Academic literature on the topic 'Selenites'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Selenites.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Selenites"
Eisenberg, Sylvan. "Relative Stability of Selenites and Selenates in Feed Premixes as a Function of Water Activity." Journal of AOAC INTERNATIONAL 90, no. 2 (March 1, 2007): 349–53. http://dx.doi.org/10.1093/jaoac/90.2.349.
Full textFrost, Ray L., B. Jagannadha Reddy, and Marilla J. Dickfos. "An Application of near Infrared and Mid-Infrared Spectroscopy to the Study of Uranyl Selenite Minerals: Derriksite, Demesmaekerite, Guilleminite and Haynesite." Journal of Near Infrared Spectroscopy 16, no. 5 (January 1, 2008): 455–69. http://dx.doi.org/10.1255/jnirs.813.
Full textGospodinov, G. G., and M. G. Stancheva. "Formation and thermal stability of selenites and hydrogen selenites of samarium." Journal of Thermal Analysis and Calorimetry 78, no. 3 (January 2004): 1057–63. http://dx.doi.org/10.1007/s10973-005-0470-0.
Full textMička, Zdeněk, and Miroslav Ebert. "The change in the standard Gibbs energy during the formation of the acid selenites of the alkali metals." Collection of Czechoslovak Chemical Communications 51, no. 9 (1986): 1933–41. http://dx.doi.org/10.1135/cccc19861933.
Full textKovrugin, Vadim M., Marie Colmont, Oleg I. Siidra, Dmitry O. Charkin, Almaz Aliev, Sergey V. Krivovichev, and Olivier Mentré. "Synthesis and structural variety of first Mn and Bi selenites and selenite chlorides." Zeitschrift für Kristallographie - Crystalline Materials 234, no. 3 (March 26, 2019): 141–53. http://dx.doi.org/10.1515/zkri-2018-2088.
Full textGospodinov, G. G., and M. G. Stancheva. "Physicochemical study on gadolinium selenites." Journal of Thermal Analysis and Calorimetry 78, no. 1 (2004): 323–29. http://dx.doi.org/10.1023/b:jtan.0000042178.46044.d1.
Full textCao, Xue-Li, Fang Kong, Zhang-Zhen He, and Jiang-Gao Mao. "Structural and magnetic studies on three new mixed metal copper(ii) selenites and tellurites." Dalton Transactions 44, no. 25 (2015): 11420–28. http://dx.doi.org/10.1039/c5dt01257k.
Full textJia, Ying-Jie, Yi-Gang Chen, Xiao-Ni Yao, and Xian-Ming Zhang. "Alkali earth MOx (x = 6, 7, 9, 12) polyhedra tuned cadmium selenites with different dimensions and diverse SeO32− coordinations." CrystEngComm 19, no. 44 (2017): 6644–50. http://dx.doi.org/10.1039/c7ce01461a.
Full textJi, Xiao-Xu, Qing-Huai Zhao, Hao Chen, Xin-Wei Luo, Yi Shang, and Xiao-Di Liu. "Facile Synthesis of Hierarchical CoSeO3‧2H2O Nanoflowers Assembled by Nanosheets as a Novel Anode Material for High-Performance Lithium-Ion Batteries." Nanomaterials 12, no. 14 (July 19, 2022): 2474. http://dx.doi.org/10.3390/nano12142474.
Full textQian, Qian, Fang Kong, and Jiang-Gao Mao. "A series of new silver selenites with d0-TM cations." RSC Advances 6, no. 83 (2016): 79681–87. http://dx.doi.org/10.1039/c6ra17867g.
Full textDissertations / Theses on the topic "Selenites"
Morris, R. E. "Synthesis and characterization of metal phosphites and selenites." Thesis, University of Oxford, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.314881.
Full textHuang, Donglin. "Heterogeneous reduction of selenite by zero valent iron-steel wool." Morgantown, W. Va. : [West Virginia University Libraries], 2010. http://hdl.handle.net/10450/11233.
Full textTitle from document title page. Document formatted into pages; contains ix, 106 p. : ill. (some col.). Includes abstract. Includes bibliographical references.
