國立臺灣大學
電子工程學研究所
107
Autonomous mobile robots and vision-base intelligent assistive technolo- gies are going to be indispensable in everybody’s lives. Among these appli- cations, traversability estimation (TE) is one of the most significant com- ponent to guarantee people’s safety. Besides accuracy, transferability across different environments and platforms is another important design consider- ation for TE. In this thesis, a two-stage convolutional neural network is proposed for TE. Input color images are first translated to relative depth maps by domain-specific depth estimation networks. These networks are used to align different domains and are trained with an extended version of self- supervised learning method dedicated to fisheye images. After that, an universal classification network trained in the source domain is used to es- timate traversability with relative depth maps from all domains. Experiments on the real-world data show that the proposed method has competitive accuracy with higher transferability among different environ- ments. In addition, it has a reasonable model complexity under domain- specific premise and requires only a single fisheye camera, which is also suitable for resource-constrained platforms.
"Robots that Anticipate Pain: Anticipating Physical Perturbations from Visual Cues through Deep Predictive Models." Master's thesis, 2017. http://hdl.handle.net/2286/R.I.44032.
Full textDissertation/Thesis
Masters Thesis Computer Science 2017
Ross, Michael G., and Leslie P. Kaelbling. "Learning object boundary detection from motion data." 2003. http://hdl.handle.net/1721.1/3686.
Full textSingapore-MIT Alliance (SMA)
Schwarzer, Max. "Data-efficient reinforcement learning with self-predictive representations." Thesis, 2020. http://hdl.handle.net/1866/25105.
Full textData efficiency remains a key challenge in deep reinforcement learning. Although modern techniques have been shown to be capable of attaining high performance in extremely complex tasks, including strategy games such as StarCraft, Chess, Shogi, and Go as well as in challenging visual domains such as Atari games, doing so generally requires enormous amounts of interactional data, limiting how broadly reinforcement learning can be applied. In this thesis, we propose SPR, a method drawing from recent advances in self-supervised representation learning designed to enhance the data efficiency of deep reinforcement learning agents. We evaluate this method on the Atari Learning Environment, and show that it dramatically improves performance with limited computational overhead. When given roughly the same amount of learning time as human testers, a reinforcement learning agent augmented with SPR achieves super-human performance on 7 out of 26 games, an increase of 350% over the previous state of the art, while also strongly improving mean and median performance. We also evaluate this method on a set of continuous control tasks, showing substantial improvements over previous methods. Chapter 1 introduces concepts necessary to understand the work presented, including overviews of Deep Reinforcement Learning and Self-Supervised Representation learning. Chapter 2 contains a detailed description of our contributions towards leveraging self-supervised representation learning to improve data-efficiency in reinforcement learning. Chapter 3 provides some conclusions drawn from this work, including a number of proposals for future work.
Racah, Evan. "Unsupervised representation learning in interactive environments." Thèse, 2019. http://hdl.handle.net/1866/23788.
Full textExtracting a representation of all the high-level factors of an agent’s state from level-level sensory information is an important, but challenging task in machine learning. In this thesis, we will explore several unsupervised approaches for learning these state representations. We apply and analyze existing unsupervised representation learning methods in reinforcement learning environments, as well as contribute our own evaluation benchmark and our own novel state representation learning method. In the first chapter, we will overview and motivate unsupervised representation learning for machine learning in general and for reinforcement learning. We will then introduce a relatively new subfield of representation learning: self-supervised learning. We will then cover two core representation learning approaches, generative methods and discriminative methods. Specifically, we will focus on a collection of discriminative representation learning methods called contrastive unsupervised representation learning (CURL) methods. We will close the first chapter by detailing various approaches for evaluating the usefulness of representations. In the second chapter, we will present a workshop paper, where we evaluate a handful of off-the-shelf self-supervised methods in reinforcement learning problems. We discover that the performance of these representations depends heavily on the dynamics and visual structure of the environment. As such, we determine that a more systematic study of environments and methods is required. Our third chapter covers our second article, Unsupervised State Representation Learning in Atari, where we try to execute a more thorough study of representation learning methods in RL as motivated by the second chapter. To facilitate a more thorough evaluation of representations in RL we introduce a benchmark of 22 fully labelled Atari games. In addition, we choose the representation learning methods for comparison in a more systematic way by focusing on comparing generative methods with contrastive methods, instead of the less systematically chosen off-the-shelf methods from the second chapter. Finally, we introduce a new contrastive method, ST-DIM, which excels at the 22 Atari games.
Andrade, João Paulo Cordeiro. "Motion-induced sound level control for socially-aware robot navigation." Master's thesis, 2018. http://hdl.handle.net/10071/18546.
Full textCom a crescente presença dos robôs no espaço ocupado pelos seres humanos, é necessário que a relação entre robôs e humans seja natural e não invasiva. Para alcançar este objectivo, é preciso que os robôs tenham formas de assegurar que o ruído causado pelos seus movimentos não incomodam as pessoas inseridas no meio envolvente. Esta dissertação propôe uma solução que permite que um robô aprenda a controlar a quantidade de ruído que produz, tendo em conta as suas caracteristicas e o meio ambiente onde é colocado. O robô concretiza as suas tarefas adaptando a sua velocidade de forma a produzir menos ruído que o presente no meio ambiente e, assim, não incomodar as pessoas. Para que o robô possa executar alguma tarefa num determinado ambiente, é necessário aprender a quantidade de ruído que faz ao movimentar-se a diferentes velocidades nesse ambiente. Para tal, um microfone foi instalado num robô com rodas para obter informação sobre a sua acústica. Para validar a solução proposta, foram realizados testes, com sucesso, em diferentes ambientes com diferentes ruídos de fundo. Posteriormente, foi instalado no robô um sensor PIR para analizar a capacidade do robô executar o controlador de velocidade quando alguém entra no campo de visão do sensor. Este segundo teste demonstrou a possibilidade de incluir a solução proposta em outros sistemas.