Academic literature on the topic 'Seismic performance-based assessment'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Seismic performance-based assessment.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Seismic performance-based assessment"

1

Macedo, Jorge, Jonathan Bray, Norman Abrahamson, and Thaleia Travasarou. "Performance-Based Probabilistic Seismic Slope Displacement Procedure." Earthquake Spectra 34, no. 2 (May 2018): 673–95. http://dx.doi.org/10.1193/122516eqs251m.

Full text
Abstract:
Engineers often use simplified seismic slope displacement procedures to evaluate the seismic performance of earth structures and natural slopes. Current state of practice procedures typically separate the estimation of the ground motion intensity measure ( IM) from the estimate of seismic displacement ( D), given the selected IM hazard level. Thus D is estimated based on a single IM value. A straightforward performance-based seismic slope assessment procedure is proposed, which considers the full range of potential IM values to estimate seismic slope displacements directly related to a hazard level. Seismic performance is assessed through either a Newmark-type seismic displacement estimate or a calibrated seismic coefficient that can be used in pseudostatic slope stability analyses. The procedures were developed for a wide range of earth systems for shallow crustal earthquakes and subduction zone earthquakes. Currently employed simplified slope displacement procedures do not provide consistent assessments of the actual seismic slope displacement hazard. The proposed procedures can be readily used in practice to perform rigorous performance-based seismic slope displacement hazard assessments.
APA, Harvard, Vancouver, ISO, and other styles
2

Simões, Ana, Rita Bento, Serena Cattari, and Sergio Lagomarsino. "Seismic performance-based assessment of “Gaioleiro” buildings." Engineering Structures 80 (December 2014): 486–500. http://dx.doi.org/10.1016/j.engstruct.2014.09.025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bray, Jonathan D., and Jorge Macedo. "Performance-based seismic assessment of slope systems." Soil Dynamics and Earthquake Engineering 168 (May 2023): 107835. http://dx.doi.org/10.1016/j.soildyn.2023.107835.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Priestley, M. J. N. "Performance based seismic design." Bulletin of the New Zealand Society for Earthquake Engineering 33, no. 3 (September 30, 2000): 325–46. http://dx.doi.org/10.5459/bnzsee.33.3.325-346.

Full text
Abstract:
One of the major developments in seismic design over the past 10 years has been increased emphasis on limit states design, now generally termed Performance Based Engineering. Three techniques - the capacity spectrum approach, the N2 method and direct displacement-based design have now matured to the stage where seismic assessment of existing structures, or design of new structures can be carried out to ensure that particular deformation-based criteria are met. The paper will outline and compare the three methods, and discuss them in the context of traditional force-based seismic design and earlier design approaches which contained some elements of performance based design. Factors defining different performance states will be discussed, including the need, not yet achieved, to include residual displacement as a key performance limit. Some emphasis will be placed on soil-related problems, and the incorporation of soil/structure interaction into performance-based design. It will be shown that this is relatively straightforward and results in consistent design solutions not readily available with force-based designs using force-reduction factors.
APA, Harvard, Vancouver, ISO, and other styles
5

Basaglia, Alberto, Alessandra Aprile, Enrico Spacone, and Francesco Pilla. "Performance-based Seismic Risk Assessment of Urban Systems." International Journal of Architectural Heritage 12, no. 7-8 (August 17, 2018): 1131–49. http://dx.doi.org/10.1080/15583058.2018.1503371.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Li, Hao, and Hua Zhang. "Bayesian Network Based Expert System for Seismic Performance Assessment." Advanced Materials Research 655-657 (January 2013): 1718–21. http://dx.doi.org/10.4028/www.scientific.net/amr.655-657.1718.

Full text
Abstract:
In this paper, Bayesian network based expert system is built for seismic performance evaluation. Unlike the regular rule-based expert system which allows only unidirectional reasoning with strict complete data entry sets, the Bayesian network based expert system can perform bidirectional inference based on incomplete information when the prior probability distributions are given. Seismic performance evaluation is a task that often needs experiences to draw a conclusion under insufficient information circumstance, which made the Bayesian network- based expert system well qualified for the job, and the example also illustrates this point.
APA, Harvard, Vancouver, ISO, and other styles
7

Fadel Miguel, Leandro F., Fabio Alminhana, and André T. Beck. "Performance based assessment of transmission lines to seismic events." Engineering Structures 249 (December 2021): 113298. http://dx.doi.org/10.1016/j.engstruct.2021.113298.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bantilas, Kosmas E., Ioannis E. Kavvadias, Magdalini Tyrtaiou, and Anaxagoras Elenas. "Hilbert–Huang-Transform-Based Seismic Intensity Measures for Rocking Response Assessment." Applied Sciences 13, no. 3 (January 27, 2023): 1634. http://dx.doi.org/10.3390/app13031634.

Full text
Abstract:
Structures that can uplift and rock under severe seismic excitations present remarkable stability without exhibiting damage. As such, rocking-response-based structural systems constitute a promising design practice. Due to the high nonlinearity of the rocking response, the seismic performance of this class of structures should be evaluated probabilistically. From this point of view, in the present study, the performance of 12 novel HHT-based intensity measures (IMs) in describing the seismic behavior of typical rocking viaducts was assessed based on optimal IM selection criteria. To this end, a comparative evaluation of the performance between the proposed and 26 well-known conventional IMs was presented. Moreover, bivariate IMs were also considered, and seismic fragilities were provided. Finally, the classification of the seismic response was conducted using discriminant analysis, resulting in a reliable and rapid estimation of the maximum seismic demand. Based on the results, it is evident that HHT-based IMs result in an enhanced estimation of the seismic performance of the examined structural system.
APA, Harvard, Vancouver, ISO, and other styles
9

Ismail, Rozaina, Nurul Damia Sukati, Nurul Nabilah Moktar, Ainnur Zulsyamilatil Huda Abd Halim, Dayang Nur Erliyani Fitri Erwan, Azmi Ibrahim, Norliyati Mohd Amin, Azlan Adnan, and Ade Faisal. "Seismic Performance Assessment of Murum Dam Under Various Seismic Event." Journal of Mechanical Engineering 20, no. 1 (January 15, 2023): 135–48. http://dx.doi.org/10.24191/jmeche.v20i1.21083.

Full text
Abstract:
Dams are considered as vital assets for countries; therefore, the dam must be built to withstand natural disasters. However, the performance of the dam structure comes to attention since the Ranau earthquake occurrence in 2015 is the strongest earthquake recorded in Malaysia. The behavior of the dam became deteriorated across the year due to earthquake motion which caused damage to the dam. This study aims to assess the performance of Murum dam using Incremental Dynamic Analysis (IDA) which subjected was subjected to a set of 6 ground motion records scaled to increasing intensity levels by using ABAQUS. A different scale Peak Ground Acceleration (PGA) of 0.05 g, 0.10 g, 0.15 g, 0.20 g, and 0.30 g were applied in this study. Based on the results, the cracking area increases when the acceleration increases due to the high tensile stress. The maximum displacement value was located at the crest part of the dam. The findings revealed that the concentration of stresses in the dam body, especially heel and neck. The maximum normal stress was found at the heel zone of the dam. The trend of maximum shear stress shows a fluctuated value when the scale PGA increased. This showed that the performance level of the dam based on seismic loadings depend on ground motion pattern.
APA, Harvard, Vancouver, ISO, and other styles
10

Elmrabet, Oumnia, Hasnae Boubel, El Mehdi Echebba, Mohamed Rougui, and Ouadia Mouhat. "Performance-based seismic assessment of vulnerability of dam using time history analysis." MATEC Web of Conferences 149 (2018): 02035. http://dx.doi.org/10.1051/matecconf/201814902035.

Full text
Abstract:
The current performance-based seismic assessment procedure can be computationally intensive as it requires many time history analyses (THA) each requiring time intensive post-processing of results. Time history analysis is a part of structural analysis and is the calculation of the response of a structure to any earthquake. It is one of the main processes of structural design in regions where earthquakes are prevalent. The objective of this study is to evaluate the seismic performance of embankment dam located on the Oued RHISS in the Province of AL HOCEIMA using the THA method. To monitor structural behavior, the seismic vulnerability of structure is evaluated under real earthquake records with considering the soil-structure-fluide interaction. In this study, a simple assistant program is developed for implementing earthquake analyses of structure with ANSYS, ground acceleration–time history data are used for seismic analysis and dynamic numerical simulations were conducted to study and identify the total response of the soil-structure system.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Seismic performance-based assessment"

1

Acun, Bora. "Energy Based Seismic Performance Assessment Of Reinforced Concrete Columns." Phd thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/12611728/index.pdf.

Full text
Abstract:
Severe seismic events in urban regions during the last two decades revealed that the structures constructed before the development of modern seismic codes are the most vulnerable to earthquakes. Sub-standard reinforced concrete buildings constitute an important part of this highly vulnerable urban building stock. There is urgent need for the development and improvement of methods for seismic performance assessment of existing reinforced concrete structures. As an alternative to current conventional force-based assessment methods, a performance evaluation procedure for structural members, mainly reinforced concrete columns is proposed in this study, by using an energy-based approach combined with the low cycle fatigue concept. An energy-based hysteresis model is further introduced for representing the inelastic response of column members under severe seismic excitations. The shape of the hysteresis loops are controlled by the dissipated cumulative energy whereas the ultimate strength is governed by the low cycle fatigue behavior. These two basic characteristics are obtained experimentally from full scale specimens tested under constant and variable amplitude displacement cycles. The first phase of the experimental program presented in the study constitutes of testing sub-standard non-conforming column specimens. The second phase of testing was conducted on standard, code compliant reinforced concrete columns. A total number of 13 specimens were tested. The behavior of these specimens was observed individually and comparatively according to the performance based objectives. The results obtained from the experiments were employed for developing relations between the energy dissipation capacity of specimens, the specimen properties as well as the imposed displacement history. Moreover, the measured rotation capacities at the plastic regions are evaluated comparatively with the limits proposed by modern displacement-based seismic design and assessment provisions.
APA, Harvard, Vancouver, ISO, and other styles
2

Nassirpour, Arash. "Performance based seismic assessment of masonry infilled steel frame structures." Thesis, University College London (University of London), 2018. http://discovery.ucl.ac.uk/10052986/.

Full text
Abstract:
Steel framed structures constitute a considerable proportion of residential and commercial structures in earthquake prone regions. In such structures, typically, masonry infills are implemented as walls and partitions. However, in common practice, the influence of the infill panels on the performance and resistance of the building is mostly ignored, not just at the design stage, but also during assessment. Despite the possible strength enhancement that infill panels can bring to the structure for modest earthquakes, they may put the building at high risk of heavy damage if their impact is overlooked, and the interaction not properly designed, as seen in the 2003 Bam earthquake and many other destructive seismic events. Following the performance-based seismic assessment methodology, the dissertation focuses on evaluating the seismic performance of existing masonry infilled steel frames. The seismic response of several building typologies, designed according to common practice, is assessed through nonlinear dynamic methods. Detailed three-dimensional numerical models of selected index buildings are developed, capable of simulating the impact of masonry infill walls along other critical elements such as the beam-column connections, according to available empirical and experimental data. In order to measure the seismic vulnerability, along with possible losses and life cycle costs, analytical fragility functions are derived for the structures, while considering the hazard characteristics of the location under study. The derived fragility functions will help enrich the limited library of existing function dedicated to both bare and infilled steel structures. The outcome is of great importance for insurance valuation, as well as managing disasters and performing strengthening if necessary.
APA, Harvard, Vancouver, ISO, and other styles
3

Roohi, Milad. "Performance-Based Seismic Monitoring of Instrumented Buildings." ScholarWorks @ UVM, 2019. https://scholarworks.uvm.edu/graddis/1140.

Full text
Abstract:
This dissertation develops a new concept for performance-based monitoring (PBM) of instrumented buildings subjected to earthquakes. This concept is achieved by simultaneously combining and advancing existing knowledge from structural mechanics, signal processing, and performance-based earthquake engineering paradigms. The PBM concept consists of 1) optimal sensor placement, 2) dynamic response reconstruction, 3) damage estimation, and 4) loss analysis. Within the proposed concept, the main theoretical contribution is the derivation of a nonlinear model-based observer (NMBO) for state estimation in nonlinear structural systems. The NMBO employs an efficient iterative algorithm to combine a nonlinear model and limited noise-contaminated response measurements to estimate the complete nonlinear dynamic response of the structural system of interest, in the particular case of this research, a building subject to an earthquake. The main advantage of the proposed observer over existing nonlinear recursive state estimators is that it is specifically designed to be physically realizable as a nonlinear structural model. This results in many desirable properties, such as improved stability and efficiency. Additionally, a practical methodology is presented to implement the proposed PBM concept in the case of instrumented steel, wood-frame, and reinforced concrete buildings as the three main types of structural systems used for construction in the United States. The proposed methodology is validated using three case studies of experimental and real-world large-scale instrumented buildings. The first case study is an extensively instrumented six-story wood frame building tested in a series of full-scale seismic tests in the final phase of the NEESWood project at the E-Defense facility in Japan. The second case study is a 6-story steel moment resisting frame building located in Burbank, CA, and uses the recorded acceleration data from the 1991 Sierra Madre and 1994 Northridge earthquakes. The third case is a seven-story reinforced concrete structure in Van Nuys, CA, which was severely damaged during the 1994 Northridge earthquake. The results presented in this dissertation constitute the most accurate and the highest resolution seismic response and damage measure estimates obtained for instrumented buildings. The proposed PBM concept will help structural engineers make more informed and swift decisions regarding post-earthquake assessment of critical instrumented building structures, thus improving earthquake resiliency of seismic-prone communities.
APA, Harvard, Vancouver, ISO, and other styles
4

Molina, Hutt Carlos. "Risk-based seismic performance assessment of existing tall steel framed buildings." Thesis, University College London (University of London), 2017. http://discovery.ucl.ac.uk/10040499/.

Full text
Abstract:
One of the major concerns in earthquake disaster resilience is understanding the risk posed by existing buildings that are not conformant with modern building codes. A related challenge is how, if necessary, to mitigate the risk through retrofit policies or other measures in a cost effective manner. For some types of buildings, such as unreinforced masonry, the risks are so obviously large, that mandatory laws have been enacted to assess and retrofit the buildings. However, in other cases, such as with non-ductile concrete buildings or older tall steel buildings, the risks and mitigation strategies are not as clear cut. This research addresses the risks posed by older seismically deficient steel buildings, which constitute a significant portion of tall buildings in western US cities with high seismic hazard. These buildings include many steel moment resisting frames (MRF), constructed during the late 1960's through mid-1990's, with the type of welded connections that experienced sudden brittle fractures during the 1994 Northridge earthquake. This work applies performance-based earthquake engineering (PBEE) tools to this potential seismic safety problem. San Francisco is selected as a case study city in order to permit engagement with the city’s ongoing earthquake safety initiatives. The performance of existing 1970s tall steel MRF buildings is evaluated through the development of archetype buildings. A series of studies that progressively explore the performance of individual archetype buildings, within a probabilistic framework, are carried out, including scenario-based, intensity-based and time-based assessments. Additionally, a method is proposed to extend such assessments to evaluate clusters of buildings and how their performance may impact the resilience of the community; going beyond individual building performance, towards more holistic seismic performance evaluations. The results of this body of research are communicated not only in terms of structural response, but also in terms of direct economic losses, downtime and recovery, which are more accessible to decision makers. The scenario-based and intensity-based evaluations are carried out to assess performance under an expected earthquake scenario, and design level shaking, respectively. The results indicate that, while the archetype buildings considered are expected to guarantee the life-safety of occupants, the associated economic losses and downtime entail a costly and slow recovery, which can, additionally, result in considerable indirect losses. The impact of adopting structural retrofit schemes, enhanced non-structural building components, and seismic mitigation measures is explored. The results indicate that, through a combination of these interventions, significant reductions, in both losses and downtime, under the earthquake ground motion shaking intensities considered, can be achieved. In order to benchmark the performance of 1970s steel MRFs versus modern design standards, a comparative time-based evaluation is carried out. The results indicate that the probabilities of collapse of the 1970s archetype buildings considered are well in excess of the 1% in 50 year target implicit in modern design standards. The results also illustrate that while modern designs result in performance that complies with the code intended collapse-safety margin, the level of damage control may be insufficient to enable a swift recovery and ensure the seismic resilience of these buildings. A methodology to assess the earthquake risk of existing tall buildings on the urban community is proposed. This method is implemented in a simple case study of a cluster of tall steel MRF buildings in downtown San Francisco. The results suggest that under a range of realistic earthquake scenarios, a considerable loss of occupancy and functionality is expected in buildings consistent with the 1970s archetype. Furthermore, permanent deformations in these buildings can result in large cordons around the damaged structures, which would prevent access to other buildings within a considerable area. The results of this research serve to inform the debate over the expected seismic performance of existing 1970s tall steel MRF buildings. This work provides an array of results from different types of assessment that can be informative to different parties including design practitioners, building owners, policy makers and the insurance sector.
APA, Harvard, Vancouver, ISO, and other styles
5

Baird, Andrew. "Seismic performance of precast concrete cladding systems." Thesis, University of Canterbury. Civil and Natural Resources Engineering, 2014. http://hdl.handle.net/10092/9997.

Full text
Abstract:
Structural engineering is facing an extraordinarily challenging era. These challenges are driven by the increasing expectations of modern society to provide low-cost, architecturally appealing structures which can withstand large earthquakes. However, being able to avoid collapse in a large earthquake is no longer enough. A building must now be able to withstand a major seismic event with negligible damage so that it is immediately occupiable following such an event. As recent earthquakes have shown, the economic consequences of not achieving this level of performance are not acceptable. Technological solutions for low-damage structural systems are emerging. However, the goal of developing a low-damage building requires improving the performance of both the structural skeleton and the non-structural components. These non-structural components include items such as the claddings, partitions, ceilings and contents. Previous research has shown that damage to such items contributes a disproportionate amount to the overall economic losses in an earthquake. One such non-structural element that has a history of poor performance is the external cladding system, and this forms the focus of this research. Cladding systems are invariably complicated and provide a number of architectural functions. Therefore, it is important than when seeking to improve their seismic performance that these functions are not neglected. The seismic vulnerability of cladding systems are determined in this research through a desktop background study, literature review, and postearthquake reconnaissance survey of their performance in the 2010 – 2011 Canterbury earthquake sequence. This study identified that precast concrete claddings present a significant life-safety risk to pedestrians, and that the effect they have upon the primary structure is not well understood. The main objective of this research is consequently to better understand the performance of precast concrete cladding systems in earthquakes. This is achieved through an experimental campaign and numerical modelling of a range of precast concrete cladding systems. The experimental campaign consists of uni-directional, quasi static cyclic earthquake simulation on a test frame which represents a single-storey, single-bay portion of a reinforced concrete building. The test frame is clad with various precast concrete cladding panel configurations. A major focus is placed upon the influence the connection between the cladding panel and structural frame has upon seismic performance. A combination of experimental component testing, finite element modelling and analytical derivation is used to develop cladding models of the cladding systems investigated. The cyclic responses of the models are compared with the experimental data to evaluate their accuracy and validity. The comparison shows that the cladding models developed provide an excellent representation of real-world cladding behaviour. The cladding models are subsequently applied to a ten-storey case-study building. The expected seismic performance is examined with and without the cladding taken into consideration. The numerical analyses of the case-study building include modal analyses, nonlinear adaptive pushover analyses, and non-linear dynamic seismic response (time history) analyses to different levels of seismic hazard. The clad frame models are compared to the bare frame model to investigate the effect the cladding has upon the structural behaviour. Both the structural performance and cladding performance are also assessed using qualitative damage states. The results show a poor performance of precast concrete cladding systems is expected when traditional connection typologies are used. This result confirms the misalignment of structural and cladding damage observed in recent earthquake events. Consequently, this research explores the potential of an innovative cladding connection. The outcomes from this research shows that the innovative cladding connection proposed here is able to achieve low-damage performance whilst also being cost comparable to a traditional cladding connection. It is also theoretically possible that the connection can provide a positive value to the seismic performance of the structure by adding addition strength, stiffness and damping. Finally, the losses associated with both the traditional and innovative cladding systems are compared in terms of tangible outcomes, namely: repair costs, repair time and casualties. The results confirm that the use of innovative cladding technology can substantially reduce the overall losses that result from cladding damage.
APA, Harvard, Vancouver, ISO, and other styles
6

Karamanci, Emre. "Collapse assessment and performance-based evaluation techniques for concentrically braced frames designed in seismic regions." Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=117045.

Full text
Abstract:
Performance-Based Earthquake Engineering necessitates the development of simulation models that can predict the nonlinear behavior of structural components as part of a building subjected to seismic loading. For reliable seismic assessment of buildings, these models need to be calibrated with large sets of experimental data. This thesis advances the state-of-knowledge on the collapse assessment of concentrically braced frames (CBFs) designed in seismic regions. The thesis discusses the development of a database that includes extensive information from more than 300 tests of steel braces that have been conducted worldwide over the past 40 years. Statistical information of various properties of steel braces that can be used for quantification of modeling uncertainties is summarized and implications regarding the expected yield properties of various steel types as part of current design provisions are discussed. The steel brace database is utilized to develop drift-based and dual-parameter fragility curves for different damage states of steel braces. These curves can be used as tools for rapid estimation of earthquake damage towards the next generation of performance-based evaluation methods for new and existing buildings. Through extensive calibrations of an inelastic fiber-based steel brace cyclic model, modeling recommendations for the post-buckling behaviour and fracture of steel braces due to low-cycle fatigue are developed for three different brace shapes. The effectiveness of these recommendations is demonstrated through two case studies including concentrically braced frames (CBFs) subjected to earthquake loading. The emphasis is on the accurate assessment of the collapse capacity of concentrically braced frames with the explicit consideration of strength and stiffness deterioration of various structural components that are part of local story mechanisms that develop in CBFs after the steel braces fracture. The influence of modeling classical damping on the collapse capacity of CBFs is also discussed.
Le génie parasismique basé sur la performance des structures nécessite le développement des modèles de simulation qui peuvent estimer le comportement non-linéaire des composantes structurales faisant partie d'un bâtiment sujet ti aux efforts sismiques. Afin d'avoir une évaluation sismique fiable, les modèles doivent être étalonnés avec un grand inventaire de données obtenues expérimentalement. Cette thèse avance l'état des connaissances sur l'évaluation de l'effondrement des contreventements en treillis concentrique conçus dans les régions sismiques. Cette thèse adresse le développement d'une banque de données qui inclut plus de 300 essais effectués autour du monde sur des contreventements en acier depuis plus de 40 ans. Les données statistiques de plusieurs propriétés du contreventement en acier qui peuvent être utilisées pour la quantification des incertitudes de la modélisation sont résumées. Également les implications reliées aux propriétés limi d l'élasticité qui sont attendues selon le type d'acier sont présentées en fonction des règles d'actuelles de conception. La banque de données des contreventements en acier est utilisée afin de développer des drift-based et dual-parameter fragility curves courbes de fragilité à deux paramètres en fonction du déplacement horizontal relatif de l'étage pour différents degrés de dommage. Ces courbes servant à estimer efficacement et rapidement les dommages sismiques, amènt vers la prochaine génération des méthodes d'évaluation de la performance des structures. À travers une vérification approfondie de l'étalonnement du modèle non-linéaire cyclique à fibres du contreventement en acier des recommandations de modélisation du postflambement et de la rupture en fatigue oligocyclique sont développées pour trois différentes types de contreventement. L'efficacité de ces recommandations est démontrée à travers des études de cas incluantes des contreventements concentriques qui reprisent des efforts sismiques. L'accent est mis sur l'évaluation précise de la capacité de l'effondrement des contreventements en treillis concrentriques en prenant en compte explicitement le processus de dégradation de la capacité et de la rigidité des plusieurs composants structuraux qui font partie des mécanismes du dommage local qui s'évoluentdans différents étages d'une structure en contreventements concentriques en acier une fois que le contreventement s'est fracturé. L'effet de la modélisation de l'amortissement de la structure sur la capacité à l'effondrement des contreventements concentriques en acier est également considéré.
APA, Harvard, Vancouver, ISO, and other styles
7

Billah, Abu Hena MD Muntasir. "Performance-based seismic design and assessment of concrete bridge piers reinforced with shape memory alloy rebar." Thesis, University of British Columbia, 2015. http://hdl.handle.net/2429/54668.

Full text
Abstract:
Recent advancements in numerical analysis and computational power have pushed the current bridge design specifications towards a more descriptive performance-based seismic design (PBSD) approach as compared to the conventional force-based method. One major attributes of this PBSD is to keep bridges operational and reduce the repair cost by limiting the global and local deformations of a bridge to acceptable levels under design loads. Shape memory alloy (SMA), with its distinct superelasticity, shape memory effect and hysteretic damping, is a promising material for the application in bridge piers to attain the objectives of PBSD. The objective of this research is to develop a performance-based seismic design guideline for concrete bridge pier reinforced with different types of SMAs. With the aim of providing a comprehensive design guideline, this study started with the experimental investigation of bond behavior of smooth and sand coated SMA rebar in concrete using pushout specimens. The test results were explored to evaluate the influence of concrete strength, bar diameter, embedment length, and surface condition. In addition, a plastic hinge length expression for SMA-RC bridge pier was developed which can be used for calculating the flexural displacement capacity and design of SMA-RC bridge pier. Using Incremental Dynamic Analysis (IDA), this study developed quantitative damage states corresponding to different performance levels (cracking, yielding, and strength degradation) and specific probabilistic distributions for RC bridge piers reinforced with different types of SMAs. Based on an extensive numerical study, the author proposed residual drift based damage states for SMA-RC pier. Based on the proposed damage states, a sequential procedure for the performance-based design of SMA-RC bridge pier is developed using a combination of residual and maximum drift. Finally, in order to elucidate the potential benefit and applicability of the proposed guideline, fragility curves and seismic hazard curves for different SMA-RC bridge piers are developed considering maximum and residual drift as engineering demand parameters. It is found that the SMA-RC bridge piers designed following the proposed design guideline have very low probability of damage resulting in a lower annual loss which will provide significant financial benefit in the long run.
Applied Science, Faculty of
Engineering, School of (Okanagan)
Graduate
APA, Harvard, Vancouver, ISO, and other styles
8

Slovenec, Derek. "Multi-Hazard Assessment and Performance-Based Design of Facade Systems including Building Frame Interaction." Case Western Reserve University School of Graduate Studies / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=case1560187143941942.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Peterson, Brian David. "Development of a Performance-Based Procedure for Assessment of Liquefaction-Induced Free-Field Settlements." BYU ScholarsArchive, 2016. https://scholarsarchive.byu.edu/etd/6113.

Full text
Abstract:
Liquefaction-induced settlement can cause significant damage to structures and infrastructure in the wake of a seismic event. Predicting settlement is an essential component of a comprehensive seismic design. The inherent uncertainty associated with seismic events makes the accurate prediction of settlement difficult. While several methods of assessing seismic hazards exist, perhaps the most promising is performance-based earthquake engineering, a framework presented by the Pacific Earthquake Engineering Research (PEER) Center. The PEER framework incorporates probability theory to generate a comprehensive seismic hazard analysis. Two settlement estimation methods are incorporated into the PEER framework to create a fully probabilistic settlement estimation procedure. A seismic hazard analysis tool known as PBLiquefY was updated to include the fully probabilistic method described above. The goal of the additions to PBLiquefY is to facilitate the development of a simplified performance-based procedure for the prediction of liquefaction-induced free-field settlements. Settlement estimations are computed using conventional deterministic methods and the fully probabilistic procedure for five theoretical soil profiles in 10 cities of varying seismicity levels. A comparison of these results suggests that deterministic methods are adequate when considering events of low seismicity but may result in a considerable under-estimation of seismic hazard when considering events of mid to high seismicity.
APA, Harvard, Vancouver, ISO, and other styles
10

Coutu, Tyler Blaine. "Development of a Performance-Based Procedure for Assessment of Liquefaction-Induced Lateral Spread Displacements Using the Cone Penetration Test." BYU ScholarsArchive, 2017. https://scholarsarchive.byu.edu/etd/7216.

Full text
Abstract:
Liquefaction-induced lateral spread displacements cause severe damage to infrastructure, resulting in large economic losses in affected regions. Predicting lateral spread displacements is an important aspect in any seismic analysis and design, and many different methods have been developed to accurately estimate these displacements. However, the inherent uncertainty in predicting seismic events, including the extent of liquefaction and its effects, makes it difficult to accurately estimate lateral spread displacements. Current conventional methods of predicting lateral spread displacements do not completely account for uncertainty, unlike a performance-based earthquake engineering (PBEE) approach that accounts for the all inherent uncertainty in seismic design. The PBEE approach incorporates complex probability theory throughout all aspects of estimating liquefaction-induced lateral spread displacements. A new fully-probabilistic PBEE method, based on results from the cone penetration test (CPT), was created for estimating lateral spread displacements using two different liquefaction triggering procedures. To accommodate the complexity of all probabilistic calculations, a new seismic hazard analysis tool, CPTLiquefY, was developed. Calculated lateral spread displacements using the new fully-probabilistic method were compared to estimated displacements using conventional methods. These comparisons were performed across 20 different CPT profiles and 10 cities of varying seismicity. The results of this comparison show that the conventional procedures of estimating lateral spread displacements are sufficient for areas of low seismicity and for lower return periods. However, by not accounting for all uncertainties, the conventional methods under-predict lateral spread displacements in areas of higher seismicity. This is cause for concern as it indicates that engineers in industry using the conventional methods are likely under-designing structures to resist lateral spread displacements for larger seismic events.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Seismic performance-based assessment"

1

Hu, Hongqiang. Guidelines on Probabilistic Performance-Based Seismic Design and Assessment of Slope Engineering. Springer, 2023.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Seismic performance-based assessment"

1

Miranda, Eduardo. "Enhanced Building-Specific Seismic Performance Assessment." In Advances in Performance-Based Earthquake Engineering, 183–91. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-8746-1_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bray, Jonathan D., and Jorge Macedo. "Performance-Based Seismic Assessment of Slope Systems." In Proceedings of the 4th International Conference on Performance Based Design in Earthquake Geotechnical Engineering (Beijing 2022), 3–23. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-11898-2_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pampanin, Stefano. "Alternative Performance-Based Retrofit Strategies and Solutions for Existing RC Buildings." In Seismic Risk Assessment and Retrofitting, 267–95. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-2681-1_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ilki, Alper, Erkan Tore, Cem Demir, and Mustafa Comert. "Code Based Performance Prediction for a Full-Scale FRP Retrofitted Building Test." In Seismic Hazard and Risk Assessment, 467–77. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-74724-8_31.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kappos, Andreas J. "Performance-Based Seismic Design and Assessment of Bridges." In Perspectives on European Earthquake Engineering and Seismology, 163–205. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16964-4_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Fajfar, Peter, and Matjaž Dolšek. "A Practice-Oriented Approach for Probabilistic Seismic Assessment of Building Structures." In Advances in Performance-Based Earthquake Engineering, 225–33. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-8746-1_21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Fischinger, Matej, Klemen Rejec, and Tatjana Isaković. "Inelastic Shear Response of RC Walls: A Challenge in Performance Based Design Performance based design Performance based design Performance based design Performance based design and Assessment." In Performance-Based Seismic Engineering: Vision for an Earthquake Resilient Society, 347–63. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-8875-5_24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Çaktı, Eser, Emrullah Dar, and Gülen Uncu. "Recent Studies on Earthquake Performance Assessment of Hagia Sophia in Istanbul." In Seismic Isolation, Structural Health Monitoring, and Performance Based Seismic Design in Earthquake Engineering, 195–204. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-93157-9_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Che, Ailan, Hanxu Zhou, Jinchang Chen, Yuchen Wu, and Ziyao Xu. "Seismic Landslide Susceptibility Assessment Based on Seismic Ground Motion and Earthquake Disaster Analysis." In Proceedings of the 4th International Conference on Performance Based Design in Earthquake Geotechnical Engineering (Beijing 2022), 327–41. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-11898-2_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Di-Sarno, L., and A. S. Elnashai. "Seismic Fragility Relationships for Structures." In Springer Tracts in Civil Engineering, 189–222. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68813-4_9.

Full text
Abstract:
AbstractStructural fragility assessment is a fundamental component of modern performance-based earthquake design and assessment processes. Major advances in fragility functions development and implementation have occurred over the past three decades.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Seismic performance-based assessment"

1

"Analytical Assessment of Seismic Performance Evaluation Procedures for Bridges." In SP-271: Structural Concrete in Performance-Based Seismic Design of Bridges. American Concrete Institute, 2010. http://dx.doi.org/10.14359/51663889.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

"System Modeling for Seismic Performance Assessment and Evaluation of Reinforced Concrete Bridge Columns." In SP-271: Structural Concrete in Performance-Based Seismic Design of Bridges. American Concrete Institute, 2010. http://dx.doi.org/10.14359/51663893.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zhang, Wenyang, Abdoul R. Ghotbi, Elnaz E. Seylabi, Payman K. Tehrani, Alp Karakoc, Richard Gash, and Ertugrul Taciroglu. "Fragility Based Seismic Performance Assessment of Buried Structures." In Geotechnical Earthquake Engineering and Soil Dynamics V. Reston, VA: American Society of Civil Engineers, 2018. http://dx.doi.org/10.1061/9780784481479.019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Martínez, J. M., L. Xu, and Y. Liu. "Seismic performance assessment of buildings with cold-formed steel shear wall panels." In International Conference on Performance-based and Life-cycle Structural Engineering. School of Civil Engineering, The University of Queensland, 2015. http://dx.doi.org/10.14264/uql.2016.1193.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hanson, Robert D., Graham Taylor, Carlos Ventura, and Freddy Pina. "Nonlinear Performance Based Seismic Assessment for Low-Rise Buildings." In ATC and SEI Conference on Improving the Seismic Performance of Existing Buildings and Other Structures. Reston, VA: American Society of Civil Engineers, 2009. http://dx.doi.org/10.1061/41084(364)74.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mendoza, Carlos, José Matos, Neryvaldo Galvão, and Álvaro Viviescas. "Reliability based performance assessment of a roadway bridge under seismic actions." In IABSE Congress, Christchurch 2021: Resilient technologies for sustainable infrastructure. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2021. http://dx.doi.org/10.2749/christchurch.2021.0212.

Full text
Abstract:
<p>External events represent the most common causes of bridge failure which could indicate distress, partial or total collapse (failure of all substantial parts of a bridge). One of the main environmental factors are earthquakes, which have a high impact on bridges due to irregularities presented in both substructure and superstructure and vulnerabilities acquired by the codes used in its design. This article presents a framework to obtain the reliability index of a bridge under seismic events, using response surface method and first order reliability method, based on random variables that affect the structure capacity (pushover analysis) and the seismic loads (peak ground acceleration). The bridge reliability of the case study is updated using visual inspection techniques. Results indicate that the vulnerable zone on the bridge is its shortest pier and the failure could occur due to high shear concentration in the hinge at the bottom of the pier.</p>
APA, Harvard, Vancouver, ISO, and other styles
7

Murari, Krishna, Harvinder Singh, and Savleen Takkar. "Performance-based methodology for seismic assessment of code- conforming RC buildings." In IABSE Congress, Christchurch 2021: Resilient technologies for sustainable infrastructure. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2021. http://dx.doi.org/10.2749/christchurch.2021.1079.

Full text
Abstract:
<p>The current Indian code for seismic design of structures is based on the force-based design (FBD) philosophy but the damage is more related to strain and displacement rather than strength. Also, structures can’t be designed for target design objectives by FBD method under a specified hazard level. Hence it became necessary to develop new codes and standards based on more robust design methodology to overcome the various shortcomings. The paper presents the results of a study conducted to evaluate the effect of provisions mandated by BIS design guidelines on the performance of a multi-storeyed building in event of a seismic activity. The performance of the building was evaluated on the parameters given in the FEMA guidelines. It was observed that the RC buildings designed as per Indian standard is found to be under-utilized and its overstrength ratio is observed to be of order two, leading to uneconomical design as compared to the building designed according to Performance based methodology for achieving a similar value of the performance level.</p>
APA, Harvard, Vancouver, ISO, and other styles
8

Rehman, Ebad Ur, and Nirmal-Kumar C. Nair. "Resilience based Criticality Analysis for Seismic Performance Assessment of Underground Cables." In TENCON 2021 - 2021 IEEE Region 10 Conference (TENCON). IEEE, 2021. http://dx.doi.org/10.1109/tencon54134.2021.9707349.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kildashti, Kamyar, and Rasoul Mirghaderi. "A case study on the seismic performance assessment of the high-rise setback tower in accordance with TBI guidelines." In International Conference on Performance-based and Life-cycle Structural Engineering. School of Civil Engineering, The University of Queensland, 2015. http://dx.doi.org/10.14264/uql.2016.637.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Li, Mengke, Xiao Lu, and Xinzheng Lu. "Seismic loss assessment of typical RC frame-core tube tall buildings in China and US using the FEMA P-58 procedure." In International Conference on Performance-based and Life-cycle Structural Engineering. School of Civil Engineering, The University of Queensland, 2015. http://dx.doi.org/10.14264/uql.2016.681.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Seismic performance-based assessment"

1

Harris III, John L., and Matthew S. Speicher. Assessment of First Generation Performance-Based Seismic Design Methods for New Steel Buildings, Volume 1: Special Moment Frames. National Institute of Standards and Technology, February 2015. http://dx.doi.org/10.6028/nist.tn.1863-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Harris III, John L., and Matthew S. Speicher. Assessment of First Generation Performance-Based Seismic Design Methods for New Steel Buildings, Volume 3: Eccentrically Braced Frames. National Institute of Standards and Technology, February 2015. http://dx.doi.org/10.6028/nist.tn.1863-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Harris III, John L., and Matthew S. Speicher. Assessment of First Generation Performance-Based Seismic Design Methods for New Steel Buildings, Volume 2: Special Concentrically Braced Frames. National Institute of Standards and Technology, February 2015. http://dx.doi.org/10.6028/nist.tn.1863-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Speicher, Matthew S., and John L. Harris III. Assessment of First Generation Performance-Based Seismic Design Methods for New Steel Buildings, Volume 4: Buckling-Restrained Braced Frames. National Institute of Standards and Technology, June 2021. http://dx.doi.org/10.6028/nist.tn.1863-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mazzoni, Silvia, Nicholas Gregor, Linda Al Atik, Yousef Bozorgnia, David Welch, and Gregory Deierlein. Probabilistic Seismic Hazard Analysis and Selecting and Scaling of Ground-Motion Records (PEER-CEA Project). Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, November 2020. http://dx.doi.org/10.55461/zjdn7385.

Full text
Abstract:
This report is one of a series of reports documenting the methods and findings of a multi-year, multi-disciplinary project coordinated by the Pacific Earthquake Engineering Research Center (PEER) and funded by the California Earthquake Authority (CEA). The overall project is titled “Quantifying the Performance of Retrofit of Cripple Walls and Sill Anchorage in Single-Family Wood-Frame Buildings,” henceforth referred to as the “PEER–CEA Project.” The overall objective of the PEER–CEA Project is to provide scientifically based information (e.g., testing, analysis, and resulting loss models) that measure and assess the effectiveness of seismic retrofit to reduce the risk of damage and associated losses (repair costs) of wood-frame houses with cripple wall and sill anchorage deficiencies as well as retrofitted conditions that address those deficiencies. Tasks that support and inform the loss-modeling effort are: (1) collecting and summarizing existing information and results of previous research on the performance of wood-frame houses; (2) identifying construction features to characterize alternative variants of wood-frame houses; (3) characterizing earthquake hazard and ground motions at representative sites in California; (4) developing cyclic loading protocols and conducting laboratory tests of cripple wall panels, wood-frame wall subassemblies, and sill anchorages to measure and document their response (strength and stiffness) under cyclic loading; and (5) the computer modeling, simulations, and the development of loss models as informed by a workshop with claims adjustors. This report is a product of Working Group 3 (WG3), Task 3.1: Selecting and Scaling Ground-motion records. The objective of Task 3.1 is to provide suites of ground motions to be used by other working groups (WGs), especially Working Group 5: Analytical Modeling (WG5) for Simulation Studies. The ground motions used in the numerical simulations are intended to represent seismic hazard at the building site. The seismic hazard is dependent on the location of the site relative to seismic sources, the characteristics of the seismic sources in the region and the local soil conditions at the site. To achieve a proper representation of hazard across the State of California, ten sites were selected, and a site-specific probabilistic seismic hazard analysis (PSHA) was performed at each of these sites for both a soft soil (Vs30 = 270 m/sec) and a stiff soil (Vs30=760 m/sec). The PSHA used the UCERF3 seismic source model, which represents the latest seismic source model adopted by the USGS [2013] and NGA-West2 ground-motion models. The PSHA was carried out for structural periods ranging from 0.01 to 10 sec. At each site and soil class, the results from the PSHA—hazard curves, hazard deaggregation, and uniform-hazard spectra (UHS)—were extracted for a series of ten return periods, prescribed by WG5 and WG6, ranging from 15.5–2500 years. For each case (site, soil class, and return period), the UHS was used as the target spectrum for selection and modification of a suite of ground motions. Additionally, another set of target spectra based on “Conditional Spectra” (CS), which are more realistic than UHS, was developed [Baker and Lee 2018]. The Conditional Spectra are defined by the median (Conditional Mean Spectrum) and a period-dependent variance. A suite of at least 40 record pairs (horizontal) were selected and modified for each return period and target-spectrum type. Thus, for each ground-motion suite, 40 or more record pairs were selected using the deaggregation of the hazard, resulting in more than 200 record pairs per target-spectrum type at each site. The suites contained more than 40 records in case some were rejected by the modelers due to secondary characteristics; however, none were rejected, and the complete set was used. For the case of UHS as the target spectrum, the selected motions were modified (scaled) such that the average of the median spectrum (RotD50) [Boore 2010] of the ground-motion pairs follow the target spectrum closely within the period range of interest to the analysts. In communications with WG5 researchers, for ground-motion (time histories, or time series) selection and modification, a period range between 0.01–2.0 sec was selected for this specific application for the project. The duration metrics and pulse characteristics of the records were also used in the final selection of ground motions. The damping ratio for the PSHA and ground-motion target spectra was set to 5%, which is standard practice in engineering applications. For the cases where the CS was used as the target spectrum, the ground-motion suites were selected and scaled using a modified version of the conditional spectrum ground-motion selection tool (CS-GMS tool) developed by Baker and Lee [2018]. This tool selects and scales a suite of ground motions to meet both the median and the user-defined variability. This variability is defined by the relationship developed by Baker and Jayaram [2008]. The computation of CS requires a structural period for the conditional model. In collaboration with WG5 researchers, a conditioning period of 0.25 sec was selected as a representative of the fundamental mode of vibration of the buildings of interest in this study. Working Group 5 carried out a sensitivity analysis of using other conditioning periods, and the results and discussion of selection of conditioning period are reported in Section 4 of the WG5 PEER report entitled Technical Background Report for Structural Analysis and Performance Assessment. The WG3.1 report presents a summary of the selected sites, the seismic-source characterization model, and the ground-motion characterization model used in the PSHA, followed by selection and modification of suites of ground motions. The Record Sequence Number (RSN) and the associated scale factors are tabulated in the Appendices of this report, and the actual time-series files can be downloaded from the PEER Ground-motion database Portal (https://ngawest2.berkeley.edu/)(link is external).
APA, Harvard, Vancouver, ISO, and other styles
6

Schiller, Brandon, Tara Hutchinson, and Kelly Cobeen. Cripple Wall Small-Component Test Program: Dry Specimens (PEER-CEA Project). Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, November 2020. http://dx.doi.org/10.55461/vsjs5869.

Full text
Abstract:
This report is one of a series of reports documenting the methods and findings of a multi-year, multi-disciplinary project coordinated by the Pacific Earthquake Engineering Research Center (PEER) and funded by the California Earthquake Authority (CEA). The overall project is titled “Quantifying the Performance of Retrofit of Cripple Walls and Sill Anchorage in Single-Family Wood-Frame Buildings,” henceforth referred to as the “PEER–CEA Project.” The overall objective of the PEER–CEA Project is to provide scientifically based information (e.g., testing, analysis, and resulting loss models) that measures and documents seismic performance of wood-frame houses with cripple wall and sill anchorage deficiencies as well as retrofitted conditions that address those deficiencies. Three primary tasks support the earthquake loss-modeling effort. They are: (1) the development of ground motions and loading protocols that accurately represent the diversity of seismic hazard in California; (2) the execution of a suite of quasi-static cyclic experiments to measure and document the performance of cripple wall and sill anchorage deficiencies to develop and populate loss models; and (3) nonlinear response history analysis on cripple wall-supported buildings and their components. This report is a product of Working Group 4: Testing, whose central focus was to experimentally investigate the seismic performance of retrofitted and existing cripple walls. This present report focuses on non-stucco or “dry” exterior finishes. Paralleled by a large-component test program conducted at the University of California, Berkeley (UC Berkeley) [Cobeen et al. 2020], the present report involves two of multiple phases of small-component tests conducted at University of California San Diego (UC San Diego). Details representative of era-specific construction–specifically the most vulnerable pre-1960s construction–are of predominant focus in the present effort. Parameters examined are cripple wall height, finish style, gravity load, boundary conditions, anchorage, and deterioration. This report addresses all eight specimens in the second phase of testing and three of the six specimens in the fourth phase of testing. Although conducted in different testing phases, their results are combined here to co-locate observations regarding the behavior of all dry finished specimens. Experiments involved imposition of combined vertical loading and quasi-static reversed cyclic lateral load onto eleven cripple walls. Each specimen was 12 ft in length and 2-ft or 6-ft in height. All specimens in this report were constructed with the same boundary conditions on the top, bottom, and corners of the walls. Parameters addressed in this report include: dry exterior finish type (shiplap horizontal lumber siding, shiplap horizontal lumber siding over diagonal lumber sheathing, and T1-11 wood structural panels), cripple wall height, vertical load, and the retrofitted condition. Details of the test specimens, testing protocol (including instrumentation), and measured as well as physical observations are summarized. Results from these experiments are intended to support advancement of numerical modeling tools, which ultimately will inform seismic loss models capable of quantifying the reduction of loss achieved by applying state-of-practice retrofit methods as identified in FEMA P-1100 Vulnerability-Base Seismic Assessment and Retrofit of One- and Two-Family Dwellings.
APA, Harvard, Vancouver, ISO, and other styles
7

Zareian, Farzin, and Joel Lanning. Development of Testing Protocol for Cripple Wall Components (PEER-CEA Project). Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, November 2020. http://dx.doi.org/10.55461/olpv6741.

Full text
Abstract:
This report is one of a series of reports documenting the methods and findings of a multi-year, multi-disciplinary project coordinated by the Pacific Earthquake Engineering Research Center (PEER) and funded by the California Earthquake Authority (CEA). The overall project is titled “Quantifying the Performance of Retrofit of Cripple Walls and Sill Anchorage in Single-Family Wood-Frame Buildings,” henceforth referred to as the “PEER–CEA Project.” The overall objective of the PEER–CEA project is to provide scientifically-based information (e.g., testing, analysis, and resulting loss models) that measure and assess the effectiveness of seismic retrofit to reduce the risk of damage and associated losses (repair costs) of wood-frame houses with cripple wall and sill anchorage deficiencies as well as retrofitted conditions that address those deficiencies. Tasks that support and inform the loss-modeling effort are: (1) collecting and summarizing existing information and results of previous research on the performance of wood-frame houses; (2) identifying construction features to characterize alternative variants of wood-frame houses; (3) characterizing earthquake hazard and ground motions at representative sites in California; (4) developing cyclic loading protocols and conducting laboratory tests of cripple wall panels, wood-frame wall subassemblies, and sill anchorages to measure and document their response (strength and stiffness) under cyclic loading; and (5) the computer modeling, simulations, and the development of loss models as informed by a workshop with claims adjustors. This report is a product of Working Group 3.2 and focuses on Loading Protocol Development for Component Testing. It presents the background, development process, and recommendations for a quasi-static loading protocol to be used for cyclic testing of cripple wall components of wood-frame structures. The recommended loading protocol was developed for component testing to support the development of experimentally informed analytical models for cripple wall components. These analytical models are utilized for the performance-based assessment of wood-frame structures in the context of the PEER–CEA Project. The recommended loading protocol was developed using nonlinear dynamic analysis of representative multi-degree-of-freedom (MDOF) systems subjected to sets of single-component ground motions that varied in location and hazard level. Cumulative damage of the cripple wall components of the MDOF systems was investigated. The result is a testing protocol that captures the loading history that a cripple wall may experience in various seismic regions in California.
APA, Harvard, Vancouver, ISO, and other styles
8

Schiller, Brandon, Tara Hutchinson, and Kelly Cobeen. Cripple Wall Small-Component Test Program: Wet Specimens II (PEER-CEA Project). Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, November 2020. http://dx.doi.org/10.55461/ldbn4070.

Full text
Abstract:
This report is one of a series of reports documenting the methods and findings of a multi-year, multi-disciplinary project coordinated by the Pacific Earthquake Engineering Research Center (PEER and funded by the California Earthquake Authority (CEA). The overall project is titled “Quantifying the Performance of Retrofit of Cripple Walls and Sill Anchorage in Single-Family Wood-Frame Buildings,” henceforth referred to as the “PEER–CEA Project.” The overall objective of the PEER–CEA Project is to provide scientifically based information (e.g., testing, analysis, and resulting loss models) that measure and assess the effectiveness of seismic retrofit to reduce the risk of damage and associated losses (repair costs) of wood-frame houses with cripple wall and sill anchorage deficiencies as well as retrofitted conditions that address those deficiencies. Tasks that support and inform the loss-modeling effort are: (1) collecting and summarizing existing information and results of previous research on the performance of wood-frame houses; (2) identifying construction features to characterize alternative variants of wood-frame houses; (3) characterizing earthquake hazard and ground motions at representative sites in California; (4) developing cyclic loading protocols and conducting laboratory tests of cripple wall panels, wood-frame wall subassemblies, and sill anchorages to measure and document their response (strength and stiffness) under cyclic loading; and (5) the computer modeling, simulations, and the development of loss models as informed by a workshop with claims adjustors. This report is a product of Working Group 4 (WG4): Testing, whose central focus was to experimentally investigate the seismic performance of retrofitted and existing cripple walls. This report focuses stucco or “wet” exterior finishes. Paralleled by a large-component test program conducted at the University of California, Berkeley (UC Berkeley) [Cobeen et al. 2020], the present study involves two of multiple phases of small-component tests conducted at the University of California San Diego (UC San Diego). Details representative of era-specific construction, specifically the most vulnerable pre-1960s construction, are of predominant focus in the present effort. Parameters examined are cripple wall height, finish style, gravity load, boundary conditions, anchorage, and deterioration. This report addresses the third phase of testing, which consisted of eight specimens, as well as half of the fourth phase of testing, which consisted of six specimens where three will be discussed. Although conducted in different phases, their results are combined here to co-locate observations regarding the behavior of the second phase the wet (stucco) finished specimens. The results of first phase of wet specimen tests were presented in Schiller et al. [2020(a)]. Experiments involved imposition of combined vertical loading and quasi-static reversed cyclic lateral load onto ten cripple walls of 12 ft long and 2 or 6 ft high. One cripple wall was tested with a monotonic loading protocol. All specimens in this report were constructed with the same boundary conditions on the top and corners of the walls as well as being tested with the same vertical load. Parameters addressed in this report include: wet exterior finishes (stucco over framing, stucco over horizontal lumber sheathing, and stucco over diagonal lumber sheathing), cripple wall height, loading protocol, anchorage condition, boundary condition at the bottom of the walls, and the retrofitted condition. Details of the test specimens, testing protocol, including instrumentation; and measured as well as physical observations are summarized in this report. Companion reports present phases of the tests considering, amongst other variables, impacts of various boundary conditions, stucco (wet) and non-stucco (dry) finishes, vertical load, cripple wall height, and anchorage condition. Results from these experiments are intended to support advancement of numerical modeling tools, which ultimately will inform seismic loss models capable of quantifying the reduction of loss achieved by applying state-of-practice retrofit methods as identified in FEMA P-1100,Vulnerability-Base Seismic Assessment and Retrofit of One- and Two-Family Dwellings.
APA, Harvard, Vancouver, ISO, and other styles
9

Schiller, Brandon, Tara Hutchinson, and Kelly Cobeen. Cripple Wall Small-Component Test Program: Wet Specimens I (PEER-CEA Project). Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, November 2020. http://dx.doi.org/10.55461/dqhf2112.

Full text
Abstract:
This report is one of a series of reports documenting the methods and findings of a multi-year, multi-disciplinary project coordinated by the Pacific Earthquake Engineering Research Center (PEER and funded by the California Earthquake Authority (CEA). The overall project is titled “Quantifying the Performance of Retrofit of Cripple Walls and Sill Anchorage in Single-Family Wood-Frame Buildings,” henceforth referred to as the “PEER–CEA Project.” The overall objective of the PEER–CEA Project is to provide scientifically based information (e.g., testing, analysis, and resulting loss models) that measure and assess the effectiveness of seismic retrofit to reduce the risk of damage and associated losses (repair costs) of wood-frame houses with cripple wall and sill anchorage deficiencies as well as retrofitted conditions that address those deficiencies. Tasks that support and inform the loss-modeling effort are: (1) collecting and summarizing existing information and results of previous research on the performance of wood-frame houses; (2) identifying construction features to characterize alternative variants of wood-frame houses; (3) characterizing earthquake hazard and ground motions at representative sites in California; (4) developing cyclic loading protocols and conducting laboratory tests of cripple wall panels, wood-frame wall subassemblies, and sill anchorages to measure and document their response (strength and stiffness) under cyclic loading; and (5) the computer modeling, simulations, and the development of loss models as informed by a workshop with claims adjustors. This report is a product of Working Group 4: Testing and focuses on the first phase of an experimental investigation to study the seismic performance of retrofitted and existing cripple walls with sill anchorage. Paralleled by a large-component test program conducted at the University of California [Cobeen et al. 2020], the present study involves the first of multiple phases of small-component tests conducted at the UC San Diego. Details representative of era-specific construction, specifically the most vulnerable pre-1960s construction, are of predominant focus in the present effort. Parameters examined are cripple wall height, finish materials, gravity load, boundary conditions, anchorage, and deterioration. This report addresses the first phase of testing, which consisted of six specimens. Phase 1 including quasi-static reversed cyclic lateral load testing of six 12-ft-long, 2-ft high cripple walls. All specimens in this phase were finished on their exterior with stucco over horizontal sheathing (referred to as a “wet” finish), a finish noted to be common of dwellings built in California before 1945. Parameters addressed in this first phase include: boundary conditions on the top, bottom, and corners of the walls, attachment of the sill to the foundation, and the retrofitted condition. Details of the test specimens, testing protocol, instrumentation; and measured as well as physical observations are summarized in this report. In addition, this report discusses the rationale and scope of subsequent small-component test phases. Companion reports present these test phases considering, amongst other variables, the impacts of dry finishes and cripple wall height (Phases 2–4). Results from these experiments are intended to provide an experimental basis to support numerical modeling used to develop loss models, which are intended to quantify the reduction of loss achieved by applying state-of-practice retrofit methods as identified in FEMA P-1100, Vulnerability-Base Seismic Assessment and Retrofit of One- and Two-Family Dwellings.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography