Academic literature on the topic 'Self-biased circulator'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Self-biased circulator.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Self-biased circulator":

1

O'Neil, B. K., and J. L. Young. "Experimental Investigation of a Self-Biased Microstrip Circulator." IEEE Transactions on Microwave Theory and Techniques 57, no. 7 (July 2009): 1669–74. http://dx.doi.org/10.1109/tmtt.2009.2022588.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Labchir, N., A. Hannour, A. Ait Hssi, D. Vincent, and A. Ihlal. "Self-biased coplanar circulator based on electrochemically grown ferrimagnetic nanowires." Journal of Magnetism and Magnetic Materials 547 (April 2022): 168945. http://dx.doi.org/10.1016/j.jmmm.2021.168945.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Harris, Vincent G., and Alexander S. Sokolov. "The Self-Biased Circulator: Ferrite Materials Design and Process Considerations." Journal of Superconductivity and Novel Magnetism 32, no. 1 (December 17, 2018): 97–108. http://dx.doi.org/10.1007/s10948-018-4928-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wang, Jianwei, Aria Yang, Yajie Chen, Zhaohui Chen, Anton Geiler, Scott M. Gillette, Vincent G. Harris, and Carmine Vittoria. "Self Biased Y-Junction Circulator at ${\rm K}_{\rm u}$ Band." IEEE Microwave and Wireless Components Letters 21, no. 6 (June 2011): 292–94. http://dx.doi.org/10.1109/lmwc.2011.2142297.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kiani, E., and A. poorbafrani. "Designing a Self-Biased CPW Circulator Based on Strontium Hexaferrite Thick Film." Journal of Electronic Materials 46, no. 8 (April 19, 2017): 5089–93. http://dx.doi.org/10.1007/s11664-017-5505-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chen, Jianfeng, Yingli Liu, and Qisheng Yin. "C-axis Oriented Polycrystalline BaFe12-xCoxO19 (x = 0, 0.3, 0.6, 0.9) for Millimeter Wave Self-biased Circulator at Ka Band." Highlights in Science, Engineering and Technology 35 (April 11, 2023): 40–45. http://dx.doi.org/10.54097/hset.v35i.7025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The anisotropic hexagonal magnetic material is prepared using conventional ceramic process. The high magnetic anisotropy field of hexagonal is essential to extend the device bandwidth for circulator operating at millimeter wave band. The modified hexagonal BaFe12-xCoxO19 with about 9 kOe anisotropy field and its Electromagnetic property are presented. And a simulation certificating the circulator at Ka-band is given at the end of the paper.
7

PENG, Bin, Yuan WANG, Hui-Zhong XU, Wen-Xu ZHANG, and Wan-Li ZHANG. "Design and fabrication of self-biased millimeter wave circulator using barium ferrite thin films." Journal of Infrared and Millimeter Waves 32, no. 4 (2013): 294. http://dx.doi.org/10.3724/sp.j.1010.2013.00294.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Laur, Vincent, Jean-Luc Mattei, Grégory Vérissimo, Patrick Queffelec, Richard Lebourgeois, and Jean-Pierre Ganne. "Application of Molded Interconnect Device technology to the realization of a self-biased circulator." Journal of Magnetism and Magnetic Materials 404 (April 2016): 126–32. http://dx.doi.org/10.1016/j.jmmm.2015.12.021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

PENG, BIN, YUANCHAO WANG, WANLI ZHANG, WENXU ZHANG, and KE TAN. "MAGNETIC FIELD ALIGNMENT OF BARIUM FERRITE THICK FILMS FOR MICROWAVE CIRCULATOR APPLICATIONS." Modern Physics Letters B 26, no. 26 (September 11, 2012): 1250168. http://dx.doi.org/10.1142/s0217984912501680.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Barium ferrite films were prepared using screen printing method for their applications in self-biased microwave integrated circulators. The influences of alignment magnetic field on the microstructure and magnetic properties of the barium ferrite thick films were investigated. The results show that the (00l) peaks of the barium ferrite films are enhanced with the increase of alignment magnetic field. Hexagonal BaFe 12 O 19 platelets rotate and orient with c-axis perpendicular to the film plane after the magnetic field aligning. The remanence ratio of the barium ferrite films is improved from 0.52 to 0.78 with the increase of alignment magnetic field from 0 to 8 kOe. By magnetic field aligning, barium ferrite thick films with the remanence ratio of 0.8 have been prepared. A prototype of microwave integrated circulator is developed with the prepared barium ferrite films.
10

Xu Zuo, Hoton How, S. Somu, and C. Vittoria. "Self-biased circulator/isolator at millimeter wavelengths using magnetically oriented polycrystalline strontium M-type hexaferrite." IEEE Transactions on Magnetics 39, no. 5 (September 2003): 3160–62. http://dx.doi.org/10.1109/tmag.2003.816043.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Self-biased circulator":

1

Roué, Evan. "Conception de circulateurs et d'isolateurs ultra-compacts en bandes W pour les systèmes de communication à très haut débit." Electronic Thesis or Diss., Brest, 2023. http://www.theses.fr/2023BRES0106.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
L’objectif de cette thèse est de développer une technologie de composants à ferrites ultra-compacts pour les futurs systèmes de communication spatiaux à très haut débit. Plus précisément, la thèse consiste au développement de circulateurs et d’isolateurs sans aimants (autopolarisés) en bande W spatiale (71 – 76 GHz / 81 – 86 GHz), diminuant ainsi leur taille et leur masse. Ce travail se concentre sur deux technologies : guide d’ondes et microruban. Les travaux en technologie guide d’ondes ont permis d’aboutir à la création de deux circulateurs utilisant des matériaux magnétiques différents présentant de très bonnes performances. Pour aboutir à la création d’isolateurs, la problématique de la conception de charges adaptées a été explorée via l’utilisation des techniques d’impression 3D. Grâce à la création d’un matériau ferrite dont les propriétés magnétiques sont contrôlées, un autre type d’isolateur ultra-compact a ainsi pu être réalisé, permettant leur utilisation dans les antennes actives. Enfin, la réalisation d’isolateurs autopolarisés microrubans en bande W a été rendue possible grâce à la compréhension de l’impact des effets de bords sur les performances électriques. Cela a abouti au développement d’une nouvelle technique de design relâchant les contraintes technologiques pesant sur ces composants, notamment celles liées à l’épaisseur du substrat. Ainsi, deux isolateurs planaires ont été fabriqués et mesurés. Ils offrent des performances à l’état de l’art. Une étude en température confirme la stabilité des performances RF et la robustesse de la conception vis-à-vis de l’environnement spatial
The goal of this thesis is to develop a technology of ultra-compact ferrite-based devices for futures very high throughput space communication systems. More specifically, this Ph.D. thesis consists of the development of magnetless (self-biased) circulators and isolators in space W-band (71 – 76 GHz / 81 – 86 GHz), lowering their sizes and weights. This work is focused on two technologies: waveguide and microstrip. Work in waveguide technology leads to the creation of two circulators using two different magnetic materials showing very good performances. In order to create isolators, matched waveguide terminations has been designed and manufactured using 3D printing techniques. With the help of a custom-made ferrite material with controlled magnetic properties, another type of ultra-compact isolator has been manufactured, allowing their use in active antennas. Finally, the realization of self-biased microstrip isolators in W-band is now possible thanks to the deep understanding of the impact of fringing fields on electrical performance. This led to the development of a new design technique that relieve technological constraints, especially ones that are linked to the substrate thickness. Hence, two planar isolators have been manufactured and measured. They offer state-of-the-art performance. A temperature analysis confirms RF performance stability and the design reliability in the context of the space environment

Book chapters on the topic "Self-biased circulator":

1

Anderson, Elizabeth. "Epistemic Bubbles and Authoritarian Politics." In Political Epistemology, 11–30. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780192893338.003.0002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Contemporary U.S. political discourse is distorted by “epistemic bubbles.” In social epistemology, an epistemic bubble is a self-segregated network for the circulation of ideas, resistant to correcting false beliefs. Dominant models of epistemic bubbles explain some of their features, but fail to account for their recent spread, increasing extremity, and asymmetrical distribution across political groups. The rise of populist authoritarian politics explains these recent changes. I propose two models of how populism creates epistemic bubbles or their functional equivalents: (1) by promulgating biased group norms of information processing; and (2) by replacing empirically-oriented policy discourse with an identity-expressive discourse of group status competition. Each model recommends different strategies for popping epistemic bubbles. My analysis suggests that social epistemology needs to get more social, by modeling cognitive biases as operating collectively and outside people’s heads, via group epistemic and discursive norms.

