Dissertations / Theses on the topic 'Segmentation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Segmentation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Ross, Michael G. (Michael Gregory) 1975. "Learning static object segmentation from motion segmentation." Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/34470.
Full textIncludes bibliographical references (p. 105-110).
This thesis describes the SANE (Segmentation According to Natural Examples) algorithm for learning to segment objects in static images from video data. SANE uses background subtraction to find the segmentation of moving objects in videos. This provides object segmentation information for each video frame. The collection of frames and segmentations forms a training set that SANE uses to learn the image and shape properties that correspond to the observed motion boundaries. Then, when presented with new static images, the model infers segmentations similar to the observed motion segmentations. SANE is a general method for learning environment-specific segmentation models. Because it is self-supervised, it can adapt to a new environment and new objects with relative ease. Comparisons of its output to a leading image segmentation algorithm demonstrate that motion-defined object segmentation is a distinct problem from traditional image segmentation. The model outperforms a trained local boundary detector because it leverages the shape information it learned from the training data.
by Michael Gregory Ross.
Ph.D.
Vyas, Aseem. "Medical Image Segmentation by Transferring Ground Truth Segmentation." Thesis, Université d'Ottawa / University of Ottawa, 2015. http://hdl.handle.net/10393/32431.
Full textJomaa, Diala. "Fingerprint Segmentation." Thesis, Högskolan Dalarna, Datateknik, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:du-4264.
Full textScholte, Huibert Steven. "Scene segmentation." [S.l. : Amsterdam : s.n.] ; Universiteit van Amsterdam [Host], 2003. http://dare.uva.nl/document/70449.
Full textHorne, Caspar. "Unsupervised image segmentation /." Lausanne : EPFL, 1991. http://library.epfl.ch/theses/?nr=905.
Full textSundøy, Kristoffer Johan. "Audiovisual Contents Segmentation." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for elektronikk og telekommunikasjon, 2010. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-11264.
Full textCamilleri, Kenneth P. "Multiresolution texture segmentation." Thesis, University of Surrey, 1999. http://epubs.surrey.ac.uk/843549/.
Full textDebeir, Olivier. "Segmentation supervisée d'images." Doctoral thesis, Universite Libre de Bruxelles, 2001. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/211474.
Full textBhalerao, Abhir. "Multiresolution image segmentation." Thesis, University of Warwick, 1991. http://wrap.warwick.ac.uk/60866/.
Full textFournier, Christopher. "Evaluating Text Segmentation." Thèse, Université d'Ottawa / University of Ottawa, 2013. http://hdl.handle.net/10393/24064.
Full textRababa´h, Qasim. "Intracranial volume Segmentation." Thesis, Örebro universitet, Institutionen för hälsovetenskap och medicin, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-37296.
Full textCraske, Simon. "Natural image segmentation." Thesis, University of Bristol, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.266990.
Full textDraelos, Timothy John 1961. "INTERACTIVE IMAGE SEGMENTATION." Thesis, The University of Arizona, 1987. http://hdl.handle.net/10150/276392.
Full textDindoyal, I. "Foetal echocardiographic segmentation." Thesis, University College London (University of London), 2010. http://discovery.ucl.ac.uk/20169/.
Full textBanda, Nagamani. "Adaptive video segmentation." Morgantown, W. Va. : [West Virginia University Libraries], 2004. https://etd.wvu.edu/etd/controller.jsp?moduleName=documentdata&jsp%5FetdId=3520.
Full textTitle from document title page. Document formatted into pages; contains vi, 52 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 50-52).
Salem, Mohammed Abdel-Megeed Mohammed. "Multiresolution image segmentation." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2008. http://dx.doi.org/10.18452/15846.
Full textMore and more computer vision systems take part in the automation of various applications. The main task of such systems is to automate the process of visual recognition and to extract relevant information from the images or image sequences acquired or produced by such applications. One essential and critical component in almost every computer vision system is image segmentation. The quality of the segmentation determines to a great extent the quality of the final results of the vision system. New algorithms for image and video segmentation based on the multiresolution analysis and the wavelet transform are proposed. The concept of multiresolution is explained as existing independently of the wavelet transform. The wavelet transform is extended to two and three dimensions to allow image and video processing. For still image segmentation the Resolution Mosaic Expectation Maximization (RM-EM) algorithm is proposed. The resolution mosaic enables the algorithm to employ the spatial correlation between the pixels. The level of the local resolution depends on the information content of the individual parts of the image. The use of various resolutions speeds up the processing and improves the results. New algorithms based on the 3D wavelet transform and the 3D wavelet packet analysis are proposed for extracting moving objects from image sequences. The new algorithms have the advantage of considering the relevant spatial as well as temporal information of the movement. Because of the low computational complexity of the wavelet transform an FPGA hardware for the primary segmentation step was designed. Actual applications are used to investigate and evaluate all algorithms: the segmentation of magnetic resonance images of the human brain and the detection of moving objects in image sequences of traffic scenes. The new algorithms show robustness against noise and changing ambient conditions and gave better segmentation results.
Alon, Jonathan. "Spatiotemporal Gesture Segmentation." Boston University Computer Science Department, 2006. https://hdl.handle.net/2144/1884.
Full textChen, Lijun. "Efficient three-dimensional multi-resolution modeling, segmentation, and segmentation-based mesh compression." Thesis, University of Ottawa (Canada), 2005. http://hdl.handle.net/10393/29204.
Full textDydenko, Igor Friboulet Denis. "Segmentation dynamique en échocardiographie ultrasonore radiofréquence ynamic segmentation in ultrasound radiofrequency echocardiography /." Villeurbanne : Doc'INSA, 2005. http://docinsa.insa-lyon.fr/these/pont.php?id=dydenko.
Full textThèse rédigée en anglais. Résumé en français en début de chaque chapitre. Titre provenant de l'écran-titre. Bibliogr. p. 216-232. Publications de l'auteur p. 214-215.
Leitner, François. "Segmentation dynamique d'images tridimensionnelles." Phd thesis, Grenoble INPG, 1993. http://tel.archives-ouvertes.fr/tel-00344080.
Full textSmith, Paul Alexander. "Edge-based motion segmentation." Thesis, University of Cambridge, 2002. https://www.repository.cam.ac.uk/handle/1810/269782.
Full textLi, Zhongqiang. "Segmentation of textured images." Thesis, University of Central Lancashire, 1991. http://clok.uclan.ac.uk/20270/.
Full textChowdhury, Md Mahbubul Islam. "Image segmentation for coding." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape3/PQDD_0017/MQ55494.pdf.
Full textWang, Jingdong. "Graph based image segmentation /." View abstract or full-text, 2007. http://library.ust.hk/cgi/db/thesis.pl?CSED%202007%20WANG.
Full textWyatt, Paul. "Concurrent segmentation and registration." Thesis, University of Oxford, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.398273.
Full textDjelouah, Abdelaziz. "Multi-view Object Segmentation." Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GRENM004/document.
Full textThere has been a growing interest for multi-camera systems and many interesting works have tried to tackle computer vision problems in this particular configuration. The general objective is to propose new multi-view oriented methods instead of applying limited monocular approaches independently for each viewpoint. The work in this thesis is an attempt to have a better understanding of the multi-view object segmentation problem and to propose an alternative approach making maximum use of the available information from different viewpoints. Multiple view segmentation consists in segmenting objects simultaneously in several views. Classic monocular segmentation approaches reason on a single image and do not benefit from the presence of several viewpoints. A key issue in that respect is to ensure propagation of segmentation information between views while minimizing complexity and computational cost. In this work, we first investigate the idea that examining measurements at the projections of a sparse set of 3D points is sufficient to achieve this goal. The proposed algorithm softly assigns each of these 3D samples to the scene background if it projects on the background region in at least one view, or to the foreground if it projects on foreground region in all views. A complete probabilistic framework is proposed to estimate foreground/background color models and the method is tested on various datasets from state of the art. Two different extensions of the sparse 3D sampling segmentation framework are proposed in two scenarios. In the first, we show the flexibility of the sparse sampling framework, by using variational inference to integrate Gaussian mixture models as appearance models. In the second scenario, we propose a study of how to incorporate depth measurements in multi-view segmentation. We present a quantitative evaluation, showing that typical color-based segmentation robustness issues due to color-space ambiguity between foreground and background, can be at least partially mitigated by using depth, and that multi-view color depth segmentation also improves over monocular color depth segmentation strategies. The various tests also showed the limitations of the proposed 3D sparse sampling approach which was the motivation to propose a new method based on a richer description of image regions using superpixels. This model, that expresses more subtle relationships of the problem trough a graph construction linking superpixels and 3D samples, is one of the contributions of this work. In this new framework, time related information is also integrated. With static views, results compete with state of the art methods but they are achieved with significantly fewer viewpoints. Results on videos demonstrate the benefit of segmentation propagation through geometric and temporal cues. Finally, the last part of the thesis explores the possibilities of tracking in uncalibrated multi-view scenarios. A summary of existing methods in this field is presented, in both mono-camera and multi-camera scenarios. We investigate the potential of using self-similarity matrices to describe and compare motion in the context of multi-view tracking
Reyes-Aldasoro, Constantino Carlos. "Multiresolution volumetric texture segmentation." Thesis, University of Warwick, 2004. http://wrap.warwick.ac.uk/67756/.
Full text莫巧言 and Hau-yin Mok. "An improved segmentation rule." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1996. http://hub.hku.hk/bib/B31214460.
Full textSedighian, Pouye. "Pediatric heart sound segmentation." Thesis, California State University, Long Beach, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=1526952.
Full textRecent advances in technology have facilitated the prospect of automatic cardiac auscultation by using digital stethoscopes. This in turn creates the need for development of algorithms capable of automatic segmentation of the heart sound. Pediatric heart sound segmentation is a challenging task due to various factors including the significant influence of respiration on the heart sound. This project studies the application of homomorphic filtering and Hidden Markov Model for the purpose of pediatric heart sound segmentation. The efficacy of the proposed method is evaluated on a publicly available dataset and its performance is compared with those of three other existing methods. The results show that our proposed method achieves accuracy of 92.4% ±1.1% and 93.5% ±1.1% in identification of first and second heart sound components, and is superior to four other existing methods in term of accuracy or time complexity.
Linnett, L. M. "Multi-texture image segmentation." Thesis, Heriot-Watt University, 1991. http://hdl.handle.net/10399/856.
Full textPorter, Robert Mark Stefan. "Texture classification and segmentation." Thesis, University of Bristol, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.389032.
Full textBasman, Antranig Michael. "Statistical region-based segmentation." Thesis, University of Cambridge, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.621868.
Full textArmani, Luca. "Machine Learning: Customer Segmentation." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/24925/.
Full textCAILLOL, HELENE. "Segmentation statistique floue d'images." Paris 6, 1995. http://www.theses.fr/1995PA066783.
Full textHaddad, Stephen. "Texture measures for segmentation." Master's thesis, University of Cape Town, 2007. http://hdl.handle.net/11427/7461.
Full textTexture is an important visual cue in both human and computer vision. Segmenting images into regions of constant texture is used in many applications. This work surveys a wide range of texture descriptors and segmentation methods to determine the state of the art in texture segmentation. Two types of texture descriptors are investigated: filter bank based methods and local descriptors. Filter banks deconstruct an image into several bands, each of which emphasises areas of the image with different properties. Textons are an adaptive histogram method which describes the distribution of typical feature vectors. Local descriptors calculate features from smaller neighbourhoods than filter banks. Some local descriptors calculate a scale for their local neighbourhood to achieve scale invariance. Both local and global segmentation methods are investigated. Local segmentation methods consider each pixel in isolation. Global segmentation methods penalise jagged borders or fragmented regions in the segmentation. Pixel labelling and border detection methods are investigated. Methods for measuring the accuracy of segmentation are discussed. Two data sets are used to test the texture segmentation algorithms. The Brodatz Album mosaics are composed of grayscale texture images from the Brodatz Album. The Berkeley Natural Images data set has 300 colour images of natural scenes. The tests show that, of the descriptors tested, filter bank based textons are the best texture descriptors for grayscale images. Local image patch textons are best for colour images. Graph cut segmentation is best for pixel labelling problems and edge detection with regular borders. Non-maxima suppression is best for edge detection with irregular borders. Factors affecting the performance of the algorithms are investigated.
Marzouki, Abdelwaheb. "Segmentation statistique d'images radar." Lille 1, 1996. https://pepite-depot.univ-lille.fr/LIBRE/Th_Num/1996/50376-1996-304.pdf.
Full textPerroton, Laurent. "Segmentation parallèle d'images volumiques." Lyon 1, 1994. http://www.theses.fr/1994LYO10328.
Full textChecchin, Paul. "Segmentation d'images de profondeur." Clermont-Ferrand 2, 1996. http://www.theses.fr/1996CLF21871.
Full textBöhmová, Veronika. "Segmentation of young people." Master's thesis, Vysoká škola ekonomická v Praze, 2009. http://www.nusl.cz/ntk/nusl-17354.
Full textZou, Wenbin. "Semantic-oriented Object Segmentation." Thesis, Rennes, INSA, 2014. http://www.theses.fr/2014ISAR0007/document.
Full textThis thesis focuses on the problems of object segmentation and semantic segmentation which aim at separating objects from background or assigning a specific semantic label to each pixel in an image. We propose two approaches for the object segmentation and one approach for semantic segmentation. The first proposed approach for object segmentation is based on saliency detection. Motivated by our ultimate goal for object segmentation, a novel saliency detection model is proposed. This model is formulated in the low-rank matrix recovery model by taking the information of image structure derived from bottom-up segmentation as an important constraint. The object segmentation is built in an iterative and mutual optimization framework, which simultaneously performs object segmentation based on the saliency map resulting from saliency detection, and saliency quality boosting based on the segmentation. The optimal saliency map and the final segmentation are achieved after several iterations. The second proposed approach for object segmentation is based on exemplar images. The underlying idea is to transfer segmentation labels of globally and locally similar exemplar images to the query image. For the purpose of finding the most matching exemplars, we propose a novel high-level image representation method called object-oriented descriptor, which captures both global and local information of image. Then, a discriminative predictor is learned online by using the retrieved exemplars. This predictor assigns a probabilistic score of foreground to each region of the query image. After that, the predicted scores are integrated into the segmentation scheme of Markov random field (MRF) energy optimization. Iteratively finding minimum energy of MRF leads the final segmentation. For semantic segmentation, we propose an approach based on region bank and sparse coding. Region bank is a set of regions generated by multi-level segmentations. This is motivated by the observation that some objects might be captured at certain levels in a hierarchical segmentation. For region description, we propose sparse coding method which represents each local feature descriptor with several basic vectors in the learned visual dictionary, and describes all local feature descriptors within a region by a single sparse histogram. With the sparse representation, support vector machine with multiple kernel learning is employed for semantic inference. The proposed approaches have been extensively evaluated on several challenging and widely used datasets. Experiments demonstrated the proposed approaches outperform the stateofthe- art methods. Such as, compared to the best result in the literature, the proposed object segmentation approach based on exemplar images improves the F-score from 63% to 68.7% on Pascal VOC 2011 dataset
Leitner, François Mohr Roger. "Segmentation dynamique d'images tridimensionnelles." S.l. : Université Grenoble 1, 2008. http://tel.archives-ouvertes.fr/tel-00344080.
Full textMok, Hau-yin. "An improved segmentation rule /." Hong Kong : University of Hong Kong, 1996. http://sunzi.lib.hku.hk/hkuto/record.jsp?B17538245.
Full textReavy, Richard Wilson. "Image segmentation for automatic target recognition : an investigation of a method of applying post-segmentation derived information to a secondary segmentation process." Thesis, University of Edinburgh, 1999. http://hdl.handle.net/1842/12840.
Full textBINDER, THOMAS. "Gland Segmentation with Convolutional Neural Networks : Validity of Stroma Segmentation as a General Approach." Thesis, KTH, Skolan för kemi, bioteknologi och hälsa (CBH), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-246134.
Full textIbrahim, Ali. "Qualitative Segmentation vs. Quantitative Segmentation in a Water Use Market: A Cost Benefit Approach." Thesis, Griffith University, 2018. http://hdl.handle.net/10072/381386.
Full textThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
Dept of Marketing
Griffith Business School
Full Text
Leibe, Bastian. "Interleaved object categorization and segmentation /." Konstanz : Hartung-Gorre Verlag, 2004. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=15752.
Full textZappella, Luca. "Manifold clustering for motion segmentation." Doctoral thesis, Universitat de Girona, 2011. http://hdl.handle.net/10803/34765.
Full textIN THIS STUDY THE PROBLEM OF MOTION SEGMENTATION IS DISCUSSED. MOTION SEGMENTATION STATE OF THE ART IS PRESENTED, THE MAIN FEATURES OF MOTION SEGMENTATION ALGORITHMS ARE ANALYSED, AND A CLASSIFICATION OF THE RECENT AND MOST IMPORTANT TECHNIQUES IS PROPOSED. THE SEGMENTATION PROBLEM COULD BE CAST INTO A MANIFOLD CLUSTERING PROBLEM. IN THIS STUDY SOME OF THE MOST CHALLENGING ISSUES RELATED TO MOTION SEGMENTATION VIA MANIFOLD CLUSTERING ARE TACKLED. NEW ALGORITHMS FOR THE RANK ESTIMATION OF THE TRAJECTORY MATRIX ARE PROPOSED. A MEASURE OF SIMILARITY BETWEEN SUBSPACES IS PRESENTED. THE BEHAVIOUR OF PRINCIPAL ANGLES IS DISCUSSED. A GENERIC TOOL FOR THE ESTIMATION OF THE NUMBER OF MOTIONS IS DEVELOPED. THE LAST PART OF THE STUDY IS DEDICATED TO THE DEVELOPMENT OF AN ALGORITHM FOR THE CORRECTION OF AN INITIAL MOTION SEGMENTATION SOLUTION. SUCH A CORRECTION IS ACHIEVED BY BRINGING TOGETHER THE PROBLEMS OF MOTION SEGMENTATION AND STRUCTURE FROM MOTION.
Cosp, Vilella Jordi. "Scene segmentation using neuromorphic networks." Doctoral thesis, Universitat Politècnica de Catalunya, 2002. http://hdl.handle.net/10803/6319.
Full textAquesta tesi descriu i analitza el model hardware d'una xarxa neuronal artificial basada en oscil.ladors acoblats que ha estat adaptada per ajustar-se als requeriments d'una realització VLSI i a la seva aplicació a tasques de segmentació d'imatge. Per reduir l'àrea ocupada i el consum de potència, les neurones modelades com oscil.ladors astables, es realitzen en un ASIC full-custom en lloc de ser simulades en una arquitectura hardware standard. La realització física de l'oscil.lador en lloc de simular-lo, permet al sistema portar a terme les mateixes tasques i reduir el consum de potència comparat amb el requeriments que necessita un ordinador per simular la xarxa.
Primer, es modela un oscil.lador astable en mode corrent com a un integrador i un comparador amb histèresi. Després, s'utilitza aquest esquema per estudiar algebraicament i numèricament la sincronització d'oscil.ladors acoblats amb excitacions amb i sense inhibició i mismatch. Després, es repeteix l'anàlisi amb un model millorat que consta de dos integradors amb escales de temps diferents. Això ens permet simular els efectes secundaris com la capacitat de sortida de l'oscil.lador. A partir d'aquests resultats, s'estudia el comportament de matrius de una i dues dimensions d'oscil.ladors acoblats i després la xarxa és usada per segmentar imatges sintètiques.
Basat en els resultats de l'anàlisi matemàtica, es dissenya una xarxa microelectrònica en un ASIC CMOS amb tecnologia 0.8µm i doble capa de polisilici. El circuit és descrit i simulat extensivament per tal de comprovar la seva funcionalitat com a element de segmentació. Després, els resultats experimentals validen la funcionalitat de la xarxa com a element de segmentació i confirmen la importància del efectes secundaris modelats en la secció de l'anàlisi matemàtica. Finalment, la tesi acaba amb una estimació del nivell de complexitat del procés i una comparació amb d'altres mètodes, exposa les conclusions i explora noves possibilitats en la realització hardware d'algorismes neuromorphics per a la segmentació.
L'anàlisi matemàtica i les simulacions demostren que els oscil.ladors astables poden ser usats com a cel.les bàsiques per a xarxes de segmentació. També demostren que els retards deguts a la capacitat de sortida combinada amb el mismatch dels dispositius han de ser limitats per tal que la xarxa treballi correctament. La realització física del model de neurona basat en un oscil.lador no linial demostra que és possible realitzar físicament un sistema de segmentació més ràpid que la seva simulació en ordinadors molt més potents sense perdre funcionalitat.
Noves línies de recerca són l'estudi en més detall dels mecanismes de sincronització amb acoblaments més febles combinat amb el mismatch dels dispositius, l'ús de comparador en mode corrent més ràpids de baix consum i l'ús d'imatges en nivell de grisos.
Advances in neurosciences have induced the development of complex models of artificial neurons closer to their biological counterparts. These models improved functionality of artificial neural networks and novel applications have appeared. Nevertheless, complexity of new neuron models makes their simulation difficult, and time and power consuming. This is not a major drawback for applications that have no restrictions on power consumption and system complexity as simulation of natural neurons or exploration of different abilities of artificial neural networks. But, there are other applications, as found in real time portable systems, that require fast and small systems and low power requirements for which simulating complex artificial neurons is not a good solution. Finding a feasible solution to this problem is the aim of this work.
This dissertation describes and analyzes a hardware model of an artificial neural network based on coupled oscillators that have been adapted to fit VLSI requirements and its applications to scene segmentation tasks. To reduce area overhead and power consumption, neurons, which are modeled as astable oscillators, are implemented on a full custom ASIC instead of being simulated on a standard hardware architecture. The implementation of a physical oscillator instead of their simulation, allows the system to perform the same tasks and reduce power consumption compared to requirements needed for a computer to simulate the network.
First, a current-mode astable oscillator is modeled as an integrator and a hysteresis comparator. Then, this scheme is used to study algebraically and numerically the synchronization of excitatory coupled oscillators with and without external inhibition and mismatch. After this, the analysis is repeated with an improved model composed of two integrators with different timescales. This allows us to simulate secondary effects as oscillator output capacitance. From these results, the behavior of one-dimensional and two-dimensional arrays of coupled oscillators is studied and then, the network is applied to synthetic image segmentation.
Based on results of the mathematical analysis, a microelectronic network is designed on a double-poly 0.8µm CMOS ASIC. This circuit is described and extensively simulated to check its functionality as a segmentation layer. Then, experimental results validate the network functionality as a segmentation network and confirm the importance of secondary effects modeled in the mathematical analysis section. Finally, this dissertation ends with an estimation of the scheme complexity, compares it to other methods, sets out concluding remarks and explores future trends on implementation of neuromorphic segmentation schemes.
Mathematical analysis and simulations demonstrate that astable oscillators can be used as basic cells of segmentation networks. They also demonstrate that delays due to cell output capacitance combined with device mismatch have to be limited below certain boundaries for the network to work properly. The physical implementation of a neuron model based on a non-linear oscillator demonstrates that it is possible to implement an oscillatory segmentation scheme that runs much faster that its simulated counterpart on powerful computers.
Future lines of research are the deeper study of synchronization mechanisms with weaker coupling strength combined with device mismatch, the use of faster current comparators with low power consumption figures and the use of gray level input images.
Gerber-Morón, Olivia. "Subtitle segmentation quality across screens." Doctoral thesis, Universitat Autònoma de Barcelona, 2018. http://hdl.handle.net/10803/665461.
Full textSe considera que la segmentación de subtítulos, es decir, la forma en la que se divide el texto en un subtítulo de dos líneas, constituye uno de los parámetros que influye en la legibilidad de los subtítulos. Durante más de dos décadas, los expertos en subtitulado han sostenido que las líneas de los subtítulos deben dividirse siguiendo las reglas sintácticas para facilitar la lectura del texto. Sin embargo, la industria audiovisual no tiene en cuenta siempre estas reglas a la hora de crear los subtítulos. Existen dos razones que podrían justificar por qué no siempre se ponen en práctica dichas reglas: el tiempo y el esfuerzo que requieren los subtituladores para editar los subtítulos, así como la necesidad de condensar el texto para conservar las unidades de sentido en la misma línea. Las investigaciones empíricas que se han llevado a cabo hasta ahora no han aportado pruebas concluyentes sobre el impacto directo que tiene la segmentación sintáctica en la lectura de los subtítulos. El objetivo de esta tesis doctoral es esclarecer el impacto de la segmentación de subtítulos llevando a cabo nuevas investigaciones con elementos que no se tomaron anteriormente en cuenta: un mayor número de perfiles de usuarios, dispositivos con diferentes tamaños de pantalla y más medidas en el diseño experimental. Se realizaron tres estudios empíricos para determinar si la segmentación de subtítulos es un elemento clave en la accesibilidad a los medios audiovisuales. Los dos primeros estudios investigaron la importancia de respetar las reglas sintácticas en espectadores con distintas lenguas maternas y diferentes niveles de pérdida auditiva. Se tomaron medidas de seguimiento ocular, carga cognitiva, comprensión y preferencias. El tercer estudio analizó la recepción de subtítulos en dispositivos con diferentes tamaños de pantalla. Se evaluaron los niveles de comprensión y las preferencias de presentación de subtítulos (centrando la atención en estilos de segmentación) en cada dispositivo. En general, los resultados de estos estudios parecen indicar que la segmentación de subtítulos no es un factor determinante en la accesibilidad de los medios audiovisuales. A pesar de que los subtítulos que no se dividen sintácticamente aumentan por lo general la carga cognitiva y los movimientos oculares, no afectan de manera negativa a la comprensión. Los espectadores consiguen adaptar las estrategias de lectura independientemente del enfoque empleado para segmentar los subtítulos o del tamaño de pantalla. Los resultados de los movimientos oculares indican que las unidades lingüísticas se leen de manera diferente según su división en la pantalla, la categoría lingüística a la que pertenecen y el perfil del espectador. Los resultados de esta tesis doctoral analizan los efectos de la segmentación en la interpretación de los subtítulos y la experiencia del espectador en el panorama audiovisual actual en constante cambio. Se espera que esta tesis respalde la necesidad de basar las recomendaciones y las prácticas actuales de subtitulado en investigaciones empíricas para mejorar la calidad de la accesibilidad de los medios audiovisuales.
Subtitle segmentation, i.e. the way text is divided in a two-line subtitle, is believed to be one of the features that influences the readability of subtitles. For over two decades, experts in subtitling claimed that subtitle lines should be split according to syntactic rules to facilitate the reading process. However, the subtitling industry does not always implement these syntactic rules when creating subtitles. Two reasons could explain why these rules are not always applied: human time and effort to edit subtitles, as well as considerable text reduction to keep units of meaning together in the same line. Previous empirical research on this topic has not provided conclusive evidence as to whether syntactic segmentation has a direct impact on the subtitle reading process. This PhD thesis aims to shed more light on the impact of subtitle segmentation by conducting further research with elements that had not previously be included: a wider range of user profiles, devices with different screen size and more measures in the experimental design. Three empirical studies were carried out to determine whether subtitle segmentation is a key element in Media Accessibility. The first two studies examined the relevance of following syntactic segmentation among viewers with different native languages and hearing statuses, measuring cognitive load, comprehension scores, eye-tracking variables and preferences in line breaks. The third study assessed the reception of subtitles across devices with different screen size, analysing viewers' subtitle layout (specifically focusing on line-break styles) preferences and comprehension. Overall, the results of these studies seem to indicate that subtitle segmentation is not a critical factor in Media Accessibility. Although non-syntactically segmented subtitles generally induce higher cognitive load and more eye movements, they do not negatively affect comprehension. Viewers are able to adapt their reading strategies regardless of the subtitle segmentation approach or the screen size. Eye tracking results demonstrate that linguistic units are processed differently depending on the way they are split on the screen, their linguistic category and the viewers' profile. The results of this PhD thesis discuss the effects of segmentation on subtitle processing and the viewer experience in the context of today’s changing audiovisual landscape. It is hoped that this thesis provides support for the need to base guidelines and current subtitling practices on empirical research evidence to enhance the quality of Media Accessibility.
Torre, Alcoceba Margarita. "Model-Based Segmentation of Images." Doctoral thesis, Universitat Autònoma de Barcelona, 2020. http://hdl.handle.net/10803/670932.
Full textLa fotografía congela en un instante los datos que luego se pueden extraer, interpretar y transformar con el tiempo para comunicar información en diferentes formatos. Hacer mapas a partir de fotografías fue una revolución en la cartografía. Los avances en la visión por computador están ayudando a lograr la próxima revolución en esta disciplina, que apunta a una información geográfica cada vez más detallada que se requiere en períodos de tiempo más cortos. De esta manera, el proceso que va de la imagen a un mapa se ha vuelto cada vez más automático. Las imágenes ya capturadas con cámaras digitales de alta resolución se colocan automáticamente en la posición correcta del terreno como si fuera una hoja que lo cubre, gracias a los modelos digitales del terreno, obteniendo así ortofotomapas. En estas circunstancias, la única carga que queda por aligerar es la extracción de los elementos topográficos, sin perder la precisión y la calidad de la interpretación que hasta ahora ha sido proporcionada por operadores humanos. Esta investigación se centra en el desarrollo de nuevos métodos por ordenador que facilitan estas tareas de extracción de información de imágenes aéreas. Comenzamos con el desarrollo de una estrategia para extraer parcelas semi-automáticamente de las imágenes. Este enfoque utiliza la respuesta casi homogénea de las parcelas y cómo esta respuesta difiere de la obtenida de sus vecinas. El proceso se lleva a cabo mediante el método en el que las regiones adyacentes compiten para poseer un píxel. Cuando las líneas de contraste de las imágenes también se tienen en cuenta, es posible ampliar la metodología anterior para extraer carreteras. En ambos casos es necesario guiar todo el proceso, no sólo por los puntos dados por un operador, sino por el modelo del elemento a extraer. El modelo ayuda a refinar los resultados obtenidos. Cuando Deep Learning irrumpió en la escena de Visión por Computador, todos los procesos de clasificación de imágenes mejoraron. Proponemos una aventura conjunta entre una red profunda y un método de minimización de energía guiado por un modelo que mejore los beneficios de cada componente. Este enfoque reduce al mínimo la necesidad de interacción humana y obtiene buenos resultados.
Photography freezes in an instant the data that can later be extracted, interpreted and transformed over time to communicate information in different formats. Making maps from photographs was a revolution in cartography. Advances in Computer Vision are helping to bring about the next revolution in this discipline, which aims at more and more detailed geographic information which is required in shorter periods of time. In this way, the process that goes from image to a map has become increasingly automatic. The images already captured with high-resolution digital cameras are automatically placed in the correct position of the terrain as if they were a sheet that covers it, thanks to the digital terrain models, thus obtaining orthophotomaps. In these circumstances, the only burden that remains to be lightened is the extraction of the topographic elements, without losing the precision and quality of interpretation that until now has been provided by human operators. This research focuses on the development of new computerized methods that facilitate these tasks of extracting information from aerial images. We start with the development of a strategy to semi-automatically extract fields from the images. This approach uses the almost homogeneous response of the fields and how this response differs from that obtained from their neighbors. The process is carried out by means of the method in which adjacent regions compete to own a pixel. When the contrast lines of the images are also taken into account, it is possible to extend the previous methodology to extract roads. In both cases it is necessary to guide the entire process, not only by the points given by an operator, but by the model of the element to be extracted. The model helps to refine the results obtained. When Deep Learning burst onto the Computer Vision scene, all the processes of image classification were upended. So, we propose a joint venture between a deep network and an energy-minimization model-guided radiometric method that improves the benefits of each component. This approach reduces to a minimum the need for human interaction and obtains reliable results.