Academic literature on the topic 'Seismic signal effect'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Seismic signal effect.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Seismic signal effect"
Limberger, Fabian, Georg Rümpker, Michael Lindenfeld, and Hagen Deckert. "The impact of seismic noise produced by wind turbines on seismic borehole measurements." Solid Earth 14, no. 8 (August 18, 2023): 859–69. http://dx.doi.org/10.5194/se-14-859-2023.
Full textHowie, John A., and Ali Amini. "Numerical simulation of seismic cone signals." Canadian Geotechnical Journal 42, no. 2 (April 1, 2005): 574–86. http://dx.doi.org/10.1139/t04-120.
Full textZhang, Xingli, Yan Chen, Ruisheng Jia, and Xinming Lu. "Two-dimensional variational mode decomposition for seismic record denoising." Journal of Geophysics and Engineering 19, no. 3 (June 1, 2022): 433–44. http://dx.doi.org/10.1093/jge/gxac032.
Full textLandrø, Martin. "The effect of noise generated by previous shots on seismic reflection data." GEOPHYSICS 73, no. 3 (May 2008): Q9—Q17. http://dx.doi.org/10.1190/1.2894453.
Full textLi, Bo, Lixin Zhang, Qiling Zhang, and Shengmei Yang. "An EEMD-Based Denoising Method for Seismic Signal of High Arch Dam Combining Wavelet with Singular Spectrum Analysis." Shock and Vibration 2019 (March 10, 2019): 1–9. http://dx.doi.org/10.1155/2019/4937595.
Full textZheng, Gong Ming, Yuan Yuan Shen, and Ling Ling Song. "Vibroseis Nonlinear Scanning Signal Simulation Analysis." Applied Mechanics and Materials 318 (May 2013): 191–95. http://dx.doi.org/10.4028/www.scientific.net/amm.318.191.
Full textCai, Jianxian, Li Wang, Jiangshan Zheng, Zhijun Duan, Ling Li, and Ning Chen. "Denoising Method for Seismic Co-Band Noise Based on a U-Net Network Combined with a Residual Dense Block." Applied Sciences 13, no. 3 (January 19, 2023): 1324. http://dx.doi.org/10.3390/app13031324.
Full textJuarzan, Laode Ihksan. "ANALISIS SINYAL SEISMIK DAN SELF POTENTIAL (SP) DARI FENOMENA SEIMOELEKTRIK DI GUNUNG LUMPUR BLEDUG KUWU JAWA TENGAH." Jurnal Rekayasa Geofisika Indonesia 4, no. 01 (April 30, 2022): 60. http://dx.doi.org/10.56099/jrgi.v4i01.27456.
Full textWu, Jing, Li Wu, Miao Sun, Ya-ni Lu, and Yan-hua Han. "Application of Boundary Local Feature Scale Adaptive Matching Extension EMD Endpoint Effect Suppression Method in Blasting Seismic Wave Signal Processing." Shock and Vibration 2021 (August 13, 2021): 1–9. http://dx.doi.org/10.1155/2021/2804539.
Full textZhao, Binghui, Liguo Han, Pan Zhang, and Yuchen Yin. "Weak Signal Enhancement for Passive Seismic Data Reconstruction Based on Deep Learning." Remote Sensing 14, no. 21 (October 24, 2022): 5318. http://dx.doi.org/10.3390/rs14215318.
Full textDissertations / Theses on the topic "Seismic signal effect"
Kuehnert, Julian. "Simulation of High Frequency Seismic Waves generated by Rockfalls on Real Topography." Thesis, Université de Paris (2019-....), 2019. https://theses.md.univ-paris-diderot.fr/KUEHNERT_Julian_va2.pdf.
Full textRockfall hazard has to be evaluated and monitored in order to prevent loss of life and infrastructure. In this regard it is important to create event catalogs and understand rockfall dynamics. Seismic waves can help for this purpose as they carry valuable information of the event. They are generated when rockfalls impact the ground and can be used to detect, classify and locate events. Beyond that, rockfall properties such as their volume and their dynamic behavior can be inferred. Yet, high frequency seismic signals (>1Hz) are poorly understood. This is because they are associated to complex seismic sources which are spatially distributed and can rapidly vary over time. On top of this, high frequency seismic waves are prone to be scattered and diffracted due to interactions with soil heterogeneities or surface topography. This thesis takes an important step forward to enhance understanding of high frequency rockfall seismic signals by simulating seismic wave propagation on domains with realistic velocity profiles and 3D surface topographies using the Spectral Element Method (SEM). The influence of the topography on the seismic wave field is investigated. It is found that topography induced amplification is substantially different between deep sources and sources located at the surface. This is because surface waves generated by shallow sources are exposed to constant scattering and diffraction when traveling along the surface. The energy decay along the surface is investigated for different velocity models and equations are derived to back-calculate the total seismic energy radiated by the source. This is of interest as the rockfall seismic energy is related to the rockfall volume. In order to account for topography effects, a correction factor is proposed which can be introduced in the energy calculation. Observed seismic signals generated by rockfall at Dolomieu crater on Piton de la Fournaise volcano, La Réunion, are analyzed. Synthetic seismograms are used to identify and interpret observed signals generated by single impacts. The influence of topography on the waveforms is demonstrated and the sensitivity on source location as well as source direction is evaluated. Signal characteristics such as amplitudes and frequency content are explained based on Hertz contact theory. Additionally, inter-station spectral ratios computed from rockfall seismic signals are shown to be characteristic of the source position. Comparison with simulated spectral ratios suggest that they are dominated by the propagation along the topography rather than the mechanism of the source. Based on these findings, a method is proposed for the localization of rockfalls using simulated inter-station energy ratios. The method is applied to localize rockfalls at Dolomieu crater. The implementation of the method involves a sliding time window which allows a straightforward application on continuous seismic signals. The potential of the method to monitor rockfall activity in real-time is emphasized
Karthikeyan, E. "Studies of system identification and denoising for geophysical signals." Thesis, 2018. http://eprint.iitd.ac.in:80//handle/2074/7928.
Full textBooks on the topic "Seismic signal effect"
Wiszniowski, Jan. Broadband seismic system: Effect of transfer band on detection and recording of seismic waves. Warszawa: Polish Academy of Sciences, Institute of Geophysics, 2000.
Find full textBook chapters on the topic "Seismic signal effect"
Berrino, Giovanna, and Umberto Riccardi. "Far-field Gravity and Tilt Signals by Large Earthquakes: Real or Instrumental Effects?" In Geodetic and Geophysical Effects Associated with Seismic and Volcanic Hazards, 1379–97. Basel: Birkhäuser Basel, 2004. http://dx.doi.org/10.1007/978-3-0348-7897-5_6.
Full textVarotsos, Panayiotis A., Nicholas V. Sarlis, and Efthimios S. Skordas. "Natural Time Investigation of the Effect of Significant Data Loss on Identifying Seismic Electric Signals." In Natural Time Analysis: The New View of Time, 237–45. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-16449-1_5.
Full textHarada, Makoto, Katsumi Hattori, and Nobuhiro Isezaki. "Signal Discrimination of External Geomagnetic Effects Using the Transfer Function Approach with Continuous Wavelet Transform." In Handbook of Geophysical Exploration: Seismic Exploration, 243–58. Elsevier, 2010. http://dx.doi.org/10.1016/s0950-1401(10)04019-x.
Full textErik Sjöberg, Lars, and Majid Abrehdary. "On Moho Determination by the Vening Meinesz-Moritz Technique." In Geodetic Sciences - Theory, Applications and Recent Developments [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.97449.
Full textGarcía, Silvia, Paulina Trejo, and Alberto García. "Intelligent VR-AR for Natural Disasters Management." In Augmented Reality [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.99337.
Full textGiustiniani, Michela, and Umberta Tinivella. "Gas Hydrates in Antarctica." In Glaciers and Polar Environment [Working Title]. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.94306.
Full textConference papers on the topic "Seismic signal effect"
D. Stefania, L. "Effect of phase variations of the signal to noise ratio of seismic data/ seismic modelling." In 70th EAGE Conference and Exhibition - Workshops and Fieldtrips. European Association of Geoscientists & Engineers, 2008. http://dx.doi.org/10.3997/2214-4609.20148095.
Full textLei, Shao, Shen Fang, Linlin Xu, Chengzhi Jiang, Hongli Liu, and Fuxiang Huang. "Signal Processing System for Seismic Exploration Based on Laser Doppler Effect." In 2006 8th international Conference on Signal Processing. IEEE, 2006. http://dx.doi.org/10.1109/icosp.2006.345496.
Full textParaschivoiu, C. "The Effect of Irregular Spacing on the Signal-to-noise Ratio of Deep Seismic Reflection Data." In 77th EAGE Conference and Exhibition 2015. Netherlands: EAGE Publications BV, 2015. http://dx.doi.org/10.3997/2214-4609.201412523.
Full textLi, Bing, and D. K. Vijay. "Study of the Effect of FRS and SAM on Pipe Seismic Stress Using Taguchi Method." In ASME 2009 Pressure Vessels and Piping Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/pvp2009-77020.
Full textLiang, Li, Pan Rong, Ren Guopeng, and Zhu Xiuyun. "Research on Earthquake Acceleration Alarm of Nuclear Power Plant." In 2021 28th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/icone28-64554.
Full textXiao, Xiu, Qingzi Zhu, Guanyi Wang, Shao-Wen Chen, Mamoru Ishii, and Yajun Zhang. "Vibration Effects on Bubbly Flow Structure in an Annulus." In 2016 24th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/icone24-60735.
Full textTiwari, Pankaj Kumar, Debasis Priyadarshan Das, Parimal Arjun Patil, Prasanna Chidambaram, Prasanna Kumar Chandran, Raj Deo Tewari, and M. Khaidhir Abdul Hamid. "4D Seismic in Subsurface CO2 Plume Monitoring – Why It Matters?" In SPE Annual Technical Conference and Exhibition. SPE, 2021. http://dx.doi.org/10.2118/206162-ms.
Full textMatsuoka, Taichi, Takuya Wada, and Mizuki Katakura. "Vibration Suppression of Traffic Signal Pole by Generating Electrical Power." In ASME 2013 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/pvp2013-97351.
Full textSilvestrov, Ilya, Emad Hemyari, Andrey Bakulin, Yi Luo, Ali Aldawood, Flavio Poletto, Yujin Liu, Yue Du, Anton Egorov, and Pavel Golikov. "Processing of Seismic-While-Drilling Data from the DrillCAM System Acquired with Wireless Geophones, Top-Drive, and Downhole Vibrations Sensors." In SPE Middle East Oil & Gas Show and Conference. SPE, 2021. http://dx.doi.org/10.2118/204543-ms.
Full textSzu, Harold. "Neural network adaptive wavelet transform." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/oam.1992.fa3.
Full textReports on the topic "Seismic signal effect"
Taylor, Oliver-Denzil, Amy Cunningham,, Robert Walker, Mihan McKenna, Kathryn Martin, and Pamela Kinnebrew. The behaviour of near-surface soils through ultrasonic near-surface inundation testing. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/41826.
Full text