Academic literature on the topic 'Seismic forces'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Seismic forces.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Seismic forces"
Olmos, Bertha A., and Jose Manuel Roesset. "Seismic forces on piles." Structure and Infrastructure Engineering 9, no. 12 (December 2013): 1283–98. http://dx.doi.org/10.1080/15732479.2012.688976.
Full textMcRae, Hamish. "Seismic forces of global change." Strategy & Leadership 24, no. 6 (March 1996): 6–11. http://dx.doi.org/10.1108/eb054569.
Full textBolotbek, T., K. M. Mirlanov, A. Y. Telin, E. S. Chukanov, and A. T. Talgatov. "SPECTRAL METHODS FOR DETERMINING THE SEISMIC FORCES OF BUILDINGS." Herald of KSUCTA, №2, Part 1, 2022, no. 2-1-2022 (April 30, 2022): 426–34. http://dx.doi.org/10.35803/1694-5298.2022.2.426-434.
Full textCheng, Yuan Bing, Hong Wei Du, Shi Yun Zhang, and Liu Zhong Xu. "Seismic Design of R.C. Stairs in Masonry Structure." Advanced Materials Research 163-167 (December 2010): 4133–37. http://dx.doi.org/10.4028/www.scientific.net/amr.163-167.4133.
Full textJaiswal, O. R., Durgesh C. Rai, and Sudhir K. Jain. "Review of Seismic Codes on Liquid-Containing Tanks." Earthquake Spectra 23, no. 1 (February 2007): 239–60. http://dx.doi.org/10.1193/1.2428341.
Full textAkhtar, Mohsin Aakib Shamim. "Dynamic Seismic Analysis of Multi Storey Buildings in Seismic Zone V." International Journal for Research in Applied Science and Engineering Technology 10, no. 2 (February 28, 2022): 108–15. http://dx.doi.org/10.22214/ijraset.2022.40154.
Full textChin, C. Y., Claudia Kayser, and Michael Pender. "Seismic earth forces against embedded retaining walls." Bulletin of the New Zealand Society for Earthquake Engineering 49, no. 2 (June 30, 2016): 200–210. http://dx.doi.org/10.5459/bnzsee.49.2.200-210.
Full textBai, Bing, Ze Yu Wu, and Xiao Shan Deng. "Longitudinal Seismic Forces of Long-Span Bridge." Advanced Materials Research 255-260 (May 2011): 1134–37. http://dx.doi.org/10.4028/www.scientific.net/amr.255-260.1134.
Full textChernov, Yury T., and Jaafar Qbaily. "Evaluation of seismic forces under modified structural schemes in the process of vibrations." Structural Mechanics of Engineering Constructions and Buildings 17, no. 4 (December 15, 2021): 391–403. http://dx.doi.org/10.22363/1815-5235-2021-17-4-391-403.
Full textRezaeian, Hooman, George Charles Clifton, and James B. P. Lim. "Compatibility Forces in Floor Diaphragms of Steel Braced Multi-Story Buildings." Key Engineering Materials 763 (February 2018): 310–19. http://dx.doi.org/10.4028/www.scientific.net/kem.763.310.
Full textDissertations / Theses on the topic "Seismic forces"
Leaf, Timothy D. "Investigation of the vertical distribution of seismic forces in the static force and equivalent lateral force procedures for seismic design of multistory buildings /." Available to subscribers only, 2006. http://proquest.umi.com/pqdweb?did=1136093311&sid=1&Fmt=2&clientId=1509&RQT=309&VName=PQD.
Full textNicknam, Ahmad. "Non-linear analysis of reinforced concrete structures subjected to transient forces." Thesis, Heriot-Watt University, 1994. http://hdl.handle.net/10399/1432.
Full textGardiner, Debra Rachel. "Design Recommendations and Methods for Reinforced Concrete Floor Diaphragms Subjected to Seismic Forces." Thesis, University of Canterbury. Department of Civil and Natural Resources Engineering, 2011. http://hdl.handle.net/10092/6993.
Full textChiewanichakorn, Methee. "Stability of thin precast concrete wall panels subjected to gravity and seismic forces." Thesis, University of Canterbury. Civil Engineering, 1999. http://hdl.handle.net/10092/10450.
Full textHarrison, Stella, and Siri Nöjd. "Influence of Foundation Modelling on the Seismic Response of a Concrete Dam." Thesis, KTH, Betongbyggnad, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-300448.
Full textDet är nödvändigt att säkerställa dammars säkerhet mot jordbävningar i design-processen eftersom ett dammbrott kan få katastrofala konsekvenser. Traditionellt används förenklade beräkningar där dammens strukturella respons beräknas med en berggrund där bergets massa är försummad. Den senaste tiden har flera nya analysmetoder tagits fram, som tar hänsyn till bergets massa och är modellerade med absorberande randvillkor och free-field forces. De nyare metoderna förväntas modellera de seismiska krafterna mer exakt för att optimera designen och minimera onödiga reparationer. Syftet med projektet var att undersöka inverkan från olika metoders sätt att beakta berggrunden vid seismiska analyser. Det utfördes genom att jämföra den etablerade masslösa metoden med två metoder som beaktar bergmassan och free-fieldforces; den analytiska metoden av Song et al. (2018) och Direct FE-metoden av Løkke (2018). Både effektiviteten i den seismiska vågutbredningssimuleringen och dammens strukturella respons var av intresse. Modelleringsmetoderna jämfördes genom att studera punkter på både dammen och berget. När enbart berggrunden studerades med den masslösa metoden så erhölls, som förväntat, god överenstämmelse med den ideala teoretiska hastigheten på bergsytan. De analytiska och Direct FE metoderna skiljde sig marginellt från det teoretiska värdet men gav fortfarande en korrekt hastighet på bergsytan. Vid analys av modeller med dam och reservoar inkluderade, gav metoderna som använde free-field forces ekvivalenta och realistiska strukturella responser. Den masslösa metoden däremot, överskattade kraftigt dammens respons och ansågs därför inte modelleradet verkliga beteendet hos dammen på ett korrekt sätt, trots modifieringar med ökad materialdämpning i betongen. Ett annat syfte var att analysera påverkan av modellering i 2D kontra 3D för att bestämma dammens dynamiska egenskaper, som egenfrekvenser och egenmoder. Dessa frekvensanalyser gjordes med hjälp av modeller som både beaktade och försummade bergets massa, och jämfördes med experimentella data. Den masslösa 3D-modellen visade sig vara den mest effektiva modelleringsmetoden för att erhållade dynamiska egenskaperna hos dammen. Det eftersom en 3D-modell var nödvändig för att studera hela dammens beteende och hantering av utdata var förenklad vid användning av den masslösa modellen.
Niraula, Manjil. "BEHAVIOR AND DESIGN OF THE CRITICAL MEMBER IN STRUCTURES WITH IN-PLANE DISCONTINUOUS BRACED FRAMES." OpenSIUC, 2020. https://opensiuc.lib.siu.edu/theses/2751.
Full textMichel, Kenan. "Distribution of Lateral Forces on Reinforced Masonry Bracing Elements Considering Inelastic Material Behavior - Deformation-Based Matrix Method -." Technische Universität Dresden, 2021. https://tud.qucosa.de/id/qucosa%3A75156.
Full textDiaz, Calderon Alvaro Emilio, and Ventocilla Brigitte Carolina Meniz. "Evaluación estructural de reservorios apoyados de concreto armado en Lima Metropolitana considerando la norma ACI 350-06 y las normativas peruanas." Bachelor's thesis, Universidad Peruana de Ciencias Aplicadas (UPC), 2019. http://hdl.handle.net/10757/626005.
Full textIn the present thesis has been carried out the structural assessment of five round ground concrete tanks, built between 1977 and 1997, and located in high seismic risk areas in Lima Metropolitana in moderately rigid soils, with the objective of demonstrating if these structures still preserve an adequate structural design base on the current standards and consequently, if they will be able to withstand a severe seismic event and, hence, continue with their service. In order to model and determine the response of the tanks, the Housner’s rigid equivalent model was used, obtaining this way the impulsive and convective masses, which were modeled in the software SAP2000 with the ACI 350.3-06 standard and the E.030 Peruvian standard. Regarding on the determination of the resistant forces, in order to carry out the corresponding structural evaluation, the Peruvian standard “Concreto Armado E.060” was utilized. With regard to the results of the verifications carried out, it was observed that the reservoirs under study do not maintain an adequate structural design in terms of the current seismic solicitations. These deficiencies are reflected in horizontal reinforcement deficit by shear force on the walls, minimum amount of vertical rebar by shear on the walls, reinforcement in the base of the wall by tangential bending moment, rebar required in the beam by radial tensile force, and rebar in the end of the dome by radial traction; so these structures, in the presence of a severe seismic event, are exposed to structural failures.
Tesis
Yzema, Fritz Alemagne. "États limites ultimes de cadres en acier isolés sismiquement avec des amortisseurs élastomères et des contreventements en chevrons." Mémoire, Université de Sherbrooke, 2014. http://savoirs.usherbrooke.ca/handle/11143/5347.
Full textManafpour, Alireza. "Force and displacement-based seismic design of RC buildings." Thesis, Imperial College London, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.398834.
Full textBooks on the topic "Seismic forces"
Seismic and wind forces: Structural design examples. Country Club Hills, IL: International Code Council, 2012.
Find full textAlan, Williams. Seismic and wind forces: Structural design examples. Country Club Hills, Ill: International Code Council, 2003.
Find full textAlan, Williams. Seismic and wind forces: Structural design examples. 3rd ed. Country Club Hills, Ill: International Code Council, 2007.
Find full textEmerick, Shannon Anderson. Wood platform construction and its superior resistance to seismic forces. Pullman, Wash: International Marketing Program for Agricultural Commodities & Trade, College of Agriculture & Home Economics, Washington State University, 1992.
Find full textV, Leyendecker Edgar, and Geological Survey (U.S.), eds. USGS Spectral response maps and their relationship with seismic design forces in building codes. [Denver, CO]: U.S. Geological Survey, 1995.
Find full text1953-, Baradar Majid, ed. Seismic design of building structures: A professional's introduction to earthquake forces and design details. 8th ed. Belmont, CA: Professional Publications, 2001.
Find full textM, McMullin Kurt, ed. Seismic design of building structures: A professional's introduction to earthquake forces and design details. 9th ed. Belmont, CA: Professional Publications, 2008.
Find full textLindeburg, Michael R. Seismic design of building structures: A professional's introduction to earthquake forces and design details. Belmont, CA: Professional Publications, 2011.
Find full textSeismic design of building structures: A professional's introduction to earthquake forces and design details. 6th ed. Belmont, CA: Professional Publications, 1994.
Find full textR, Lindeburg Michael, ed. Seismic design of building structures: A professional's introduction to earthquake forces and design details. 5th ed. Belmont, CA: Professional Publications, 1990.
Find full textBook chapters on the topic "Seismic forces"
Charney, Finley A. "Diaphragm Forces." In Seismic Loads, 181–84. Reston, VA: American Society of Civil Engineers, 2015. http://dx.doi.org/10.1061/9780784413524.ch22.
Full textDaniel, C., G. Hemalatha, Ajita Magdalene, D. Tensing, and S. Sundar Manoharan. "Magnetorheological Damper for Performance Enhancement Against Seismic Forces." In Facing the Challenges in Structural Engineering, 104–17. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-61914-9_9.
Full textVarga, Péter, and Erik Grafarend. "Influence of Tidal Forces on the Triggering of Seismic Events." In Pageoph Topical Volumes, 55–63. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-96277-1_6.
Full textJablonski, A. M., and J. H. Rainer. "Effect of seismic input on hydrodynamic forces acting on gravity dams." In Earthquake Engineering, edited by Shamim A. Sheikh and S. M. Uzumeri, 157–64. Toronto: University of Toronto Press, 1991. http://dx.doi.org/10.3138/9781487583217-021.
Full textVyas, Dhananjay, Jithin P. Zachariah, Alla Kranthi Kumar, and Ravi S. Jakka. "Role of Hydrodynamic Forces on the Seismic Response of a Dam." In Lecture Notes in Civil Engineering, 423–35. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1579-8_33.
Full textFroio, D., A. U. Bariletti, M. Eusebio, R. Previtali, and E. Rizzi. "Direct Method for Dynamic Soil-Structure Interaction Based on Seismic Inertia Forces." In Lecture Notes in Civil Engineering, 807–20. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-51085-5_45.
Full textAhmad, Faisal, Nikhil A. Jambhale, and Tejas D. Doshi. "Investigate the Effect of Isolation System for RC Structure Under Seismic Forces." In Lecture Notes in Civil Engineering, 455–71. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-3371-4_40.
Full textKakatkar, Varsha, Nikhil Jambhale, Veerendrakumar C. Khed, and Shivanand Mendigeri. "Comparative Study on Position of Floating Column for RCC Multistorey Building Subjected to Seismic Forces." In Lecture Notes in Civil Engineering, 219–30. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-12011-4_17.
Full textPanchal, Sanish, Kushang Prajapati, and Suhasini M. Kulkarni. "Behavior of Single Pylon of Air Cooled Condenser Support Structure Under Seismic and Wind Forces." In Engineering Vibration, Communication and Information Processing, 87–97. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1642-5_8.
Full textKaloji, Amit A., Nikhil A. Jambhale, and Tejas D. Doshi. "Investigate the Effect of Floating Column and Composite Transfer Beam Under the Influence of Seismic Forces." In Lecture Notes in Civil Engineering, 403–18. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-3371-4_36.
Full textConference papers on the topic "Seismic forces"
Kai, Satoru, and Akihito Otani. "Study on Dynamic Alternating Load on Piping Seismic Response." In ASME 2015 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/pvp2015-45287.
Full textKastrati, Arbëresha. "Yu81 vs Eurocode in calculation of seismic forces." In University for Business and Technology International Conference. Pristina, Kosovo: University for Business and Technology, 2018. http://dx.doi.org/10.33107/ubt-ic.2018.77.
