Contents
Academic literature on the topic 'Séléniure d'indium'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Séléniure d'indium.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Dissertations / Theses on the topic "Séléniure d'indium"
Sedaries, Didier. "Interfaces semi-conducteur-électrolyte modifiées par voie photoélectrochimique : application au séléniure d'indium (InSe)." Paris 11, 1989. http://www.theses.fr/1989PA112077.
Full textMestdagh, Nathalie. "Chimiorésistance à l'adriamycine et au cis-platine : caractérisation et/ou réversion du phénomène in vitro." Lille 1, 1993. http://www.theses.fr/1993LIL10046.
Full textNomane, Yanoura. "Réponse au stress et ARN non codants chez Escherichia coli." Paris 11, 2009. http://www.theses.fr/2009PA112034.
Full textThis work realised in the Gram-negative model bacterium Escherichia coli is divided in two parts. The first part focuses on adaptive response and more precisely the response to extracytoplasmic stress. This part is illustrated by a paper on the global analysis of the five pathways that responde to extracytoplasmic stress. It shows that i) all pathways are activated by the same signals but the specificity of induction is dose-dependent and that II) responses displayed are complementary but not redundant. The second part of this work concerns non-coding RNAs in Escherichia coli. The results’ part introduces a biochemical method to “fish” non-coding RNAs targets (targetome). This part is followed by a paper on Ral, a non-coding RNA antisens of lon protease gene. The targetome method is still in development but it allows the identification of a new putative target for micC RNA. This method was also used to identify Ral putative targets which are lon and topB messenger RNAs. Ral mechanism of action is still unclear but phenotypes associated to the presence of its multicopy plasmid have been isolated. Ral is one of the few cis antisens RNAs that are encoded in the chromosome of Escherichia coli
Tsoulka, Polyxeni. "Local inhomogeneities in polycrystalline wide band gap Culn1-xGaxSe2 thin-films." Thesis, Nantes, 2019. http://www.theses.fr/2019NANT4009/document.
Full textAmongst the different semiconductor materials used as absorber layers, polycrystalline CuIn1-xGaxSe2 is one of the most promising materials in the thin-film photovoltaic technology. Due to the high efficiency, stability and band gap tunability with x, thin-film solar cells based on CuIn1-xGaxSe2 absorber layer are already industrially implemented. Moreover, in the multi-junction solar cell technology the aim of reaching higher efficiencies while keeping the fabrication costs low, makes the wide band gap indium-free CuGaSe2 absorber layer an interesting candidate as a top cell in a hybrid tandem solar cell based on c-Si bottom cell. However, the actual energy conversion efficiency strongly decreases for x larger than 0.3 and it does not follow the theoretical predictions indicating better performances for x around 0.7. The difficulty to obtain a high device performance for large x has been a worldwide question for several years and many theories have been proposed to explain the limited conversion efficiency. A possible cause of the limited CuIn1-xGaxSe2 performance for large x involves the local inhomogeneities at the inter- or intra-grain regions, since the nature of the accumulated species or compound at the interfaces can be detrimental or beneficial for the solar cell efficiency. In this thesis we investigate two possible phenomena that are likely to occur at the CIGSe interfaces i) a preferential elemental segregation at the grain boundaries and ii) the detrimental copper selenide surface segregation or bulk precipitation. In this work, the elemental segregation is investigated at equilibrium by coupling ab initio calculations and thermodynamic modeling. Our results indicate that substitutional (InGa or GaIn antisite) cannot be expected in the most frequently present interfaces such as the twin grain boundaries. A complementary and simple analysis of the main segregation driving forces was also studied in order to understand the segregation in the more general cases, such as the surface segregation. Our calculations show that In is slightly more favorable to segregate at the surface rather than Ga. The experimental analysis on CuIn1-xGaxSe2 films at intermediate and large x reveals that increasing x the Cu content in the CuIn1-xGaxSe2 film can locally differ, creating detrimental Cu-enriched domains within the bulk of the film. This phenomenon is due to the slow kinetics at large x and the reduced Cu and Ga interdiffusion. In this work, we propose a strategy to avoid these local inhomogeneities by applying a relaxation stage during the CuIn1-xGaxSe2 deposition process. This stage improves the photovoltaic performance, since it leads to a long-range equilibration, grain growth, annihilation of voids and a close to stoichiometry bulk which was expected
De, Kergommeaux Antoine. "Synthèse de nouveaux types de nanocristaux semi-conducteurs pour application en cellules solaires." Phd thesis, Université de Grenoble, 2012. http://tel.archives-ouvertes.fr/tel-00816947.
Full textAviles, Thomas. "Etude du dépôt par pulvérisation cathodique des matériaux pour la réalisation de cellules photovoltaïques couche mince à base de CIGS ou CZTS." Thesis, Lille 1, 2012. http://www.theses.fr/2012LIL10126.
Full textThin film photovoltaic cells based on CIGS and CZTS materials has been initiated in this work. Environmental and economic issues have been taken into account to define an original strategy. We aim to substitute all the toxic and rare materials by abundant and non-toxic materials. In order to simplify the fabrication process, we also decide to deposit all layers using sputtering technique. The molybdenum back contact has been developed on a soda lime glass (SLG) substrate, with adequate electrical properties and good adhesion to the substrate even after thermal treatments similar to those used during the absorber formation. We have verified the required sodium migration from the SLG substrate to the molybdenum surface. A bibliographic study has been done to evaluate a single-target sputtering method to form CIGS and CZTS films. CZTS thin film deposition from a single target has been studied, with unsatisfactory results. We finally suggest an original multi-target method. Then, a bibliographic study has been done to evaluate the relevance of a sputtered Zn(S,O) buffer layer to replace the CBD-CdS conventional buffer layer. A study of RF-sputtered AZO films has been carried out, but we didn’t obtain the required electrical conductivity. We finally study RF-sputtering of ITO films. We developed amorphous ITO thin films with excellent electrical and optical properties. We suggest using this material as the window layer of solar cells
Gouillart, Louis. "Development of ultrathin Cu(In,Ga)Se ₂ –based solar cells with reflective back contacts." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASS007.
