Academic literature on the topic 'Seismic source inversion'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Seismic source inversion.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Seismic source inversion"

1

Brown, Vanessa, Kerry Key, and Satish Singh. "Seismically regularized controlled-source electromagnetic inversion." GEOPHYSICS 77, no. 1 (January 2012): E57—E65. http://dx.doi.org/10.1190/geo2011-0081.1.

Full text
Abstract:
Marine controlled-source electromagnetic (CSEM) data can be highly sensitive to the presence of resistive hydrocarbon bearing layers in the subsurface. Yet, due to the relatively poor depth resolution of CSEM data and the smoothness constraints imposed by electromagnetic (EM) inversion methods, the resulting resistivity models are often highly smoothed-out, typically underestimating the reservoir resistivity and overestimating its thickness. Conversely, seismic full-waveform inversion (FWI) can accurately recover the depths of seismic velocity changes, yet, is relatively insensitive the presence of hydrocarbons. In spite of their low depth resolution, CSEM data have been shown to be highly sensitive to the resistivity-thickness product of buried resistive layers, suggesting that if the thickness of a target layer can be constrained a priori, very accurate resistivity estimates may be obtained. We developed a method for leveraging the high depth resolution of FWI into a standard CSEM inversion algorithm so that the resulting resistivity models have depth constraints imposed by the seismic structure and consequently may obtain more accurate resistivity estimates. The seismically regularized CSEM inversion that we propose is conceptually similar to minimum-gradient support (MGS) regularization, but it uses regularization weights based on gradients in the seismic velocity model rather than the self-reinforcing model resistivity gradients used in the typical MGS scheme. A suite of synthetic model tests showed how this approach compares with standard smooth and MGS inversions for a range of rock types and hence, levels of correlation between the seismic and resistivity structures, showing that a significantly improved resistivity model can be obtained when the velocity and resistivity profiles are correlated in depth. We also found that this regularization weighting method can be extended to use depth constraints from geophysical data other than seismic velocity models. Tests on a real data example from the Pluto gas field demonstrated how the regularization weights can also be set using a nearby well log, resulting in a more compact estimate of the reservoir resistivity than possible with a standard smooth inversion.
APA, Harvard, Vancouver, ISO, and other styles
2

Ermert, L. A., K. Sager, T. Nissen-Meyer, and A. Fichtner. "Multifrequency inversion of global ambient seismic sources." Geophysical Journal International 225, no. 3 (February 6, 2021): 1616–23. http://dx.doi.org/10.1093/gji/ggab050.

Full text
Abstract:
SUMMARY We develop and apply a method to constrain the space- and frequency-dependent location of ambient noise sources. This is based on ambient noise cross-correlation inversion using numerical wavefield simulations, which honour 3-D crustal and mantle structure, ocean loading and finite-frequency effects. In the frequency range from 3 to 20 mHz, our results constrain the global source distribution of the Earth’s hum, averaged over the Southern Hemisphere winter season of 9 yr. During Southern Hemisphere winter, the dominant sources are largely confined to the Southern Hemisphere, the most prominent exception being the Izu-Bonin-Mariana arc, which is the most active source region between 12 and 20 mHz. Generally, strong hum sources seem to be associated with either coastlines or bathymetric highs. In contrast, deep ocean basins are devoid of hum sources. While being based on the relatively small number of STS-1 broad-band stations that have been recording continuously from 2004 to 2013, our results demonstrate the practical feasibility of a frequency-dependent noise source inversion that accounts for the complexities of 3-D wave propagation. It may thereby improve full-waveform ambient noise inversions and our understanding of the physics of noise generation.
APA, Harvard, Vancouver, ISO, and other styles
3

Habashy, T. M., A. Abubakar, G. Pan, and A. Belani. "Source-receiver compression scheme for full-waveform seismic inversion." GEOPHYSICS 76, no. 4 (July 2011): R95—R108. http://dx.doi.org/10.1190/1.3590213.

Full text
Abstract:
We have developed a source-receiver compression approach for reducing the computational time and memory usage of the acoustic and elastic full-waveform inversions. By detecting and quantifying the extent of redundancy in the data, we assembled a reduced set of simultaneous sources and receivers that are weighted sums of the physical sources and receivers used in the survey. Because the numbers of these simultaneous sources and receivers could be significantly less than those of the physical sources and receivers, the computational time and memory usage of any gradient-type inversion method such as steepest descent, nonlinear conjugate gradient, contrast-source inversion, and quasi-Newton methods could be reduced. The scheme is based on decomposing the data into their principal components using a singular-value decomposition approach, and the data reduction is done through the elimination of the small eigenvalues. Consequently, this would suppress the effect of noise in the data. Moreover, taking advantage of the redundancy in the data, this compression scheme effectively stacks the redundant data, resulting in an increased signal-to-noise ratio. For demonstration of the concept, we produced inversion results for the 2D acoustic Marmousi and BP models for surface measurements and an elastic model for crosswell measurements. We found that this approach has the potential to significantly reduce computational time and memory usage of the Gauss-Newton method by 1–2 orders of magnitude.
APA, Harvard, Vancouver, ISO, and other styles
4

Ermert, Laura, Jonas Igel, Korbinian Sager, Eléonore Stutzmann, Tarje Nissen-Meyer, and Andreas Fichtner. "Introducing noisi: a Python tool for ambient noise cross-correlation modeling and noise source inversion." Solid Earth 11, no. 4 (August 28, 2020): 1597–615. http://dx.doi.org/10.5194/se-11-1597-2020.

Full text
Abstract:
Abstract. We introduce the open-source tool noisi for the forward and inverse modeling of ambient seismic cross-correlations with spatially varying source spectra. It utilizes pre-computed databases of Green's functions to represent seismic wave propagation between ambient seismic sources and seismic receivers, which can be obtained from existing repositories or imported from the output of wave propagation solvers. The tool was built with the aim of studying ambient seismic sources while accounting for realistic wave propagation effects. Furthermore, it may be used to guide the interpretation of ambient seismic auto- and cross-correlations, which have become preeminent seismological observables, in light of nonuniform ambient seismic sources. Written in the Python language, it is accessible for both usage and further development and efficient enough to conduct ambient seismic source inversions for realistic scenarios. Here, we introduce the concept and implementation of the tool, compare its model output to cross-correlations computed with SPECFEM3D_globe, and demonstrate its capabilities on selected use cases: a comparison of observed cross-correlations of the Earth's hum to a forward model based on hum sources from oceanographic models and a synthetic noise source inversion using full waveforms and signal energy asymmetry.
APA, Harvard, Vancouver, ISO, and other styles
5

Ha, Wansoo, and Changsoo Shin. "Laplace-domain full-waveform inversion of seismic data lacking low-frequency information." GEOPHYSICS 77, no. 5 (September 1, 2012): R199—R206. http://dx.doi.org/10.1190/geo2011-0411.1.

Full text
Abstract:
The lack of the low-frequency information in field data prohibits the time- or frequency-domain waveform inversions from recovering large-scale background velocity models. On the other hand, Laplace-domain waveform inversion is less sensitive to the lack of the low frequencies than conventional inversions. In theory, frequency filtering of the seismic signal in the time domain is equivalent to a constant multiplication of the wavefield in the Laplace domain. Because the constant can be retrieved using the source estimation process, the frequency content of the seismic data does not affect the gradient direction of the Laplace-domain waveform inversion. We obtained inversion results of the frequency-filtered field data acquired in the Gulf of Mexico and two synthetic data sets obtained using a first-derivative Gaussian source wavelet and a single-frequency causal sine function. They demonstrated that Laplace-domain inversion yielded consistent results regardless of the frequency content within the seismic data.
APA, Harvard, Vancouver, ISO, and other styles
6

Xu, Zongbo, T. Dylan Mikesell, Josefine Umlauft, and Gabriel Gribler. "Rayleigh-wave multicomponent crosscorrelation-based source strength distribution inversions. Part 2: a workflow for field seismic data." Geophysical Journal International 222, no. 3 (June 11, 2020): 2084–101. http://dx.doi.org/10.1093/gji/ggaa284.

Full text
Abstract:
SUMMARY Estimation of ambient seismic source distributions (e.g. location and strength) can aid studies of seismic source mechanisms and subsurface structure investigations. One can invert for the ambient seismic (noise) source distribution by applying full-waveform inversion (FWI) theory to seismic (noise) crosscorrelations. This estimation method is especially applicable for seismic recordings without obvious body-wave arrivals. Data pre-processing procedures are needed before the inversion, but some pre-processing procedures commonly used in ambient noise tomography can bias the ambient (noise) source distribution estimation and should not be used in FWI. Taking this into account, we propose a complete workflow from the raw seismic noise recording through pre-processing procedures to the inversion. We present the workflow with a field data example in Hartoušov, Czech Republic, where the seismic sources are CO2 degassing areas at Earth’s surface (i.e. a fumarole or mofette). We discuss factors in the processing and inversion that can bias the estimations, such as inaccurate velocity model, anelasticity and array sensitivity. The proposed workflow can work for multicomponent data across different scales of field data.
APA, Harvard, Vancouver, ISO, and other styles
7

Um, Evan Schankee, Michael Commer, and Gregory A. Newman. "A strategy for coupled 3D imaging of large-scale seismic and electromagnetic data sets: Application to subsalt imaging." GEOPHYSICS 79, no. 3 (May 1, 2014): ID1—ID13. http://dx.doi.org/10.1190/geo2013-0053.1.

Full text
Abstract:
Offshore seismic and electromagnetic (EM) imaging for hydrocarbons can require up to tens of millions of parameters to describe the 3D distribution of complex seabed geology and relevant geophysical attributes. The imaging and data volumes for such problems are enormous. Descent-based methods are the only viable imaging approach, where it is often challenging to manage the convergence of stand-alone seismic and EM inversion experiments. When a joint seismic-EM inversion is implemented, convergence problems with descent-based methods are further aggravated. Moreover, resolution mismatches between seismic and EM pose another challenge for joint inversion. To overcome these problems, we evaluated a coupled seismic-EM inversion workflow and applied it to a set of full-wave-seismic, magnetotelluric (MT) and controlled-source electromagnetic (CSEM) data for subsalt imaging. In our workflow, we address disparate resolution properties between seismic and EM data by implementing the seismic inversion in the Laplace domain, where the wave equation is transformed into a diffusion equation. The resolution of seismic data thus becomes comparable to that of EM data. To mitigate the convergence problems, the full joint seismic-EM inverse problem is split into manageable components: separate seismic and EM inversions and an intermediate step that enforces structural coupling through a cross-gradient-only inversion and resistivity-velocity crossplots. In this workflow, stand-alone seismic and MT inversion are performed first. The cross-gradient-only inversion and the crossplots are used to precondition the resistivity and velocity models for subsequent stand-alone inversions. By repeating the sequence of the stand-alone seismic, MT, and cross-gradient-only inversions along with the crossplots, we introduce the seismic structural information into the resistivity model, and vice versa, significantly improving the salt geometry in both resistivity and velocity images. We conclude that the improved salt geometry can then be used to precondition a starting model for CSEM inversions, yielding significant improvement in the resistivity images of hydrocarbon reservoirs adjacent to the salt.
APA, Harvard, Vancouver, ISO, and other styles
8

Song, Chao, Zedong Wu, and Tariq Alkhalifah. "Passive seismic event estimation using multiscattering waveform inversion." GEOPHYSICS 84, no. 3 (May 1, 2019): KS59—KS69. http://dx.doi.org/10.1190/geo2018-0358.1.

Full text
Abstract:
Passive seismic monitoring has become an effective method to understand underground processes. Time-reversal-based methods are often used to locate passive seismic events directly. However, these kinds of methods are strongly dependent on the accuracy of the velocity model. Full-waveform inversion (FWI) has been used on passive seismic data to invert the velocity model and source image, simultaneously. However, waveform inversion of passive seismic data uses mainly the transmission energy, which results in poor illumination and low resolution. We developed a waveform inversion using multiscattered energy for passive seismic to extract more information from the data than conventional FWI. Using transmission wavepath information from single- and double-scattering, computed from a predicted scatterer field acting as secondary sources, our method provides better illumination of the velocity model than conventional FWI. Using a new objective function, we optimized the source image and velocity model, including multiscattered energy, simultaneously. Because we conducted our method in the frequency domain with a complex source function including spatial and wavelet information, we mitigate the uncertainties of the source wavelet and source origin time. Inversion results from the Marmousi model indicate that by taking advantage of multiscattered energy and starting from a reasonably acceptable frequency (a single source at 3 Hz and multiple sources at 5 Hz), our method yields better inverted velocity models and source images compared with conventional FWI.
APA, Harvard, Vancouver, ISO, and other styles
9

Reinwald, Michael, Moritz Bernauer, Heiner Igel, and Stefanie Donner. "Improved finite-source inversion through joint measurements of rotational and translational ground motions: a numerical study." Solid Earth 7, no. 5 (October 21, 2016): 1467–77. http://dx.doi.org/10.5194/se-7-1467-2016.

Full text
Abstract:
Abstract. With the prospects of seismic equipment being able to measure rotational ground motions in a wide frequency and amplitude range in the near future, we engage in the question of how this type of ground motion observation can be used to solve the seismic source inverse problem. In this paper, we focus on the question of whether finite-source inversion can benefit from additional observations of rotational motion. Keeping the overall number of traces constant, we compare observations from a surface seismic network with 44 three-component translational sensors (classic seismometers) with those obtained with 22 six-component sensors (with additional three-component rotational motions). Synthetic seismograms are calculated for known finite-source properties. The corresponding inverse problem is posed in a probabilistic way using the Shannon information content to measure how the observations constrain the seismic source properties. We minimize the influence of the source receiver geometry around the fault by statistically analyzing six-component inversions with a random distribution of receivers. Since our previous results are achieved with a regular spacing of the receivers, we try to answer the question of whether the results are dependent on the spatial distribution of the receivers. The results show that with the six-component subnetworks, kinematic source inversions for source properties (such as rupture velocity, rise time, and slip amplitudes) are not only equally successful (even that would be beneficial because of the substantially reduced logistics installing half the sensors) but also statistically inversions for some source properties are almost always improved. This can be attributed to the fact that the (in particular vertical) gradient information is contained in the additional motion components. We compare these effects for strike-slip and normal-faulting type sources and confirm that the increase in inversion quality for kinematic source parameters is even higher for the normal fault. This indicates that the inversion benefits from the additional information provided by the horizontal rotation rates, i.e., information about the vertical displacement gradient.
APA, Harvard, Vancouver, ISO, and other styles
10

Stähler, S. C., and K. Sigloch. "Fully probabilistic seismic source inversion – Part 1: Efficient parameterisation." Solid Earth 5, no. 2 (November 17, 2014): 1055–69. http://dx.doi.org/10.5194/se-5-1055-2014.

Full text
Abstract:
Abstract. Seismic source inversion is a non-linear problem in seismology where not just the earthquake parameters themselves but also estimates of their uncertainties are of great practical importance. Probabilistic source inversion (Bayesian inference) is very adapted to this challenge, provided that the parameter space can be chosen small enough to make Bayesian sampling computationally feasible. We propose a framework for PRobabilistic Inference of Seismic source Mechanisms (PRISM) that parameterises and samples earthquake depth, moment tensor, and source time function efficiently by using information from previous non-Bayesian inversions. The source time function is expressed as a weighted sum of a small number of empirical orthogonal functions, which were derived from a catalogue of >1000 source time functions (STFs) by a principal component analysis. We use a likelihood model based on the cross-correlation misfit between observed and predicted waveforms. The resulting ensemble of solutions provides full uncertainty and covariance information for the source parameters, and permits propagating these source uncertainties into travel time estimates used for seismic tomography. The computational effort is such that routine, global estimation of earthquake mechanisms and source time functions from teleseismic broadband waveforms is feasible.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Seismic source inversion"

1

Fichtner, Andreas. "Full seismic waveform inversion for structural and source parameters." Diss., lmu, 2010. http://nbn-resolving.de/urn:nbn:de:bvb:19-114940.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Brown, Vanessa. "Integration of seismic full waveform and controlle-source marine electromagnetic inversion." Institut de physique du globe (Paris), 2012. http://www.theses.fr/2012GLOB1201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Twardzik, Cedric. "Study of the earthquake source process and seismic hazards." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:c2553a3f-f6ce-46a0-9c47-d68f5957cdac.

Full text
Abstract:
To obtain the rupture history of the Parkfield, California, earthquake, we perform 12 kinematic inversions using elliptical sub-faults. The preferred model has a seismic moment of 1.21 x 10^18 Nm, distributed on two distinct ellipses. The average rupture speed is ~2.7 km/s. The good spatial agreement with previous large earthquakes and aftershocks in the region, suggests the presence of permanent asperities that break during large earthquakes. We investigate our inversion method with several tests. We demonstrate its capability to retrieve the rupture process. We show that the convergence of the inversion is controlled by the space-time location of the rupture front. Additional inversions show that our procedure is not highly influenced by high-frequency signal, while we observe high sensitivity to the waveforms duration. After considering kinematic inversion, we present a full dynamic inversion for the Parkfield earthquake using elliptical sub-faults. The best fitting model has a seismic moment of 1.18 x 10^18 Nm, distributed on one ellipse. The rupture speed is ~2.8 km/s. Inside the parameter-space, the models are distributed according the rupture speed and final seismic moment, defining a optimal region where models fit correctly the data. Furthermore, to make the preferred kinematic model both dynamically correct while fitting the data, we show it is necessary to connect the two ellipses. This is done by adopting a new approach that uses b-spline curves. Finally, we relocate earthquakes in the vicinity of the Darfield, New-Zealand earthquake. 40 years prior to the earthquake, where there is the possibility of earthquake migration towards its epicentral region. Once it triggers the 2010-2011 earthquake sequence, we observe earthquakes migrating inside regions of stress increase. We also observe a stress increase on a large seismic gap of the Alpine Fault, as well as on some portions of the Canterbury Plains that remain today seismically quiet.
APA, Harvard, Vancouver, ISO, and other styles
4

Yordkayhun, Sawasdee. "2D and 3D Seismic Surveying at the CO2SINK Project Site, Ketzin, Germany: The Potential for Imaging the Shallow Subsurface." Doctoral thesis, Uppsala University, Department of Earth Sciences, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-9273.

Full text
Abstract:

Seismic traveltime inversion, traveltime tomography and seismic reflection techniques have been applied for two dimensional (2D) and three dimensional (3D) data acquired in conjunction with site characterization and monitoring aspects at a carbon dioxide (CO2) geological storage site at Ketzin, Germany (the CO2SINK project). Conventional seismic methods that focused on investigating the CO2 storage and caprock formations showed a poor or no image of the upper 150 m. In order to fill this information gap, an effort on imaging the shallow subsurface at a potentially risky area at the site is the principal goal of this thesis.

Beside this objective, a seismic source comparison from a 2D pilot study for acquisition parameter testing at the site found a weight drop source suitable with respect to the signal penetration, frequency content of the data and minimizing time and cost for 3D data acquisition.

For the Ketzin seismic data, the ability to obtain high-quality images is limited by the acquisition geometry, source-generated noise and time shifts due to near-surface effects producing severe distortions in the data. Moreover, these time shifts are comparable to the dominant periods of the reflections and to the size of structures to be imaged. Therefore, a combination of seismic refraction and state-of-the-art processing techniques, including careful static corrections and more accurate velocity analysis, resulted in key improvements of the images and allowed new information to be extracted. The results from these studies together with borehole information, hydrogeologic models and seismic modeling have been combined into an integrated interpretation. The boundary between the Quaternary and Tertiary unit has been mapped. The internal structure of the Quaternary sediments is likely to be complicated due to the shallow aquifer/aquitard complex, whereas the heterogeneity in the Tertiary unit is due to rock alteration associated with fault zones. Some of the major faults appear to project into the Tertiary unit. These findings are important for understanding the potentially risky anticline crest and can be used as a database for the future monitoring program at the site.

APA, Harvard, Vancouver, ISO, and other styles
5

Gallo, Antonella. "Inversion for slip on a finite fault and fast estimation of seismic parameters in the point source case." Doctoral thesis, Università degli studi di Trieste, 2012. http://hdl.handle.net/10077/7391.

Full text
Abstract:
2010/2011
ABSTRACT One of the principal goals of seismology is to infer the nature of an earthquake source from observations of seismic ground motion. This work shall discuss the seismic source both in the 2D finite-fault and in the point-source approximation. By inverting 3-component accelerograms the rupture history and the slip distribution for the Mw 6.3 earthquake occurred in central Italy on April 6, 2009 are determined. The method of linear programming is used for the inversion and the simplex method is applied to solve the linear programming problem (Das and Kostrov, 1994). All known parameters, such as crustal structure and station distribution are kept fixed and a large-enough fault area is considered. Physical constraints such as the positivity of the slip rates on the fault and a pre-assigned seismic moment are used to stabilize the solution. Using synthetic data with a checkerboard slip distribution shows that the obtainable spatial resolution is around 2 km. Observed records acquired from local stations of the national strong-motion network are inverted. Only data from rock stations distributed uniformly around the fault at epicentral distances less than 80 km are used. The accelerograms are filtered at 1 Hz and about 15 seconds of the signals are modelled. The obtained slip distribution shows a single major asperity and is in agreement with other similar studies of the L’Aquila earthquake. The main event of L’Aquila is used to validate a stable and automatic procedure implemented by SeiSRaM group (Dep. of Mathematics and Geosciences, University of Trieste) for the SE Alps transfrontier network to estimate in real time the seismic moment, moment magnitude and corner frequency of events recorded by broad-band velocimeters and accelerometers. The procedure has two steps: the first one consists in an interface with the Antelope system (a software that manages the network) from which pre-processed waveforms are retrieved. The second step consists in estimating the seismic moment and the corner frequency by spectral analysis. The S-wave train is identified through an automatic picking procedure of Antelope software or, if that procedure fails, through the estimates arrival times based on the travel-time. The transversal component of motion is used to minimize conversion effects. The analyzed frequency window is selected on the basis of the signal-to-noise ratio (SNR). The source spectrum is obtained by correcting the signals for geometrical spreading and intrinsic attenuation. For the latter, different relationships are tested for frequency-dependent Q value in order to characterize the anelastic proprieties of the seismic region. Source spectra for both velocity and displacement are computed and, following Andrews (1986), the seismic moment and the corner frequency are estimated. The procedure is successfully validated using the recordings of some recent strong earthquakes like Carnia 2002 (Mw=4.9), Bovec 2004 (Mw =5.1), Parma 2008 (Mw =5.4) and Aquila 2009 (Mw =6.3) and the recording of some minor events in the SE Alps area for which independent seismic moment and Mw estimates are available. Since one year the procedure is applied to events recorded by the National Accelerometric Network (RAN). The agreement between moment magnitudes estimated by the SeiSRaM procedure and the INGV local magnitudes is very good.
RIASSUNTO I terremoti sono fenomeni fisici molto complessi a partire dai processi di sorgente alla determinazione della magnitudo, argomenti fondamentali nelle indagini sismologiche. Questa tesi si propone di indagare i processi fisici degli eventi sismici. L’approccio è studiare la sorgente sismica del terremoto a partire dai dati delle registrazioni, 'decifrando' le informazioni contenute in esse con l’uso sia delle teorie fisiche che con modelli matematici. In questo lavoro si discute la sorgente sismica sia nel suo modello più semplice, il caso della sorgente puntiforme, sia nella sua descrizione realistica con dimensioni finite. Una descrizione teorica delle caratteristiche e delle rappresentazioni della sorgente estesa sono rappresentate nel Cap. 1. Sono descritti i fondamenti teorici che, sulla base di numerosi studi sperimentali, sembrano meglio descrivere gli eventi sismici, gli strumenti matematici che governano i processi di rottura, i modelli che rappresentano meglio la situazione fisica che sta alla base dei terremoti, quali il modello di Haskel ed il modello di Brune (1970) e l’approssimazione della sorgente estesa come somma di sorgenti puntiformi. Il tema centrale di questo studio riguarda la comprensione e la modellazione cinematica del processo di rottura di un terremoto su una faglia finita, attraverso l'inversione dei dati accelerometrici. L’inversione di dati simici permette di ottenere gran parte delle informazioni sul comportamento spazio-temporale del processo di rottura. L'approccio cinematico consente di interpretare le forme d’onda che si irradiano dalla sorgente in termini di spostamento relativo lungo il piano di faglia in funzione dello spazio e del tempo (la storia dello scorrimento). Usando il teorema di rappresentazione, lo spostamento registrato da una stazione durante un terremoto può essere espresso in termini della distribuzione di scorrimento sulla superficie di faglia. Assumendo che la faglia sia piana e la direzione di scorrimento costante, il problema può essere discretizzato, vincolato e ricondotto ad un sistema di equazioni lineare Ax=b (Cap. 2). La soluzione a questo problema è tutt’altro che banale. E’ ben noto che il problema è instabile e dal punto di vista computazionale questa instabilità è equivalente alla non unicità della soluzione. Quindi, per ottenere una soluzione definita vi è la necessità di inserire alcuni vincoli fisici nel processo di sorgente in aggiunta alla semplice richiesta di riprodurre i dati osservati (Das e Kostrov, 1990, Das e Suhadolc, 1996). Strumento fondamentale nella procedura di calcolo e cuore della procedura di inversione adottata in questa tesi, il metodo del simplesso viene introdotto nell’ambito dello studio della programmazione lineare e applicato ad un piccolo esempio esplicativo (Cap. 3). Seguendo la formulazione sviluppata da Das e Kostrov (1990,1994) si è applicata la procedura di inversione all’evento principale dell’Aquila avvenuto il 6 aprile 2009. Dopo una breve descrizione geologica dell’Aquila, della struttura utilizzata e del modello di sorgente adottato (Cap. 4) vengono presentati i risultati sia in termini di distribuzione del momento sismico sulla faglia sia in termini di confronto tra le forma d’onda reali e sintetiche (Cap. 5). E’ la prima volta che si utilizzano dati reali con il tempo assoluto. Questo ha portato non pochi problemi principalmente nella scelta del modello di velocità e nella scelta delle stazioni. Sono state considerate solo stazioni della Rete Accelerometrica Nazionale (RAN) su roccia con distanze epicentrali tra 20 km ed 80 km. Attraverso test sintetici e confrontando con quanto riportato in letteratura, è stato scelto il modello di sorgente che meglio si adatta ai dati disponibili. Tutte le inversioni sono state fatte imponendo vincoli fisici quali la casualità, la positività e il momento prefissato totale. Questi vincoli sono stati necessari per avere una soluzione più stabile. Sono stati investigati differenti modelli di faglia, differenti distribuzioni di stazioni e due modelli di velocità. I risultati migliori sono stati ottenuti considerando una faglia lunga 28 km a larga 12 km discretizzata in celle 2km per 2 km, e considerando solo le quattro stazioni situate sul tetto di faglia (Saraò et al.,1996). Il modello di velocità è quello proposto da Costa et al. (1992). La distribuzione del momento mostra somiglianze con i risultati ottenuti dell’inversione di dati sismici proposta da altri autori, confermando che la massima energia è nella parte SE della faglia. Nella seconda parte della tesi l’attenzione si è focalizzata sulla determinazione dei parametri di sorgente. Si è utilizzata la procedura implementata dal gruppo SeisRaM del Dipartimento di Matematica e Geoscienze, che stima in real-time il momento sismico, la magnitude da momento e la frequenza d’angolo. La determinazione della grandezza di un terremoto è un problema aperto. Esistono differenti scale di magnitudo e differenti metodi di calcolo, tanto da ottenere diversi valori per lo stesso evento, da parte dei diversi enti che li determinano. Nel Cap. 6 sono trattate le scale di magnitudo in uso ed in particolare la magnitudo da momento. Infine, sono descritti due metodi utilizzati per il calcolo in real-time della magnitudo da momento, tra cui il metodo di Andrews (1986) utilizzato nella procedura. Nel Cap. 7 dopo una descrizione della procedura automatica, si riportano la validazione ed i risultati. Questo metodo automatico stima in real-time i parametri di sorgente degli eventi delle Alpi sud orientali registrati dalla rete Transfrontaliera e da circa un anno anche degli eventi registrati dalla RAN. La procedura è stata validata sugli eventi recenti avvenuti in Italia e Slovenia: L’Aquila 2009, Parma 2008, Bovec 2004 e Carnia 2002. Il confronto della magnitudo da momento stimata della procedura in studio e quella calcolata con metodi di inversione da altri istituzioni è molto buono, dimostrando l’affidabilità e la robustezza di questo metodo. Questo è stato confermato dalla stima della magnitudo degli ultimi eventi avvenuti in Italia durante la scrittura finale di questa tesi: Verona, 24 gennaio 2012 e Reggio Emilia, 25 gennaio 2012. La magnitudo stimata in real-time dalla procedura è in ottimo accordo con quella stimata dall’INGV. Inoltre sia l’Agenzia sismologica della Slovenia, l’ARSO, che quella romena hanno richiesto di poter utilizzare questa procedura real-time. Questo lavoro spera di essere una fonte di utili suggerimenti nello studio dei processi di sorgente.
XXIV Ciclo
1979
APA, Harvard, Vancouver, ISO, and other styles
6

