Academic literature on the topic 'Seifert manifold'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Seifert manifold.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Seifert manifold"
Ikeda, Toru. "Essential Surfaces in Graph Link Exteriors." Canadian Mathematical Bulletin 52, no. 2 (June 1, 2009): 257–66. http://dx.doi.org/10.4153/cmb-2009-028-9.
Full textSilver, Daniel S. "Examples of 3-knots with no minimal Seifert manifolds." Mathematical Proceedings of the Cambridge Philosophical Society 110, no. 3 (November 1991): 417–20. http://dx.doi.org/10.1017/s0305004100070481.
Full textCOFFEY, JAMES. "THE UNIVERSAL COVER OF 3-MANIFOLDS BUILT FROM INJECTIVE HANDLEBODIES IS ℝ3." Journal of Knot Theory and Its Ramifications 17, no. 10 (October 2008): 1257–80. http://dx.doi.org/10.1142/s0218216508006579.
Full textNISHI, HARUKO. "SU(n)-CHERN–SIMONS INVARIANTS OF SEIFERT FIBERED 3-MANIFOLDS." International Journal of Mathematics 09, no. 03 (May 1998): 295–330. http://dx.doi.org/10.1142/s0129167x98000130.
Full textSilver, Daniel S. "On the existence of minimal Seifert manifolds." Mathematical Proceedings of the Cambridge Philosophical Society 114, no. 1 (July 1993): 103–9. http://dx.doi.org/10.1017/s0305004100071449.
Full textBRITTENHAM, MARK. "ESSENTIAL LAMINATIONS, EXCEPTIONAL SEIFERT-FIBERED SPACES, AND DEHN FILLING." Journal of Knot Theory and Its Ramifications 07, no. 04 (June 1998): 425–32. http://dx.doi.org/10.1142/s021821659800022x.
Full textHeil, Wolfgang, and Wilbur Whitten. "The Seifert Fiber Space Conjecture and Torus Theorem for Nonorientable 3-Manifolds." Canadian Mathematical Bulletin 37, no. 4 (December 1, 1994): 482–89. http://dx.doi.org/10.4153/cmb-1994-070-7.
Full textMillett, Kenneth, and Dale Rolfsen. "A theorem of Borsuk—Ulam type for Seifert-fibred 3-manifolds." Mathematical Proceedings of the Cambridge Philosophical Society 100, no. 3 (November 1986): 523–32. http://dx.doi.org/10.1017/s0305004100066251.
Full textPeet, Benjamin. "Finite, Fiber- and Orientation-Preserving Group Actions on Totally Orientable Seifert Manifolds." Annales Mathematicae Silesianae 33, no. 1 (September 1, 2019): 235–65. http://dx.doi.org/10.2478/amsil-2019-0007.
Full textKropholler, P. H. "A note on centrality in 3-manifold groups." Mathematical Proceedings of the Cambridge Philosophical Society 107, no. 2 (March 1990): 261–66. http://dx.doi.org/10.1017/s0305004100068523.
Full textDissertations / Theses on the topic "Seifert manifold"
Kemp, M. C. "Geometric Seifert 4-manifolds with aspherical bases." Thesis, The University of Sydney, 2005. http://hdl.handle.net/2123/702.
Full textKemp, M. C. "Geometric Seifert 4-manifolds with aspherical bases." University of Sydney. Mathematics, 2005. http://hdl.handle.net/2123/702.
Full textMaillot, Sylvain. "Quasi-isométries, groupes de surfaces et orbifolds fibrés de Seifert." Phd thesis, Université Paul Sabatier - Toulouse III, 2000. http://tel.archives-ouvertes.fr/tel-00001342.
Full textFalcioni, Valentina. "Complexity of Seifert manifolds." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/17054/.
Full textNasatyr, Emile Ben. "Seifert manifolds and gauge theory." Thesis, University of Oxford, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.303603.
Full textGartland, Christopher John. "Cycle-Free Twisted Face-Pairing 3-Manifolds." Thesis, Virginia Tech, 2014. http://hdl.handle.net/10919/48188.
Full textMaster of Science
Medetogullari, Elif. "On The Tight Contact Structures On Seifert Fibred 3." Phd thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/12612605/index.pdf.
Full textmanifold M over S 2 with 4 singular fibers. In the case e0(M) ·
&minus
4 we have a complete classification. In the case e0(M) ¸
0 we have obtained upper and lower bounds for the number of Stein fillable contact structures on M.
Caillat-Gibert, Shanti. "Problème d'existence de feuilletage tendu dans les 3- variétés." Thesis, Aix-Marseille 1, 2011. http://www.theses.fr/2011AIX10083/document.
Full textIn this thesis, we study codimension 1, C2-foliations, in compact, connected and orientable 3-manifolds. It is well known that we can explicitly construct on such manifolds a foliation admitting Reeb components. Then comes the crucial problem of existence of taut foliation (still opened).Recall that a taut foliation does not admit a Reeb component, but the converse is false. The first step of this work focuses on the difference between a non-taut and Reebless foliation, and a taut foliation. We will understand that the transverse orientation of the torus leaves plays a key-role, by giving a necessary and sufficient condition on the transverse orientation, for a foliation to be taut. For this, we will study the geometric processes of turbulization and spiraling with generalizations, and we see that they always appear in a neighborhood of a torus leaf.The second step of this work is concentrated on the problem of existence of taut foliations. Recall that since the work of D. Gabai [1983], we know that if a 3-manifold has non-trivial homology, then it admits a taut foliation. This problem is still opened among homology spheres and we focus here on Seifert fibered ones. We show that all Seifert fibered integral homology spheres (but S3 and Poincar ́e homology sphere) admit a taut foliation. Nevertheless, among Seifert fibered rational (and non-integral) homology spheres, there exist infinitely many which admit a taut foliation and infinitely many which do not admit one
Gutierrez, Quispe Robert Gerson. "Aspectos de la teoría de nudos." Bachelor's thesis, 2019. http://hdl.handle.net/11086/14649.
Full textLos nudos, tal cual aparecen en nuestra vida cotidiana, son un objeto de estudio en la Matemática. La Teoría de Nudos es la rama de la Matemática que se encarga de su estudio. Un problema central es el de poder decir si dos nudos dados son equivalentes o no. Los matemáticos, en la búsqueda de responder esta pregunta, entre otras, han desarrollado diversas técnicas y herramientas en esta área de estudio. En este trabajo se hace un recorrido en el estudio de la Teoría de Nudos, comenzando con las definiciones más elementales, hasta llegar a estudiar herramientas sofisticadas como el polinomio de Alexander, el grupo de un nudo y las matrices de Seifert, entre otros. En los dos últimos capítulos se investigan los dos temas siguientes: nudos virtuales y presentaciones de Wirtinger. En este último se hace un aporte, dando una nueva familia infinita de presentaciones de Wirtinger no geométricas.
The knots we usually see in our lifes are studied in mathematics in the branch called Knot Theory. A main problem is to decide whether two knots are equivalent or not. Many tools and techniques have been developed by mathematicians in order to answer this and other related questions. In this work, we study Knot Theory from the beginning, with definitions and elementary notions, until some sophisticated concepts and tools like the Alexander polynomial, the knot group and Seifert matrices, among others. In the last two chapters, we work on the following two particular subjects: virtual knots and Wirtinger presentations. In this last one, we made a small contribution by presenting a new infinite family of Wirtinger presentations which are not geometric.
Fil: Gutierrez Quispe. Robert Gerson. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.
Pei, Du. "3d-3d Correspondence for Seifert Manifolds." Thesis, 2016. https://thesis.library.caltech.edu/9813/15/Pei_Du_2016.pdf.
Full textIn this dissertation, we investigate the 3d-3d correspondence for Seifert manifolds. This correspondence, originating from string theory and M-theory, relates the dynamics of three-dimensional quantum field theories with the geometry of three-manifolds.
We first start in Chapter II with the simplest cases and demonstrate the extremely rich interplay between geometry and physics even when the manifold is just a direct product. In this particular case, by examining the problem from various vantage points, we generalize the celebrated relations between 1) the Verlinde algebra, 2) quantum cohomology of the Grassmannian, 3) quantization of Chern-Simons theory and 4) the index theory of the moduli space of flat connections to a completely new set of relations between 1) the "equivariant Verlinde algebra" for a complex group, 2) the equivariant quantum K-theory of the vortex moduli space, 3) quantization of complex Chern-Simons theory and 4) the equivariant index theory of the moduli space of Higgs bundles.
In Chapter III we move one step up in complexity by looking at the next simplest three-manifolds---lens spaces. We test the 3d-3d correspondence for theories that are labeled by lens spaces, reaching a full agreement between the index of the 3d N=2 "lens space theory" and the partition function of complex Chern-Simons theory on the lens space.
The two different types of manifolds studied in the previous two chapters also have interesting interactions. We show in Chapter IV the equivalence between two seemingly distinct 2d TQFTs: one comes from the "Coulomb branch index" of the class S theory on a lens space, the other is the "equivariant Verlinde formula". We check this relation explicitly for SU(2) and demonstrate that the SU(N) equivariant Verlinde algebra can be derived using field theory via (generalized) Argyres-Seiberg dualities.
In the last chapter, we directly jump to the most general situation, giving a proposal for the 3d-3d correspondence for an arbitrary Seifert manifold. We remark on the huge class of novel dualities relating different descriptions of the "Seifert theory" associated with the same Seifert manifold and suggest ways that our proposal could be tested.
Books on the topic "Seifert manifold"
1932-, Raymond Frank, ed. Seifert fiberings. Providence, R.I: American Mathematical Society, 2010.
Find full text1959-, Miyazaki Katura, and Motegi Kimihiko 1963-, eds. Networking Seifert surgeries on knots. Providence, R.I: American Mathematical Society, 2011.
Find full textCassels, J. W. S., and Neumann. Seifert Manifolds. University of Cambridge ESOL Examinations, 2001.
Find full textOrlik, Peter. Seifert Manifolds. Springer London, Limited, 2006.
Find full textBook chapters on the topic "Seifert manifold"
Montesinos-Amilibia, José María. "Seifert Manifolds." In Classical Tessellations and Three-Manifolds, 135–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-61572-6_4.
Full textFomenko, A. T., and S. V. Matveev. "Seifert Manifolds." In Algorithmic and Computer Methods for Three-Manifolds, 229–70. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-017-0699-5_10.
Full textLee, Kyung, and Frank Raymond. "𝑆¹-actions on 3-dimensional manifolds." In Seifert Fiberings, 299–352. Providence, Rhode Island: American Mathematical Society, 2010. http://dx.doi.org/10.1090/surv/166/14.
Full textLee, Kyung, and Frank Raymond. "Actions of compact Lie groups on manifolds." In Seifert Fiberings, 47–68. Providence, Rhode Island: American Mathematical Society, 2010. http://dx.doi.org/10.1090/surv/166/03.
Full textLee, Kyung, and Frank Raymond. "Seifert manifolds with Γ∖𝐺/𝐾-fiber." In Seifert Fiberings, 159–77. Providence, Rhode Island: American Mathematical Society, 2010. http://dx.doi.org/10.1090/surv/166/09.
Full textLee, Kyung, and Frank Raymond. "Classification of Seifert 3-manifolds via equivariant cohomology." In Seifert Fiberings, 353–82. Providence, Rhode Island: American Mathematical Society, 2010. http://dx.doi.org/10.1090/surv/166/15.
Full textLee, John M. "The Seifert–Van Kampen Theorem." In Introduction to Topological Manifolds, 251–75. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-7940-7_10.
Full textKulkarni, Ravi, Kyung Bai Lee, and Frank Raymond. "Deformation spaces for seifert manifolds." In Lecture Notes in Mathematics, 180–216. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/bfb0075224.
Full textLee, Kyung Bai, and Frank Raymond. "Seifert manifolds modelled on principal bundles." In Transformation Groups, 207–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/bfb0085611.
Full textGabrovšek, Boštjan, and Maciej Mroczkowski. "Link Diagrams in Seifert Manifolds and Applications to Skein Modules." In Springer Proceedings in Mathematics & Statistics, 117–41. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-68103-0_6.
Full textConference papers on the topic "Seifert manifold"
Hansen, Soren Kold, and Toshie Takata. "Quantum invariants of Seifert 3–manifolds and their asymptotic expansions." In Invariants of Knots and 3--manifolds. Mathematical Sciences Publishers, 2002. http://dx.doi.org/10.2140/gtm.2002.4.69.
Full textHowie, James. "Minimal Seifert manifolds for higher ribbon knots." In Conference in honour of David Epstein's 60th birthday. Mathematical Sciences Publishers, 1998. http://dx.doi.org/10.2140/gtm.1998.1.261.
Full textOzsvath, Peter, and Zoltan Szabo. "On Heegaard Floer homology and Seifert fibered surgeries." In Conference on the Topology of Manifolds of Dimensions 3 and 4. Mathematical Sciences Publishers, 2004. http://dx.doi.org/10.2140/gtm.2004.7.181.
Full textValdez-Sanchez, Luis G. "Seifert Klein bottles for knots with common boundary slopes." In Conference on the Topology of Manifolds of Dimensions 3 and 4. Mathematical Sciences Publishers, 2004. http://dx.doi.org/10.2140/gtm.2004.7.27.
Full text