Academic literature on the topic 'Self-Powered devices'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Self-Powered devices.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Self-Powered devices"
Xu, Sheng, Yong Qin, Chen Xu, Yaguang Wei, Rusen Yang, and Zhong Lin Wang. "Self-powered nanowire devices." Nature Nanotechnology 5, no. 5 (March 28, 2010): 366–73. http://dx.doi.org/10.1038/nnano.2010.46.
Full textConzuelo, Felipe, Adrian Ruff, and Wolfgang Schuhmann. "Self-powered bioelectrochemical devices." Current Opinion in Electrochemistry 12 (December 2018): 156–63. http://dx.doi.org/10.1016/j.coelec.2018.05.010.
Full textAmsel, Avigail D., Arkady Rudnitsky, and Zeev Zalevsky. "A Self-Powered Medical Device for Blood Irradiation Therapy." Journal of Atomic, Molecular, and Optical Physics 2012 (June 27, 2012): 1–5. http://dx.doi.org/10.1155/2012/963187.
Full textElahi, Hassan, Khushboo Munir, Marco Eugeni, Sofiane Atek, and Paolo Gaudenzi. "Energy Harvesting towards Self-Powered IoT Devices." Energies 13, no. 21 (October 22, 2020): 5528. http://dx.doi.org/10.3390/en13215528.
Full textYang, Zetian, Zhongtai Zhu, Zixuan Chen, Mingjia Liu, Binbin Zhao, Yansong Liu, Zefei Cheng, Shuo Wang, Weidong Yang, and Tao Yu. "Recent Advances in Self-Powered Piezoelectric and Triboelectric Sensors: From Material and Structure Design to Frontier Applications of Artificial Intelligence." Sensors 21, no. 24 (December 17, 2021): 8422. http://dx.doi.org/10.3390/s21248422.
Full textAli, Shawkat, Saleem Khan, and Amine Bermak. "All-Printed Human Activity Monitoring and Energy Harvesting Device for Internet of Thing Applications." Sensors 19, no. 5 (March 8, 2019): 1197. http://dx.doi.org/10.3390/s19051197.
Full textZheng, Qiang, Qizhu Tang, Zhong Lin Wang, and Zhou Li. "Self-powered cardiovascular electronic devices and systems." Nature Reviews Cardiology 18, no. 1 (September 7, 2020): 7–21. http://dx.doi.org/10.1038/s41569-020-0426-4.
Full textMainra, Jashan Kumar, Akshpreet Kaur, Gaurav Sapra, and Parul Gaur. "Simulation and Modelling of Triboelectric Nanogenerator for Self-powered Electronic Devices." IOP Conference Series: Materials Science and Engineering 1225, no. 1 (February 1, 2022): 012012. http://dx.doi.org/10.1088/1757-899x/1225/1/012012.
Full textXue, Ziao, Li Wu, Junlin Yuan, Guodong Xu, and Yuxiang Wu. "Self-Powered Biosensors for Monitoring Human Physiological Changes." Biosensors 13, no. 2 (February 7, 2023): 236. http://dx.doi.org/10.3390/bios13020236.
Full textKim, Minsoo P. "Multilayered Functional Triboelectric Polymers for Self-Powered Wearable Applications: A Review." Micromachines 14, no. 8 (August 20, 2023): 1640. http://dx.doi.org/10.3390/mi14081640.
Full textDissertations / Theses on the topic "Self-Powered devices"
Nyländen, T. (Teemu). "Application specific programmable processors for reconfigurable self-powered devices." Doctoral thesis, Oulun yliopisto, 2018. http://urn.fi/urn:isbn:9789526218755.