Chen, Kejie [Verfasser], and Michael [Akademischer Betreuer] Weber. "Real-time GNSS for fast seismic source inversion and tsunami early warning / Kejie Chen ; Betreuer: Michael H. Weber." Potsdam : Universität Potsdam, 2016. http://d-nb.info/1218400633/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Chen, Kejie [Verfasser], and Michael H. [Akademischer Betreuer] Weber. "Real-time GNSS for fast seismic source inversion and tsunami early warning / Kejie Chen ; Betreuer: Michael H. Weber." Potsdam : Universität Potsdam, 2016. http://d-nb.info/1218400633/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sen, Ali Tolga [Verfasser], and Torsten [Akademischer Betreuer] Dahm. "Inversion of seismic source parameters for weak mining-induced and natural earthquakes / Ali Tolga Sen ; Betreuer: Torsten Dahm." Potsdam : Universität Potsdam, 2014. http://d-nb.info/1218399031/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sanchez, Reyes Hugo Samuel. "Inversion cinématique progressive linéaire de la source sismique et ses perspectives dans la quantification des incertitudes associées." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAU026/document.

Full text
Abstract:
La caractérisation des tremblements de terre est un domaine de recherche primordial en sismologie, où l'objectif final est de fournir des estimations précises d'attributs de la source sismique. Dans ce domaine, certaines questions émergent, par exemple : quand un tremblement de terre s’est-il produit? quelle était sa taille? ou quelle était son évolution dans le temps et l'espace? On pourrait se poser d'autres questions plus complexes comme: pourquoi le tremblement s'est produit? quand sera le prochain dans une certaine région? Afin de répondre aux premières questions, une représentation physique du phénomène est nécessaire. La construction de ce modèle est l'objectif scientifique de ce travail doctoral qui est réalisé dans le cadre de la modélisation cinématique. Pour effectuer cette caractérisation, les modèles cinématiques de la source sismique sont un des outils utilisés par les sismologues. Il s’agit de comprendre la source sismique comme une dislocation en propagation sur la géométrie d’une faille active. Les modèles de sources cinématiques sont une représentation physique de l’histoire temporelle et spatiale d’une telle rupture en propagation. Cette modélisation est dite approche cinématique car les histoires de la rupture inférées par ce type de technique sont obtenues sans tenir compte des forces qui causent l'origine du séisme.Dans cette thèse, je présente une nouvelle méthode d'inversion cinématique capable d'assimiler, hiérarchiquement en temps, les traces de données à travers des fenêtres de temps évolutives. Cette formulation relie la fonction de taux de glissement et les sismogrammes observés, en préservant la positivité de cette fonction et la causalité quand on parcourt l'espace de modèles. Cette approche, profite de la structure creuse de l’histoire spatio-temporelle de la rupture sismique ainsi que de la causalité entre la rupture et chaque enregistrement différé par l'opérateur. Cet opérateur de propagation des ondes connu, est différent pour chaque station. Cette formulation progressive, à la fois sur l’espace de données et sur l’espace de modèle, requiert des hypothèses modérées sur les fonctions de taux de glissement attendues, ainsi que des stratégies de préconditionnement sur le gradient local estimé pour chaque paramètre du taux de glissement. Ces hypothèses sont basées sur de simples modèles physiques de rupture attendus. Les applications réussies de cette méthode aux cas synthétiques (Source Inversion Validation Exercise project) et aux données réelles du séisme de Kumamoto 2016 (Mw=7.0), ont permis d’illustrer les avantages de cette approche alternative d’une inversion cinématique linéaire de la source sismique.L’objectif sous-jacent de cette nouvelle formulation sera la quantification des incertitudes d’un tel modèle. Afin de mettre en évidence les propriétés clés prises en compte dans cette approche linéaire, dans ce travail, j'explore l'application de la stratégie bayésienne connue comme Hamiltonian Monte Carlo (HMC). Cette méthode semble être l’une des possibles stratégies qui peut être appliquée à ce problème linéaire sur-paramétré. Les résultats montrent qu’elle est compatible avec la stratégie linéaire dans le domaine temporel présentée ici. Grâce à une estimation efficace du gradient local de la fonction coût, on peut explorer rapidement l'espace de grande dimension des solutions possibles, tandis que la linéarité est préservée. Dans ce travail, j'explore la performance de la stratégie HMC traitant des cas synthétiques simples, afin de permettre une meilleure compréhension de tous les concepts et ajustements nécessaires pour une exploration correcte de l'espace de modèles probables. Les résultats de cette investigation préliminaire sont encourageants et ouvrent une nouvelle façon d'aborder le problème de la modélisation de la reconstruction cinématique de la source sismique, ainsi, que de l’évaluation des incertitudes associées
The earthquake characterization is a fundamental research field in seismology, which final goal is to provide accurate estimations of earthquake attributes. In this study field, various questions may rise such as the following ones: when and where did an earthquake happen? How large was it? What is its evolution in space and time? In addition, more challenging questions can be addressed such as the following ones: why did it occur? What is the next one in a given area? In order to progress in the first list of questions, a physical description, or model, of the event is necessary. The investigation of such model (or image) is the scientific topic I investigate during my PhD in the framework of kinematic source models. Understanding the seismic source as a propagating dislocation that occurs across a given geometry of an active fault, the kinematic source models are the physical representations of the time and space history of such rupture propagation. Such physical representation is said to be a kinematic approach because the inferred rupture histories are obtained without taking into account the forces that might cause the origin of the dislocation.In this PhD dissertation, I present a new hierarchical time kinematic source inversion method able to assimilate data traces through evolutive time windows. A linear time-domain formulation relates the slip-rate function and seismograms, preserving the positivity of this function and the causality when spanning the model space: taking benefit of the time-space sparsity of the rupture model evolution is as essential as considering the causality between rupture and each record delayed by the known propagator operator different for each station. This progressive approach, both on the data space and on the model space, does require mild assumptions on prior slip-rate functions or preconditioning strategies on the slip-rate local gradient estimations. These assumptions are based on simple physical expected rupture models. Successful applications of this method to a well-known benchmark (Source Inversion Validation Exercise 1) and to the recorded data of the 2016 Kumamoto mainshock (Mw=7.0) illustrate the advantages of this alternative approach of a linear kinematic source inversion.The underlying target of this new formulation will be the future uncertainty quantification of such model reconstruction. In order to achieve this goal, as well as to highlight key properties considered in this linear time-domain approach, I explore the Hamiltonian Monte Carlo (HMC) stochastic Bayesian framework, which appears to be one of the possible and very promising strategies that can be applied to this stabilized over-parametrized optimization of a linear forward problem to assess the uncertainties on kinematic source inversions. The HMC technique shows to be compatible with the linear time-domain strategy here presented. This technique, thanks to an efficient estimation of the local gradient of the misfit function, appears to be able to rapidly explore the high-dimensional space of probable solutions, while the linearity between unknowns and observables is preserved. In this work, I investigate the performance of the HMC strategy dealing with simple synthetic cases with almost perfect illumination, in order to provide a better understanding of all the concepts and required tunning to achieve a correct exploration of the model space. The results from this preliminary investigation are promising and open a new way of tackling the kinematic source reconstruction problem and the assessment of the associated uncertainties
APA, Harvard, Vancouver, ISO, and other styles
10

Santos, Rúben José Chaves Miguel dos. "Modelação de processos de rotura sísmica através de dados de observação da deformação superficial." Doctoral thesis, Universidade de Évora, 2013. http://hdl.handle.net/10174/11790.