Full textZha, Jin-xing. "Lateral Spreading Forces on Bridge Piles." In Workshop on Seismic Performance and Simulation of Pile Foundations in Liquefied and Laterally Spreading Ground. Reston, VA: American Society of Civil Engineers, 2005. http://dx.doi.org/10.1061/40822(184)7.
Full textOtani, Akihito, and Satoru Kai. "Study on Dynamic Response by Alternating and Static Load." In ASME 2016 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/pvp2016-63363.
Full textKornfield, Laurence, and Patrick Buscovich. "Use of Garage Doors to Resist Lateral Forces." In ATC and SEI Conference on Improving the Seismic Performance of Existing Buildings and Other Structures. Reston, VA: American Society of Civil Engineers, 2009. http://dx.doi.org/10.1061/41084(364)111.
Full textLin, Yongliang, Mengxi Zhang, and Xinxing Li. "Evaluation of Seismic Displacement of Quay Walls for the Passive Case Under Earthquake and Tsunami." In ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2010. http://dx.doi.org/10.1115/omae2010-20198.
Full textWei, Yu. "Loess Slope Stability Analysis under the Action of Seismic Forces." In 2015 8th International Conference on Intelligent Computation Technology and Automation (ICICTA). IEEE, 2015. http://dx.doi.org/10.1109/icicta.2015.135.
Full textMartin, Felix. "Is Roof Eave Blocking Required to Transmit Wind/Seismic Forces?" In Structures Congress 2011. Reston, VA: American Society of Civil Engineers, 2011. http://dx.doi.org/10.1061/41171(401)54.
Full textAbdujabarov, Abdukhamid, Mashkhurbek Mekhmonov, and Farkhod Eshonov. "Design for reducing seismic and vibrodynamic forces on the shore support." In 2021 ASIA-PACIFIC CONFERENCE ON APPLIED MATHEMATICS AND STATISTICS. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0089531.
Full textMin-Su Park, Youn-Ju Jeong, and Young-Jun You. "Numerical analysis of an offshore platform with partial porous cylinders due to wave excitation forces and seismic forces." In OCEANS 2012. IEEE, 2012. http://dx.doi.org/10.1109/oceans.2012.6405135.
Full textReports on the topic "Seismic forces"
Gunay, Selim, Fan Hu, Khalid Mosalam, Arpit Nema, Jose Restrepo, Adam Zsarnoczay, and Jack Baker. Blind Prediction of Shaking Table Tests of a New Bridge Bent Design. Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, November 2020. http://dx.doi.org/10.55461/svks9397.
Full textMichel, Kenan. Performance Based Seismic Design of Lateral Force Resisting System. University of California, San Diego, October 2020. http://dx.doi.org/10.25368/2020.126.
Full textDecato, Stephen N., Donald G. Albert, Frank E. Perron, Carbee Jr., and David L. Short-Range Seismic and Acoustic Signature Measurements Through Forest. Fort Belvoir, VA: Defense Technical Information Center, May 2005. http://dx.doi.org/10.21236/ada434934.
Full textSweeney, J., and P. Harben. OSI Passive Seismic Experiment at the Former Nevada Test Site. Office of Scientific and Technical Information (OSTI), November 2010. http://dx.doi.org/10.2172/1018759.
Full textHobbs, T. E., J. M. Journeay, A. S. Rao, L. Martins, P. LeSueur, M. Kolaj, M. Simionato, et al. Scientific basis of Canada's first public national seismic risk model. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/330927.
Full textKafka, A. L. Database Relations for Seismic Phases Reported by Stations in the Former Soviet Union. Fort Belvoir, VA: Defense Technical Information Center, September 1993. http://dx.doi.org/10.21236/ada274832.
Full textMadsen, Robert L., Thomas A. Castle, and Benjamin W. Schafer. Seismic Design of Cold-Formed Steel Lateral Load-Resisting Systems: A Guide for Practicing Engineers. National Institute of Standards and Technology, August 2016. http://dx.doi.org/10.6028/nist.gcr.16-917-38.
Full textSpeicher, Matthew S., Ivana Olivares, and Benjamin W. Schafer. Seismic Evaluation of a 2-Story Cold-Formed Steel Framed Building using ASCE 41-17. National Institute of Standards and Technology, September 2020. http://dx.doi.org/10.6028/nist.tn.2116.
Full textWu, Yingjie, Selim Gunay, and Khalid Mosalam. Hybrid Simulations for the Seismic Evaluation of Resilient Highway Bridge Systems. Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, November 2020. http://dx.doi.org/10.55461/ytgv8834.
Full textWozniakowska, P., D. W. Eaton, C. Deblonde, A. Mort, and O. H. Ardakani. Identification of regional structural corridors in the Montney play using trend surface analysis combined with geophysical imaging, British Columbia and Alberta. Natural Resources Canada/CMSS/Information Management, 2021. http://dx.doi.org/10.4095/328850.
Full text