Full textTiivistelmä Esineiden internet tulee muuttamaan tulevaisuudessa elinympäristömme täysin. Se tulee mahdollistamaan interaktiiviset ympäristöt nykyisten passiivisten ympäristöjen sijaan. Lisäksi elinympäristömme tulee reagoimaan tekoihimme ja puheeseemme sekä myös tunteisiimme. Tämä kaikkialla läsnä olevan langaton infrastruktuuri tulee vaatimaan ennennäkemätöntä laskentatehokkuutta yhdistettynä äärimmäiseen energiatehokkuuteen. Nykyiset esineiden internet ratkaisut nojaavat lähes täysin kaupallisiin "suoraan hyllyltä" saataviin yleiskäyttöisiin mikrokontrollereihin. Ne ovat kuitenkin optimoituja pelkästään matalan tehonkulutuksen näkökulmasta, eivätkä niinkään energiatehokkuuden, saati tulevaisuuden esineiden internetin vaatiman laskentatehon suhteen. Kuitenkin esineiden internet on lähtökohtaisesti sovelluskohtaista laskentaa vaativa, joten yleiskäyttöisten prosessoreiden käyttö signaalinkäsittelytehtäviin on epäloogista. Sen sijaan sovelluskohtaisten kiihdyttimien käyttö laskentaan, todennäköisesti mahdollistaisi tavoitellun vaatimustason saavuttamisen. Tämä väitöskirja esittelee yhden mahdollisen ratkaisun matalan energian kulutuksen, korkean suorituskyvyn ja joustavuuden yhdenaikaiseen saavuttamiseen kustannustehokkaalla tavalla, käyttäen uudelleenkonfiguroitavia heterogeenisiä prosessoriratkaisuja. Työssä esitellään uusi grafiikkaprosessori-tyylinen uudelleen konfiguroitava kiihdytin esineiden internet sovellusalueelle, jota pystytään hyödyntämään useimpien laskentatehoa vaativien sovellusten kanssa. Ehdotetun kiihdyttimen ominaisuuksia arvioidaan kahta konenäkösovellusta esimerkkinä käyttäen ja osoitetaan sen saavuttavan loistavan yhdistelmän energia tehokkuutta ja suorituskykyä. Kiihdytin suunnitellaan käyttäen tehokasta ja nopeaa ohjelmiston ja laitteiston yhteissuunnitteluketjua, jolla voidaan saavuttaa lähestulkoon kaupallisten "suoraan hyllyltä" saatavien prosessoreiden kehitystyön helppous, joka puolestaan mahdollistaa kustannustehokkaan kehitys- ja suunnittelutyön
Álvarez-Carulla, Albert. "Energy Harvesting Solutions for Self-Powered Devices: From Structural Health Monitoring to Biomedical Applications." Doctoral thesis, Universitat de Barcelona, 2021. http://hdl.handle.net/10803/670900.
Full textLa tesis recoge la investigación realizada sobre el desarrollo de dispositivos verdaderamente auto- alimentados. Se muestra el desarrollo de dispositivos para el ámbito de la monitorización de la salud de estructuras (SHM) y el ámbito de los dispositivos Point-of-Care (PoC). Para ello, se implementan nuevas soluciones del ámbito de la recolección de energía para utilizar un único transductor como elemento sensor y de fuente de alimentación para el sistema. En esta investigación, los transductores utilizados son generadores piezoeléctricos y celdas galvánicas, siendo extrapolables los desarrollos realizados a otro tipos de transductores o generadores.
Wu, Wenzhuo. "Piezotronic devices and integrated systems." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/51726.
Full textDhayal, Vandana Sultan Singh. "Exploring Simscape™ Modeling for Piezoelectric Sensor Based Energy Harvester." Thesis, University of North Texas, 2017. https://digital.library.unt.edu/ark:/67531/metadc984261/.
Full textPettersson, Ingvor. "Significance of assistive devices in the daily life of persons with stroke and their spouses /." Doctoral thesis, Örebro : Örebro University : Universitetsbiblioteket, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-460.
Full textNoble, Frazer K. "Wireless vehicle presence detection using self-harvested energy : a thesis in partial fulfilment of the requirements for the degree of Master of Engineering in Mechatronics, Massey University, Albany, New Zealand." Massey University, 2009. http://hdl.handle.net/10179/1078.
Full text"Feasibility studies of self-powered piezoelectric sensors." 2004. http://library.cuhk.edu.hk/record=b5892014.
Full textThesis (M.Phil.)--Chinese University of Hong Kong, 2004.
Includes bibliographical references (leaves 67-70).
Abstracts in English and Chinese.
ABSTRACT --- p.i
摘要 --- p.ii
ACKNOWLEDGEMENTS --- p.iii
LIST OF FIGURES --- p.iv
LIST OF TABLES --- p.ix
Chapter CHAPTER 1 --- INTRODUCTION --- p.1
Chapter 1.1 --- Background --- p.1
Chapter 1.2 --- Literature Review --- p.3
Chapter 1.3 --- Research Objectives --- p.5
Chapter 1.4 --- Thesis Organization --- p.5
Chapter CHAPTER 2 --- MODELING OF PIEZOELECTRIC SENSOR/GENERATOR --- p.6
Chapter 2.1 --- Constitutive Equations --- p.6
Chapter 2.2 --- Voltage Output of Piezoelectric Materials --- p.9
Chapter 2.2.1 --- Short Circuit --- p.9
Chapter 2.2.2 --- Open Circuit --- p.11
Chapter 2.3 --- Sensitivity and Power Generation --- p.13
Chapter 2.4 --- Modeling and Analysis of Sensor Structure --- p.23
Chapter 2.4.1 --- Damping Ratio Estimation --- p.25
Chapter (a) --- Half-power bandwidth method --- p.25
Chapter (b) --- Linear interpolation method --- p.25
Chapter 2.4.2 --- Trade-off between Resonant Frequency and Output Sensitivity of a Sensor --- p.29
Chapter (a) --- Maximize Sme with constant wn --- p.31
Chapter (b) --- Maximize wn with constant Sme --- p.33
Chapter 2.5 --- Model Accuracy --- p.39
Chapter CHAPTER 3 --- POWER HARVESTING --- p.41
Chapter 3.1 --- Circuit Model --- p.41
Chapter 3.2 --- Energy Storage --- p.47
Chapter 3.3 --- Size Effect on Power Output --- p.49
Chapter 3.4 --- Power Harvesting Circuit --- p.50
Chapter 3.4.1 --- Performance of the Power Harvesting Circuit --- p.51
Chapter (a) --- Power Harvesting Circuit Efficiency --- p.52
Chapter (b) --- Useful Power Output --- p.53
Chapter (c) --- System Efficiency --- p.56
Chapter (d) --- Relationship between Input Excitation and Charge Time --- p.57
Chapter 3.5 --- Harvested Energy for Wireless Transmission --- p.60
Chapter CHAPTER 4 --- CONCLUDING REMARKS --- p.64
Chapter 4.1 --- Sensor/Generator Design --- p.64
Chapter 4.2 --- Potential Applications --- p.64
Chapter 4.3 --- Conclusion --- p.65
Chapter 4.4 --- Future Work --- p.66
REFERENCES --- p.67
APPENDIX --- p.71
Coelho, Guilherme Miguel Melo. "Wearable Integrated Devices for Sustainable Energy: Self Powered e-Cloths." Master's thesis, 2020. http://hdl.handle.net/10362/112787.
Full textYang, Te-Fu, and 陽德甫. "Battery Powered Self-Cancellation DC-DC Buck Converter with 97% Output Voltage Accuracy for Biomedical Devices in 28nm CMOS Process." Thesis, 2015. http://ndltd.ncl.edu.tw/handle/4fvv94.
Full text國立交通大學
電機工程學系
104
This dissertation presents a battery powered self-cancellation DC-DC buck (SC-Buck) converter with 97% output voltage accuracy for biomedical devices in 28nm CMOS process. As the publics are paying more attention on the healthcare services. Advantages of portable biomedical devices become more and more obvious. Due to increasing average lifespan, the convenience healthcare delivery is urgently needed. A remote monitoring service, for example, helps the healthcare practitioners to observe any unusual symptom by monitoring the blood pressure, body temperature, heart beats, etc. These kinds of healthcare services highly depend on the support of portable medical devices. For portable devices, the battery is the key component to deliver power anywhere. Therefore, the battery of a medical device has been developed with lots of efforts. But power management unit (PMU) of medical devices, which directly delivers supplying voltage to systems, should also be carefully designed. Reliability and safety of power sources are important because any failure or malfunction is not a viable option when it comes to human life. On the other hand, IEC60601-1 standard also specifies the stability of supplying DC voltage. Due to above requirements, the proposed SC-Buck converter provides high accuracy and stable output voltage to the loading system. SC-Buck converter overcomes process, voltage and temperature (PVT) variations and increases output voltage accuracy up to 97% without any trimming procedures. The developed technique also overcomes the discontinuity in conventional offset cancellation scheme and reduces large silicon area occupation, which is required to decrease mismatch in conventional operational amplifiers (OPAMPs). Monte Carlo analysis verifies the reduction of mismatch. Furthermore, increasing the functionality of portable medical devices is also expected by clinicians and patients. High performance services require extra power suppling. Thus, Turbo-boost charger developed by Texas Instruments (TI) provides higher power delivery, but restricts the applications. Therefore, this dissertation also presents a new control topology of Turbo-boost charger named as the fully automatic control (FAC) technique, which can support any loading systems. Modeling from basic switching-based charger to the Turbo-boost charger is completely derived and analyzed.
Yang, Chih-Hsiang, and 楊智翔. "Using Piezoelectric Energy Harvesting Devices in Synchronized Switch Harvesting on Inductor (SSHI) Circuit Driven by Induction Coil and its Application in Self-powered System." Thesis, 2011. http://ndltd.ncl.edu.tw/handle/18544649254029144011.
Full text國立臺灣大學
工程科學及海洋工程學研究所
100
In recent years, energy depletion and alternative energy issues gradually are taken seriously, the piezoelectric material security, good stability and small size of the advantage, making it an important alternative energy sources. The energy derived from the piezoelectric power harvester could be applied to the circuit of Synchronized Switch Harvesting on Inductor (SSHI) successfully. Moreover, by allocating the energy into two parts, one for SSHI circuit, the other for electric components, the energy is enough to supply the whole circuit, which makes it become a self-powered system with high efficiency. In this paper, the method of electromagnetic induction is used to drive the switches because its produced signals have low noises. This advantage makes it easier to control, decreases the design of filter circuits in the whole system and deduces the energy consumption.
Books on the topic "Self-Powered devices"
Alhawari, Mohammad, Baker Mohammad, Hani Saleh, and Mohammed Ismail. Energy Harvesting for Self-Powered Wearable Devices. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-62578-2.
Full textKottapalli, Ajay Giri Prakash, Kai Tao, Debarun Sengupta, and Michael S. Triantafyllou. Self-Powered and Soft Polymer MEMS/NEMS Devices. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-05554-7.
Full textDhakar, Lokesh. Triboelectric Devices for Power Generation and Self-Powered Sensing Applications. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3815-0.
Full textColomer-Farrarons, Jordi, and Pere Lluís Miribel-Català. A CMOS Self-Powered Front-End Architecture for Subcutaneous Event-Detector Devices. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-0686-6.
Full textLee, Tae-Ho. Formation of KNbO3 Thin Films for Self-Powered ReRAM Devices and Artificial Synapses. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2535-9.
Full textLluís, Miribel-Català Pere, and SpringerLink (Online service), eds. A CMOS Self-Powered Front-End Architecture for Subcutaneous Event-Detector Devices: Three-Electrodes Amperometric Biosensor Approach. Dordrecht: Springer Science+Business Media B.V., 2011.
Find full textEducational Resources Information Center (U.S.), ed. Adaptive driving equipment: Selection and major considerations ; [and], battery powered scooters and 3-wheelers. [West Columbia, S.C: Center for Rehabilitation Technology Services, South Carolina Vocational Rehabilitation Dept., 1996.
Find full textMuli, Apostle Robert. Self Powered Green Energy Devices. Lulu Press, Inc., 2013.
Find full textYuce, Mehmet, M. A. Parvez Mahmud, and Abbas Kouzani. Self-Powered Wearable and Implantable Devices. Elsevier Science & Technology Books, 2022.
Find full textMohammad, Baker, Mohammed Ismail, Mohammad Alhawari, and Hani Saleh. Energy Harvesting for Self-Powered Wearable Devices. Springer International Publishing AG, 2017.
Find full textBook chapters on the topic "Self-Powered devices"
Misra, Abha. "Self-Powered Supercapacitor." In Micro to Quantum Supercapacitor Devices, 111–14. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003174554-7.
Full textÁlvarez-Carulla, Albert, Jordi Colomer-Farrarons, and Pere Lluís Miribel Català. "Galvanic Cell-Based Self-powered Devices." In Self-powered Energy Harvesting Systems for Health Supervising Applications, 51–80. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-5619-5_3.
Full textZhang, Xiaosheng, and Danliang Wen. "All-in-One Self-Powered Microsystems." In Flexible and Stretchable Triboelectric Nanogenerator Devices, 305–37. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2019. http://dx.doi.org/10.1002/9783527820153.ch16.
Full textLeonov, Vladimir. "Energy Harvesting for Self-Powered Wearable Devices." In Wearable Monitoring Systems, 27–49. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-7384-9_2.
Full textKarbari, Sudha R. "Structural Triboelectric Nanogenerators for Self-powered Wearable Devices." In Advances in Intelligent Systems and Computing, 187–97. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1819-1_19.
Full textSengupta, Debarun, Ssu-Han Chen, and Ajay Giri Prakash Kottapalli. "Nature-Inspired Self-Powered Sensors and Energy Harvesters." In Self-Powered and Soft Polymer MEMS/NEMS Devices, 61–81. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-05554-7_3.
Full textTao, Kai, Honglong Chang, Jin Wu, Lihua Tang, and Jianmin Miao. "MEMS/NEMS-Enabled Energy Harvesters as Self-Powered Sensors." In Self-Powered and Soft Polymer MEMS/NEMS Devices, 1–30. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-05554-7_1.
Full textSengupta, Debarun, and Ajay Giri Prakash Kottapalli. "Flexible and Wearable Piezoelectric Nanogenerators." In Self-Powered and Soft Polymer MEMS/NEMS Devices, 31–60. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-05554-7_2.
Full textDas, Apurba, and Pamu Dobbidi. "Self-Powered Devices: A New Paradigm in Biomedical Engineering." In Bioelectronics, 323–39. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003263265-20.
Full textDhakar, Lokesh. "Skin Based Self-powered Wearable Sensors and Nanogenerators." In Triboelectric Devices for Power Generation and Self-Powered Sensing Applications, 67–85. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3815-0_4.
Full textConference papers on the topic "Self-Powered devices"
Mani, Suresh, Joseph Mullassery, Olive Jesudas, Harshad Dhuri, and Janak Varma. "Self powered ZigBee devices." In ICWET '10: International Conference and Workshop on Emerging Trends in Technology. New York, NY, USA: ACM, 2010. http://dx.doi.org/10.1145/1741906.1742226.
Full textGao, Wei. "Self-powered wearable biosensors." In Energy Harvesting and Storage: Materials, Devices, and Applications XI, edited by Achyut K. Dutta, Palani Balaya, and Sheng Xu. SPIE, 2021. http://dx.doi.org/10.1117/12.2588899.
Full textLian, Yong, and Xiaodan Zou. "Towards self-powered wireless biomedical sensor devices." In 2008 9th International Conference on Solid-State and Integrated-Circuit Technology (ICSICT). IEEE, 2008. http://dx.doi.org/10.1109/icsict.2008.4734854.
Full textBuss, Dennis. "Research in self-powered electronic systems." In 2011 IEEE International Electron Devices Meeting (IEDM). IEEE, 2011. http://dx.doi.org/10.1109/iedm.2011.6131528.
Full textAndrew, Trisha. "Self-powered garment-integrated sensors (Conference Presentation)." In Organic Photonic Materials and Devices XXI, edited by Christopher E. Tabor, François Kajzar, and Toshikuni Kaino. SPIE, 2019. http://dx.doi.org/10.1117/12.2515254.
Full textThekkekara, Litty V. "3D laser-printed self-powered textiles." In Nanoengineering: Fabrication, Properties, Optics, Thin Films, and Devices XVII, edited by Wounjhang Park, André-Jean Attias, and Balaji Panchapakesan. SPIE, 2020. http://dx.doi.org/10.1117/12.2564674.
Full textGad, A. E., M. W. G. Hoffmann, J. D. Prades, F. Ramirez, R. Fiz, H. Shen, S. Mathur, and A. Waag. "Self-Powered Solar Diode Gas Sensors." In 2014 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2014. http://dx.doi.org/10.7567/ssdm.2014.d-1-4.
Full textWu, Chung-Yu, Po-Han Kuo, Chi-Kuan Tzeng, Chuan-Chin Chiao, Jui-Wen Pan, and Yueh-Chun Tsai. "Self-powered subretinal prosthetic devices using optoelectronic technologies." In 2016 International Conference on Optical MEMS and Nanophotonics (OMN). IEEE, 2016. http://dx.doi.org/10.1109/omn.2016.7565841.
Full textReilly, Kyle M., Michael T. Birner, and Nathan G. Johnson. "Measuring air quality using wireless self-powered devices." In 2015 IEEE Global Humanitarian Technology Conference (GHTC). IEEE, 2015. http://dx.doi.org/10.1109/ghtc.2015.7343983.
Full textDoumenis, Gregory, Ioannis Masklavanos, and Konstantine Tsiapali. "Lightweight operation scheduling for self-powered IoT devices." In 2022 7th South-East Europe Design Automation, Computer Engineering, Computer Networks and Social Media Conference (SEEDA-CECNSM). IEEE, 2022. http://dx.doi.org/10.1109/seeda-cecnsm57760.2022.9932933.
Full text