Full text
Abstract:
Nesta dissertação foi desenvolvida uma metodologia baseada no cruzamento de diferentes técnicas e de dados geodésicos e sísmicos, para estudar o processo de rotura de sismos. A metodologia consiste, numa primeira fase, em determinar o campo de deslocamento cossísmico produzido por um evento, através da técnica InSAR. Numa fase seguinte o modelo de deslocamentos cossísmicos é determinado através das equações de Okada utilizando o modelo de distribuição de deslizamentos obtido pela inversão das formas de onda registadas em estações de banda larga a distâncias telessísmicas. Para comparar o modelo de deslocamentos cossísmicos com o interferograma é aplicado um algoritmo que projeta os deslocamentos do modelo na direção do satélite e de seguida procura a região homóloga entre esse modelo e o interferograma, pelo cálculo da máxima correlação entre ambas as regiões, que resulta também na relocalização da fonte. O processo de inversão/modelação da deformação/comparação é repetido iterativamente até se conseguirem bons ajustes simultaneamente nos dados sísmicos e geodésicos. Esta metodologia foi aplicada no estudo dos sismos ocorridos a 12 de janeiro de 2010 no Haiti; a 22 de fevereiro de 2006 em Moçambique; e a 21 de maio de 2003 na Argélia. No estudo do sismo ocorrido no Haiti foi utilizado um par interferométrico do sensor ALOSPALSAR, relativo à órbita descendente 447, onde foi medido o deslocamento máximo de ~70 cm na direção do satélite. O conjunto de 32 registos das formas de onda permitiu obter o modelo de rotura e respetivos deslocamentos superficiais, para quatro soluções de parâmetros da geometria da falha. Após a comparação entre os modelos de deslocamentos e o interferograma é concluído que os parâmetros que melhor justificam a deformação observada no interferograma são: a falha orientada segundo um azimute de 262º, com uma inclinação de 42º para norte e um rake médio de 42º. No estudo do sismo de Moçambique foi usado um par interferométrico do satélite ENVISAT e um conjunto de 36 registos telessísmicos. Desta forma foi possível concluir que a rotura ocorreu na direção 165ºN numa falha com inclinação de 76º para oeste e os deslizamentos ocorreram com um rake médio de 90º, sobre uma falha com um comprimento de 40.6 km por 29 km de largura. Neste modelo de rotura foi obtido o momento sísmico de 3.9x1019Nm, com um deslizamento máximo de 4.1 m próximo do hipocentro. A modelação dos deslocamentos cossísmicos representa bem os deslocamentos observados no terreno e medidos no interferograma. Para o estudo do sismo de Zemmouri-Boumedès foram utilizados alguns pares interferométricos do satélite ENVISAT, as medições realizadas ao longo da costa da Argélia e um conjunto de 28 registos das formas de onda. Os interferogramas revelaram uma fraca coerência, mas mesmo assim foi possível observar 19 franjas (~53 cm) a oeste de Boumerdès. Os parâmetros que justificam os deslocamentos cossísmicos são: strike=64º; dip=50º; rake=97º. Este modelo permite gerar a sobre-elevação observada ao longo da costa, como a configuração das franjas interferométricas. O plano desta solução localiza-se no mar, a 9 km da linha de costa e o respetivo epicentro está localizado no mar; Modelling of active internal processes through observation data of surface deformation. ### Abstract: In this dissertation a methodology that consists of the cross of different techniques and geodetic and seismic data, to study the earthquake rupture process was developed. The methodology consists initially in determining the field of co-seismic displacements caused by an event using the InSAR technique. In a next step the co-seismic displacements model is determined by the equations of Okada using the model of rupture obtained from the inversion of waveforms recorded in the broadband stations at teleseismic distances. To compare the co-seismic displacement model with the interferogram is applied an algorithm that project the model of the displacements toward the satellite and is then applied to search the homologous region between the two region, which also results the re-location of the source. The process of inversion/modeling of the deformation/comparison is repeated iteratively until achieving good adjustments in both seismic and geodetic data. This methodology was applied in the study of the earthquakes that occurred on January 12, 2010 in Haiti, on February 22, 2006 in Mozambique, and on May 21, 2003 in Algeria. In the Haiti earthquake study an interferometric pair of the ALOS-PALSAR sensor of the descending orbit 447 was used, where it was measured the maximum co-seismic displacement of ~70 cm in the direction of the satellite. The set of 32 registers of the waveforms allows obtaining the model of the rupture and the displacements on the earth surface, for four solutions with different geometries parameters. After comparing the models of the displacements with the interferogram is concluded that the parameters that better explain the deformation observed in the interferogram is the fault azimuth of 262° with an inclination of 42º north and the rupture occurred with an rake of 42º. In the Mozambique earthquake study was used an interferometric pair of the ENVISAT satellite and a set of 36 teleseismic registration. Thus it was concluded that the rupture occurred with an azimuth of 165º North with an inclination of 76º westward, the slip occurred with a rake of 90°, on a fault with a length of 40.6 km to 29 km wide. The seismic moment obtained was 3.9x1019 Nm, the maximum slip was 4.1m near the hypocenter and the model of the displacements is well fit to the co-seismic displacements observed on the coastline and in the measurements in the interferogram. To study the earthquake Zemmouri-Boumedès were used some interferometric pairs of the ENVISAT satellite, the measurements along the coastline of Algeria and a set of 28 records of waveforms. The interferograms revealed a low coherence, but it was still possible to observe 19 fringes (~53 cm) west of Boumerdès. The parameters that better justify the coseismic displacements are strike=64°, dip=50°, rake=97º. This model allows us to cause the uplift observed along the coastline, such as the configuration of the interferometric fringes. The plan of this solution is located at the sea, 9 km of coastline and also its epicenter is located at the see.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Seismic source inversion"

1

Fichtner, Andreas. "Application of Full Waveform Tomography to Active-Source Surface-Seismic Data." In Full Seismic Waveform Modelling and Inversion, 267–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15807-0_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fichtner, Andreas. "First and Second Derivatives with Respect to Structural and Source Parameters." In Full Seismic Waveform Modelling and Inversion, 163–87. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15807-0_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Fichtner, Andreas. "Source Stacking Data Reduction for Full Waveform Tomography at the Global Scale." In Full Seismic Waveform Modelling and Inversion, 281–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15807-0_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bleibinhaus, Florian. "Full-Waveform Inversion of Controlled-Source Seismic Data." In Encyclopedia of Earthquake Engineering, 1–13. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-642-36197-5_376-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Fichtner, Andreas. "Misfit Functionals and Adjoint Sources." In Full Seismic Waveform Modelling and Inversion, 193–210. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15807-0_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sambridge, M. S., and B. L. N. Kennett. "Seismic Event Location: Nonlinear Inversion Using a Neighbourhood Algorithm." In Monitoring the Comprehensive Nuclear-Test-Ban Treaty: Sourse Location, 241–57. Basel: Birkhäuser Basel, 2001. http://dx.doi.org/10.1007/978-3-0348-8250-7_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Dosso, S. E., and Pierre Zakarauskas. "Matched-Field Inversion for Source Location and Equivalent Bathymetry." In Full Field Inversion Methods in Ocean and Seismo-Acoustics, 279–84. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-015-8476-0_45.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Slavinsky, M. M., B. N. Bogolubov, and J. L. Spiesberger. "Low-Frequency Sources for Ocean Acoustic Tomography." In Full Field Inversion Methods in Ocean and Seismo-Acoustics, 217–22. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-015-8476-0_35.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Charco, M., J. Fernández, K. Tiampo, M. Battaglia, L. Kellogg, J. McClain, and J. B. Rundle. "Study of Volcanic Sources at Long Valley Caldera, California, Using Gravity Data and a Genetic Algorithm Inversion Technique." In Geodetic and Geophysical Effects Associated with Seismic and Volcanic Hazards, 1399–413. Basel: Birkhäuser Basel, 2004. http://dx.doi.org/10.1007/978-3-0348-7897-5_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