Conference papers on the topic "Self-biased circulator":

1

Joseph, Sumin David, Yi Huang, Alex Schuchinsky, Richard Lebourgeois, and Laurent Roussel. "Self-biased CPW Circulator with Low Insertion Loss." In 2020 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP). IEEE, 2020. http://dx.doi.org/10.1109/imws-amp49156.2020.9199685.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zhou, Wen, Joseph Um, Bethanie Stadler, and Rhonda Franklin. "Design of self-biased coplanar circulator with ferromagnetic nanowires." In 2018 IEEE Radio and Wireless Symposium (RWS). IEEE, 2018. http://dx.doi.org/10.1109/rws.2018.8304998.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gitzel, Wanja M., Shayan Bahadori Rad, Manuel Heidenreich, Jorg Topfer, and Arne F. Jacob. "Integration Concept for a Self-Biased Ka-Band Circulator." In 2020 23rd International Microwave and Radar Conference (MIKON). IEEE, 2020. http://dx.doi.org/10.23919/mikon48703.2020.9253784.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kong, Lingqi, Yi Huang, and Alexander Schuchinsky. "Quad-Junction Self-Biased Circulator with Wide Operational Bandwidth." In 2024 18th European Conference on Antennas and Propagation (EuCAP). IEEE, 2024. http://dx.doi.org/10.23919/eucap60739.2024.10501472.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Le Noane, Yoan, Evan Roué, Norbert Parker, Mihai Telescu, Vincent Laur, and Noël Tanguy. "Uncertainty Quantification for a Microstrip Self-Biased Ku-band Circulator." In 2023 Asia-Pacific Microwave Conference (APMC). IEEE, 2023. http://dx.doi.org/10.1109/apmc57107.2023.10439690.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wang, Y., B. Peng, and W. L. Zhang. "Simulation of self-biased coplanar circulator using barium ferrite thin films." In 2010 International Conference on Microwave and Millimeter Wave Technology (ICMMT). IEEE, 2010. http://dx.doi.org/10.1109/icmmt.2010.5525214.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Cui, Yongjie, Hung-Yu Chen, Shuoqi Chen, Douglas Linkhart, Haosen Tan, Jiangbin Wu, Soack Yoon, et al. "Monolithically Integrated Self-Biased Circulator for mmWave T/R MMIC Applications." In 2021 IEEE International Electron Devices Meeting (IEDM). IEEE, 2021. http://dx.doi.org/10.1109/iedm19574.2021.9720611.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Jiao, Runhu, Xiaofeng Li, Qixiang Zhao, Xingpeng Liu, and ChuanJian Wu. "Design of Self-Biased Microstrip Double-Y Junction Circulator at Ka Band." In 2023 Cross Strait Radio Science and Wireless Technology Conference (CSRSWTC). IEEE, 2023. http://dx.doi.org/10.1109/csrswtc60855.2023.10427490.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Juan, C., Y. Hong, S. Gee, and J. Jalli. "Barium Ferrite Thin Films with Negative Nucleation Field for Self-biased Circulator Applications." In INTERMAG 2006 - IEEE International Magnetics Conference. IEEE, 2006. http://dx.doi.org/10.1109/intmag.2006.376231.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Laur, V., R. Lebourgeois, E. Laroche, J. L. Mattei, P. Queffelec, J. P. Ganne, and G. Martin. "Study of a low-loss self-biased circulator at 40 GHz: Influence of temperature." In 2016 IEEE/MTT-S International Microwave Symposium (IMS). IEEE, 2016. http://dx.doi.org/10.1109/mwsym.2016.7540159.

Full text
APA, Harvard, Vancouver, ISO, and other styles

To the bibliography