Full textReducing the absorber thickness of thin-film photovoltaic devices is a promising way to improve their industrial competitiveness, thanks to a lower material usage and an increased throughput. It can also increase their efficiency due to a shorter pathway for the separation of photogenerated charge carriers. Still, the efficiency of ultrathin Cu(In,Ga)Se ₂ -based (CIGS) solar cells , which have an absorber thickness ≤500 nm that is approximately 5 times thinner than standard devices, is limited by two phenomena: the non-radiative recombination of charge carriers at the back contact and the incomplete absorption of the incident light. Several strategies were studied in order to mitigate those losses. First, the composition of ultrathin CIGS layers was optimized to create a grading of the semiconductor’s conduction band minimum. The resulting electric field contributes to a better charge carrier separation and a lower back contact recombination rate. The incorporation of silver in the CIGS composition greatly improved the performances of ultrathin cells, leading to an efficiency of 14.9% (540 nm of ACIGS, without antireflection coating), close to the current record of 15.2% (490 nm of CIGS, with antireflection coating). Besides, the addition of an alumina passivation layer at the interface between CIGS (470 nm) and Mo was also investigated, and resulted in an improvement of the open-circuit voltage of 55 mV. Second, a novel architecture of reflective back contacts was developed. It consists of a silver mirror that is encapsulated with layers of transparent conductive oxides. Based on a transmission electron microscopy study, this back contact was shown to be compatible with the co-evaporation of CIGS at 500°C or more. Thanks to a high reflectivity and an ohmic contact with CIGS, it led to an increase of the efficiency from 12.5% to 13.5% and of the short-circuit current from 26.2 mA/cm² to 28.9 mA/cm² as compared to cells with a standard molybdenum back contact. This reflective back contact paves the way toward higher photovoltaic efficiencies as well as novel strategies for further light trapping
Wu, Wenyi. "Space Charge Doped p-n Junction : 2D Diode with Few-layer Indium Selenide." Electronic Thesis or Diss., Sorbonne université, 2020. http://www.theses.fr/2020SORUS449.
Full textThis work combines the singular properties of 2D materials with an innovative technique used for changing the electronic properties of ultra-thin films to propose a new technology for making the simplest bipolar electronic device, the diode. Firstly we identify semiconducting materials which can be fabricated in ultra-thin layers. Secondly, we use a proprietary technique called Space Charge Doping developed in our group for doping the material, either n or p. Finally, we obtain diode characteristics from the device. The manuscript begins with a review of different materials and properties. In the family of 2D materials, our choice was a III-VI layered semiconductor with a direct bandgap: InSe. We also chose a completely different kind of material, polycrystalline CdO, which is neither layered nor has a direct bandgap but is easy to fabricate in the ultra-thin film form and has high carrier mobility. After preliminary experiments, we chose InSe and fabricated devices of ultra-thin, few atomic layer InSe thin films. We chose to develop in parallel two different geometries for the p-n junction diode. We were able to obtain rectifying behavior for each geometry implying that our space charge doping approach was successful in producing microscopically, spatially differentiated doping in each device. We discuss the obtained I-V characteristics and the inherent limitations of the devices (local heating, hysteresis) and suggest improvements for future experiments and ways of obtaining more efficient and stable functioning and geometry as part of the perspectives of this thesis
Duchatelet, Aurélien. "Synthèse de couches minces de Cu(In,Ga)Se2 pour cellules solaires par électrodépôt d’oxydes mixtes de cuivre-indium-gallium." Thesis, Lille 1, 2012. http://www.theses.fr/2012LIL10163/document.
Full textThin film solar cells based on Cu(In,Ga)Se2 can reach conversion efficiency higher than 20 % by vacuum deposition techniques. In order to decrease the production costs, other techniques are considered. One of them, already developed at the industrial level, consists in the electrodeposition of Cu, In and Ga by stacks on a molybdenum substrate, and then to selenize the layer by reactive thermal treatment. The alternative way developed in this work consists in taking advantage of the strong affinity of indium and gallium for oxygen by electrodeposition of the three elements as oxides, then to reduce the layer by reactive annealing. The electrodeposition mechanism is studied by voltamperometry and chronoamperometry. It is based on a local pH increase at the electrode surface by nitrate reduction that enables copper, indium and gallium oxides/hydroxides precipitation. Electrodeposition conditions are optimized and deposits are characterized. The reduction of the oxide layer by annealing is then studied under hydrogen atmosphere diluted in an inert gas. The reduction kinetic of gallium oxide is very slow and the optimized annealing conditions lead to the formation of GaMo3 phase in addition to the expected Cu-In-Ga alloys. The selenization at 550°C leads to the formation of CuInSe2 and the segregation of Ga near the cell back contact. First cell results obtained by this process show conversion efficiency up to 9.4%. A multi-step selenization process is developed and enables a better Ga homogeneity in the layer