Wang, Zaiqi. "Lens calcium homeostasis and selenite cataract." Diss., This resource online, 1992. http://scholar.lib.vt.edu/theses/available/etd-05042006-164509/.
Full textTan, Thatt Yang Timothy School of Chemical Engineering & Industrial Chemistry UNSW. "Photocatalytic reduction of selenate and selenite : water/wastewater treatment and the formation of nano-selenium compounds." Awarded by:University of New South Wales. School of Chemical Engineering and Industrial Chemistry, 2003. http://handle.unsw.edu.au/1959.4/20448.
Full textLAFRONT, ANNE-MARIE. "Selenites de metaux de transition 3d de dimensionnalite variee : synthese, caracterisation et etude magneto-structurale." Toulouse 3, 1995. http://www.theses.fr/1995TOU30156.
Full textBecker, Richard. "Terminating species and Lewis acid-base preference in oxohalides : a new route to low-dimensional compounds /." Doctoral thesis, Stockholm : Department of Inorganic Chemistry, Stockholm University, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-1414.
Full textKamada, Rui. "Copper(indium,gallium)selenide film formation from selenization of mixed metal/metal-selenide precursors." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 226 p, 2009. http://proquest.umi.com/pqdweb?did=1654501631&sid=4&Fmt=2&clientId=8331&RQT=309&VName=PQD.
Full textBarboza, Eliza [UNESP]. "Biofortificação agronômica com selênio em cultivares de repolho." Universidade Estadual Paulista (UNESP), 2018. http://hdl.handle.net/11449/154224.
Full textApproved for entry into archive by Alexandra Maria Donadon Lusser Segali null (alexmar@fcav.unesp.br) on 2018-06-12T16:57:44Z (GMT) No. of bitstreams: 1 barboza_e_dr_jabo.pdf: 1545927 bytes, checksum: ac8fd976ca18df84595a993ec2a3e701 (MD5)
Made available in DSpace on 2018-06-12T16:57:44Z (GMT). No. of bitstreams: 1 barboza_e_dr_jabo.pdf: 1545927 bytes, checksum: ac8fd976ca18df84595a993ec2a3e701 (MD5) Previous issue date: 2018-04-13
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
O objetivo deste trabalho foi avaliar concentrações de selênio (selenato e selenito de sódio) no crescimento, produção e biofortificação de duas cultivares de repolho. Para isso foram realizados dois experimentos em casa de vegetação, em sistema hidropônico, no período de julho a novembro de 2014, na UNESP, campus Jaboticabal-SP. Os experimentos diferiram conforme a fonte de selênio (Se) utilizada (selenato e selenito de sódio). Em ambos os experimentos, avaliaram-se dois fatores, sendo: duas cultivares de repolho (‘Fênix’ e 'Red Dinasty’) e cinco concentrações de Se (0, 5, 15, 30 e 60 µmol L-1) na solução nutritiva. O delineamento experimental utilizado foi o de blocos casualizados, com esquema fatorial 2 x 5 e quatro repetições. As variáveis analisadas foram o teor e acúmulo de Se na raiz e cabeça de repolho, área, diâmetro, comprimento e densidade de raiz, produtividade de repolho, massa seca de raiz, caule e cabeça de repolho e o teor e acúmulo de nitrogênio, fósforo e enxofre na cabeça de repolho. As fontes selenato e selenito promoveram o crescimento das raízes de repolho devido aos aumentos verificados em área, diâmetro, comprimento e densidade de raiz, em baixas concentrações de Se aplicadas. O aumento da produção de massa seca de raiz provavelmente foi devido o maior crescimento da raiz, que foi influenciado pelo fornecimento de Se. A massa seca do caule foi diferente apenas entre as cultivares de repolho com aplicação de selenato ou selenito. O teor de nitrogênio apresentou diferenças apenas entre as cultivares quando utilizada a fonte selenito. Ambas as fontes de Se também proporcionaram aumentos na absorção de fósforo e enxofre quando baixas concentrações de Se foram fornecidas. Observou-se que a aplicação de até 16,77 e 7,54 µmol L-1 de Se com as fontes selenato e selenito, respectivamente, proporcionaram os maiores incrementos na produtividade do repolho, e mesmo com a redução da produtividade com concentrações acima destas, os valores foram maiores que o tratamento controle. Isso indica que o Se foi benéfico ao repolho, pois não reduziu a sua produção. Verificou-se que a biofortificação foi eficiente para ambas as cultivares de repolho, que absorveram e acumularam Se na cabeça de repolho em função do incremento de Se, tanto com selenato como selenito.
The objective of this research was to evaluate concentrations of selenium (sodium selenate and selenite) in the growth, production and biofortification of two cabbage cultivars. Two experiments were carried out in greenhouse under hydroponic system, from July to November, 2014, at UNESP, Jaboticabal-SP campus. The experiments differed according to the source of selenium (Se) used (sodium selenate and selenite). In both experiments two factors were evaluated: two cabbage cultivars ('Fênix' and 'Red Dinasty') and five concentrations of Se (0, 5, 15, 30 and 60 μmol L-1) in the nutrient solution. The experimental was a randomized block design, with 2 x 5 factorial and four replications. The variables analyzed were the content and accumulation of Se in the root and shoot cabbage, evaluating area, diameter, length, density and dry mass in the root, cabbage yield, stem and cabbage head, and the content accumulation of nitrogen, phosphorus and sulfur in the cabbage shoot. Selenate and selenite sources promoted the growth of cabbage roots due to increases in area, diameter, length and root density at low concentrations of Se applied. The increase in root dry mass production was probably due to higher root growth, which was influenced by the supply of Se. The dry mass of the stem was different only between the cabbage cultivars with application of selenate or selenite. The nitrogen content presented differences only among the cultivars when the selenite source was used. Both S sources also provided increases in phosphorus and sulfur absorption when low concentrations of if were provided. It was observed that the application of up to 16,77 and 7,54 μmol L-1 of Se with selenate and selenite sources, respectively, provided the greatest increases in cabbage yield, and even with the reduction of productivity with concentrations above these, the values were higher than the control treatment. These indicate that the Se was beneficial to the cabbage, since it did not reduce its production. It was verified that biofortification was efficient for both cabbage cultivars, which absorbed and accumulated Se in the cabbage head as a function of the increase of Se, with both selenate and selenite.
Bernotienė, Gailevičiūtė Rasa. "Kadmio, cinko ir selenito jonų ūmus poveikis baltymų sintezės sistemai laboratorinių pelių kepenyse." Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2010. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2010~D_20100909_133626-77877.
Full textCadmium is a widespread environmental pollutant. This heavy metal forms a serious hazard to the public health. Zinc and selenium are essential elements for humans and animals. So, the aim of present study was to evaluate the acute effects of cadmium, zinc, and selenite ions on the effectiveness of protein synthesis system and its components in the liver of laboratory mice as well as on the activity of cellular antioxidant system. The objectives of the study were to evaluate the effects of cadmium ions on the rate of liver protein synthesis, on the activities of components of translation machinery – tRNA and aminoacyl-tRNA synthetase, on the content of metallothionein in the liver, on the content of reduced glutathione and lipid peroxidation in the liver and red blood cells; to evaluate the influence of zinc and selenite ions on the protein synthesis system and antioxidative system of mice affected by cadmium ions. The obtained results showed, that the toxicity of cadmium ions on hepatic protein synthesis is related to the changes in activities of the key components of protein synthesizing system – tRNAs and aminoacyl-tRNA synthetases. Moreover, cadmium ions altered the content of antioxidant components (reduced glutathione, metallothionein) and activated liver lipid peroxidation. Mice pre-treatment with zinc and selenite ions prevented both translational machinery and antioxidative system against cadmium-induced disturbances.
Ferreira, Raphael Leone da Cruz [UNESP]. "Biofortificação e toxicidade de selênio na cultura da alface em solução nutritiva." Universidade Estadual Paulista (UNESP), 2016. http://hdl.handle.net/11449/144363.
Full textApproved for entry into archive by Juliano Benedito Ferreira (julianoferreira@reitoria.unesp.br) on 2016-10-17T13:33:25Z (GMT) No. of bitstreams: 1 ferreira_rlc_me_jabo.pdf: 1223687 bytes, checksum: 7eb478241afa939e0b2a76387a523f55 (MD5)
Made available in DSpace on 2016-10-17T13:33:25Z (GMT). No. of bitstreams: 1 ferreira_rlc_me_jabo.pdf: 1223687 bytes, checksum: 7eb478241afa939e0b2a76387a523f55 (MD5) Previous issue date: 2016-09-08
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
As informações sobre fontes de selênio (Se) em alface são incipientes na literatura, sobretudo, com relação ao limite entre biofortificação e toxicidade. Assim, o objetivo deste estudo foi determinar níveis críticos de Se na solução nutritiva e foliar, e a melhor fonte que aumente a biofortificação da alface hidropônica sem causar toxicidade. O delineamento experimental utilizado foi inteiramente casualizado representado por duas fontes de selênio, selenito de sódio (Na2SeO3) e selenato de sódio (Na2SeO4), dez concentrações de selênio (0; 2; 4; 6; 8; 16; 32; 64; 96; 128 μM) com quatro repetições por tratamento, totalizando 80 unidades experimentais. As concentrações adequadas estão entre 5,6 e 16 μM de selênio na forma selenato em solução nutritiva e teores foliares adequados de 10,2 a 41,8 mg kg-1 de selênio.
Information on sources of selenium (Se) in lettuce are scarce in the literature, especially with respect to the boundary between Biofortification and toxicity. The objective of this study was to determine critical levels of Se in the nutrient solution and leaf and the best source to increase biofortification of hydroponic lettuce without causing toxicity. The experimental design was completely randomized represented by two sources of selenium, sodium selenite (Na2SeO3) and sodium selenate (Na2SeO4) ten selenium concentrations (0. 2. 4. 6. 8. 16. 32. 64. 96. 128 M) with four replicates per treatment, totaling 80 experimental units. The concentrations are between 5.6 and 16 M selenium selenate form the nutrient solution and appropriate foliar 10.2 to 41.8 mg kg-1 of selenium.
CNPq: 132361/20159
Books on the topic "Selenites"
R, Masson M., Lutz H. D, and Engelen B, eds. Sulfites, selenites and tellurites. Oxford: Pergamon, 1986.
Find full textIlaria, Cornia, ed. Bologna di selenite: Una pietra racconta. Bologna: Costa editore, 2002.
Find full textil lapis specularis nel mondo romano dall'estrazione all'uso (Conference) (2013 Museo civico di scienze naturali di Faenza) Vetro di pietra. Il vetro di pietra: Il lapis specularis nel mondo romano dall'estrazione all'uso : atti del Convegno internazionale, Museo civico di scienze naturali di Faenza, 26-27 settembre 2013. Faenza (Ra): Carta Bianca editore, 2015.
Find full textEisenmann, B., and H. Schäfer. Sulfides, Selenides, Tellurides (Part 1). Edited by K. H. Hellwege and A. M. Hellwege. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/b19991.
Full textHellwege, K. H., and A. M. Hellwege, eds. Sulfides, Selenides, Tellurides (Part 2). Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/b32266.
Full textTruong, Yen Thi Hoang. Reduction of selenite under controlled conditions. Sudbury, Ont: Laurentian University, School of Graduate Studies, 2005.
Find full text"Samay Pata": Al rescate de los selenitas. Cochabamba: Grupo Editorial Kipus, 2012.
Find full textOči u oči sa Selenićem. Beograd: "D'87", 1991.
Find full textK, Morozova N., and Institut kristallografii im. A.V. Shubnikova., eds. Selenid t͡s︡inka: Poluchenie i opticheskie svoĭstva. Moskva: "Nauka", 1992.
Find full textOlivas, Bego. Relats d'una selenita: (en La menor). [Barcelona]: Lapislàtzuli Editorial, 2014.
Find full textBook chapters on the topic "Selenites"
Towl, A. D. C. "With Selenides Giving Hydrogen Selenide." In Inorganic Reactions and Methods, 176. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470145159.ch116.
Full textKong, Fang, Chuan-Fu Sun, Bing-Ping Yang, and Jiang-Gao Mao. "Second-Order Nonlinear Optical Materials Based on Metal Iodates, Selenites, and Tellurites." In Structure-Property Relationships in Non-Linear Optical Crystals I, 43–103. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/430_2011_65.
Full textWaitkins, G. R., R. Shutt, Irvin W. Kinney, and James P. McReynolds. "Aluminum Selenide and Hydrogen Selenide." In Inorganic Syntheses, 183–86. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470132333.ch55.
Full textEisenmann, B., and H. Schäfer. "1 Introduction." In Sulfides, Selenides, Tellurides (Part 2), A1—A5. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/10338439_1.
Full textEisenmann, B., and H. Schäfer. "GaMnS - GaSeTl." In Sulfides, Selenides, Tellurides (Part 2), 76–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/10338439_10.
Full textEisenmann, B., and H. Schäfer. "GaSeYb - GeMnS." In Sulfides, Selenides, Tellurides (Part 2), 90–105. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/10338439_11.
Full textEisenmann, B., and H. Schäfer. "GeMnSSm - GeSnTe." In Sulfides, Selenides, Tellurides (Part 2), 106–19. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/10338439_12.
Full textEisenmann, B., and H. Schäfer. "GeSnTe - HoPrS." In Sulfides, Selenides, Tellurides (Part 2), 120–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/10338439_13.
Full textEisenmann, B., and H. Schäfer. "HoS - InPbTe." In Sulfides, Selenides, Tellurides (Part 2), 136–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/10338439_14.
Full textEisenmann, B., and H. Schäfer. "InPrS - InSeTe." In Sulfides, Selenides, Tellurides (Part 2), 150–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/10338439_15.
Full textConference papers on the topic "Selenites"
DAI, ZHIMIN, ZHAN SHI, GUANGHUA LI, DONG ZHANG, WENSHENG FU, and SHOUHUA FENG. "HYDROTHERMAL SYNTHESES AND STRUCTURAL DIVERSITY OF A FAMILY OF INORGANIC-ORGANIC HYBRID VANADIUM SELENITES." In Proceedings of the Seventh International Symposium on Hydrothermal Reactions. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812705228_0044.
Full textWalker, Bryce, and Rakesh Agrawal. "Grain growth enhancement of selenide CIGSe nanoparticles to densified films using copper selenides." In 2012 IEEE 38th Photovoltaic Specialists Conference (PVSC). IEEE, 2012. http://dx.doi.org/10.1109/pvsc.2012.6318141.
Full textWANG, Kaifeng, Alejandro Fernandez-Martinez, Bin MA, Laurent Charlet, Benoit MADE, Pierre Henocq, and Laura Simonelli. "Selenite interactions with iron sulfides." In Goldschmidt2021. France: European Association of Geochemistry, 2021. http://dx.doi.org/10.7185/gold2021.6201.
Full textSeregina, I. I., and I. G. Makarskaya. "Photosynthetic activity of spring wheat depending on the conditions of water supply." In Растениеводство и луговодство. Тимирязевская сельскохозяйственная академия, 2020. http://dx.doi.org/10.26897/978-5-9675-1762-4-2020-120.
Full textHopkins, Michael Adventure, Neal Kuperman, James Barnes, and Raj Solanki. "Magnetic Characterization of Cobalt Selenide and Nickel Selenide Thin Films." In 2018 IEEE 13th Nanotechnology Materials and Devices Conference (NMDC). IEEE, 2018. http://dx.doi.org/10.1109/nmdc.2018.8605836.
Full textSchardt, C. R., J. H. Simmons, L. LeNeindre, P. Lucas, and J. Lucas. "Nonlinear Index of refraction of germanium selenide glass at 10.6 μm." In Bragg Gratings, Photosensitivity, and Poling in Glass Fibers and Waveguides. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/bgppf.1997.jsue.32.
Full textTugarova, A. V., P. V. Mamchenkova, and A. A. Kamnev. "Metabolic transformation of selenium (IV) by bacteria of the genus Azospirillum." In 2nd International Scientific Conference "Plants and Microbes: the Future of Biotechnology". PLAMIC2020 Organizing committee, 2020. http://dx.doi.org/10.28983/plamic2020.260.
Full textOh, Thomas I. "Broadband AR coatings on zinc selenide substrates using ion-assisted deposition." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1989. http://dx.doi.org/10.1364/oam.1989.tuh5.
Full textFrantz, Jesse A., Jason D. Myers, Robel Y. Bekele, Anthony Clabeau, Vinh Q. Nguyen, Collin C. McClain, Natalia Litchinitser, and Jasbinder S. Sanghera. "Arsenic selenide dielectric metasurfaces." In Optical Components and Materials XVI, edited by Michel J. Digonnet and Shibin Jiang. SPIE, 2019. http://dx.doi.org/10.1117/12.2507894.
Full textNechaeva, M. V., and I. F. Golovatskaya. "The effect of sodium selenite on the secondary metabolism of cell culture Lychnis chalcedonica in vitro." In 2nd International Scientific Conference "Plants and Microbes: the Future of Biotechnology". PLAMIC2020 Organizing committee, 2020. http://dx.doi.org/10.28983/plamic2020.181.
Full textReports on the topic "Selenites"
Rasmussen, Anya Marie. Pressure-induced phase transitions of indium selenide. Office of Scientific and Technical Information (OSTI), May 2016. http://dx.doi.org/10.2172/1469335.
Full textDoyle, Kevin, and Sudhir Trivedi. Dislocation Etching Solutions for Mercury Cadmium Selenide. Fort Belvoir, VA: Defense Technical Information Center, September 2014. http://dx.doi.org/10.21236/ada609573.
Full textHarrison, W. T., G. D. Stucky, R. E. Morris, and A. K. Cheetham. The Synthesis and Crystal Structure of Aluminum Selenite Trihydrate, Al2(seO3)3.32O. Fort Belvoir, VA: Defense Technical Information Center, May 1992. http://dx.doi.org/10.21236/ada251283.
Full textBerry, Patrick A. Versatile Chromium-Doped Zinc Selenide Infrared Laser Sources. Fort Belvoir, VA: Defense Technical Information Center, May 2010. http://dx.doi.org/10.21236/ada526209.
Full textMunavalli, Shekar, David I. Rossman, Dennis K. Rohrbaugh, C. P. Ferguson, and C. Parker Ferguson. Synthesis of Bis-(Trifluoromethyl) Trisulfide and Bis- (Trifluoromethylthio) Selenide. Fort Belvoir, VA: Defense Technical Information Center, June 1992. http://dx.doi.org/10.21236/ada254143.
Full textNakotte, Tom. Engineering of Lead Selenide Quantum Dot Based Devices and Core/Shell Heterostructures. Office of Scientific and Technical Information (OSTI), April 2020. http://dx.doi.org/10.2172/1614831.
Full textKatzman, Daniel B. Design and Optimization of Copper Indium Gallium Selenide Thin Film Solar Cells. Fort Belvoir, VA: Defense Technical Information Center, September 2015. http://dx.doi.org/10.21236/ad1009063.
Full textAfrin, Shakila. Investigation of Electronic and Optical Properties of 2-Dimensional Semiconductor Tin Selenide (SnSe) Thin Films. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.6738.
Full textBalapanov, M. Kh, K. A. Kuterbekov, M. M. Kubenova, R. Kh Ishembetov, B. M. Akhmetgaliev, and R. A. Yakshibaev. Effect of lithium doping on electrophysical and diffusion proper-ties of nonstoichiometric superionic copper selenide Cu1.75Se. Phycal-Technical Society of Kazakhstan, December 2017. http://dx.doi.org/10.29317/ejpfm.2017010203.
Full textRoscoe, S. M., S. B. Green, and S. S. Gandhi. Uranium, Gold and Selenide minerals Locally Concentrated in Drift At "Twin Lakes" near Bathurst Inlet, Northwest Territories. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1986. http://dx.doi.org/10.4095/120628.
Full text