"Chapter 4: Deblending, Inversion, and Sparsity." In Simultaneous Source Seismic Acquisition, 107–21. Society of Exploration Geophysicists, 2020. http://dx.doi.org/10.1190/1.9781560803799.ch4.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Seismic source inversion"

1

Curia, D., U. Strecker, and P. Veeken. "Anisotropy Analysis of Vaca Muerta Source Rocks and Multicomponent Seismic Inversion, Bandurria Norte Concession, Argentina." In First EAGE Conference on Seismic Inversion. European Association of Geoscientists & Engineers, 2020. http://dx.doi.org/10.3997/2214-4609.202037015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wang, R., C. Bao, and L. Qiu. "Seismic Waveform Inversion with Source Manipulation." In 82nd EAGE Annual Conference & Exhibition. European Association of Geoscientists & Engineers, 2021. http://dx.doi.org/10.3997/2214-4609.202113161.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Brown, Vanessa, Satish Singh, and Kerry Key. "Using seismic full waveform inversion to constrain controlled‐source electromagnetic inversion." In SEG Technical Program Expanded Abstracts 2010. Society of Exploration Geophysicists, 2010. http://dx.doi.org/10.1190/1.3513859.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Tao, Zhengru, Anping Cui, Xiwei Wang, and Xiaxin Tao. "Inversion strategy for seismic source and regional parameters." In 2012 8th International Conference on Natural Computation (ICNC). IEEE, 2012. http://dx.doi.org/10.1109/icnc.2012.6234628.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Krebs, Jerome R., John E. Anderson, David Hinkley, Anatoly Baumstein, Sunwoong Lee, Ramesh Neelamani, and Martin‐Daniel Lacasse. "Fast full wave seismic inversion using source encoding." In SEG Technical Program Expanded Abstracts 2009. Society of Exploration Geophysicists, 2009. http://dx.doi.org/10.1190/1.3255314.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wang, S. D., R. S. Wu, and Y. F. Liu. "The Contrast Source Inversion for Reflection Seismic Data." In 78th EAGE Conference and Exhibition 2016. Netherlands: EAGE Publications BV, 2016. http://dx.doi.org/10.3997/2214-4609.201601540.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wang, H., and T. Alkhalifah. "Micro-seismic Imaging Using Source-independent Waveform Inversion." In 78th EAGE Conference and Exhibition 2016. Netherlands: EAGE Publications BV, 2016. http://dx.doi.org/10.3997/2214-4609.201601608.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ziolkowski, A. "Inversion of Explosive Source Land Seismic Data to Determine Source Parameters." In 82nd EAGE Annual Conference & Exhibition. European Association of Geoscientists & Engineers, 2021. http://dx.doi.org/10.3997/2214-4609.202112947.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Abubakar, A., W. Hu, T. M. Habashy, and P. M. van den Berg. "Seismic Full-waveform Inversion Using a Finite-difference Contrast Source Inversion Method." In 71st EAGE Conference and Exhibition incorporating SPE EUROPEC 2009. European Association of Geoscientists & Engineers, 2009. http://dx.doi.org/10.3997/2214-4609.201400380.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Minkoff, Susan E., and William W. Symes. "Estimating the energy source and reflectivity by seismic inversion." In SPIE's 1994 International Symposium on Optics, Imaging, and Instrumentation, edited by Siamak Hassanzadeh. SPIE, 1994. http://dx.doi.org/10.1117/12.187495.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Seismic source inversion"

1

Poppeliers, Christian, and Leiph Preston. Approximating and incorporating model uncertainty in an inversion for seismic source functions: Preliminary results. Office of Scientific and Technical Information (OSTI), August 2021. http://dx.doi.org/10.2172/1821553.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Plourde, A. P., and J. F. Cassidy. Mapping tectonic stress at subduction zones with earthquake focal mechanisms: application to Cascadia, Japan, Nankai, Mexico, and northern Chile. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/330943.

Full text
Abstract:
Earthquake focal mechanisms have contributed substantially to our understanding of modern tectonic stress regimes, perhaps more than any other data source. Studies generally group focal mechanisms by epicentral location to examine variations in stress across a region. However, stress variations with depth have rarely been considered, either due to data limitations or because they were believed to be negligible. This study presents 3D grids of tectonic stress tensors using existing focal mechanism catalogs from several subduction zones, including Cascadia, Japan, Nankai, Mexico, and northern Chile. We bin data into 50 x 50 x 10 km cells (north, east, vertical), with 50% overlap in all three directions. This resulted in 181380 stress inversions, with 90% of these in Japan (including Nankai). To the best of our knowledge, this is the first examination of stress changes with depth in several of these regions. The resulting maps and cross-sections of stress can help distinguish locked and creeping segments of the plate interface. Similarly, by dividing the focal mechanism catalog in northern Japan into those before and those >6 months after the 2011 Mw 9.1 Tohoku-Oki earthquake, we are able to produce detailed 3D maps of stress rotation, which is close to 90° near the areas of highest slip. These results could inform geodynamic rupture models of future megathrust earthquakes in order to more accurately estimate slip, shaking, and seismic hazard. Southern Cascadia and Nankai appear to have sharp stress discontinuities at ~20 km depth, and northern Cascadia may have a similar discontinuity at ~30 km depth. These stress boundaries may relate to rheological discontinuities in the forearc, and may help us unravel how forearc composition influences subduction zone behaviour and seismic hazard.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography