Dissertations / Theses on the topic 'Segmentation Multimodale'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Segmentation Multimodale.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Bricq, Stéphanie. "Segmentation d’images IRM anatomiques par inférence bayésienne multimodale et détection de lésions." Université Louis Pasteur (Strasbourg) (1971-2008), 2008. https://publication-theses.unistra.fr/public/theses_doctorat/2008/BRICQ_Stephanie_2008.pdf.
Full textMedical imaging provides a growing number of data. Automatic segmentation has become a fundamental step for quantitative analysis of these images in many brain diseases such as multiple sclerosis (MS). We focused our study on brain MRI segmentation and MS lesion detection. At first we proposed a method of brain tissue segmentation based on hidden Markov chains taking into account neighbourhood information. This method can also include prior information provided by a probabilistic atlas and takes into account the artefacts appearing on MR images. Then we extended this method to detect MS lesions thanks to a robust estimator and prior information provided by a probabilistic atlas. We have also developed a 3D MRI segmentation method based on statistical active contours to refine the lesion segmentation. The results were compared with other existing methods of segmentation, and with manual expert segmentations
Bricq, Stéphanie Collet Christophe Armspach Jean-Paul. "Segmentation d'images IRM anatomiques par inférence bayésienne multimodale et détection de lésions." Strasbourg : Université de Strasbourg, 2009. http://eprints-scd-ulp.u-strasbg.fr:8080/1143/01/BRICQ_Stephanie_2008-protege.pdf.
Full textToulouse, Tom. "Estimation par stéréovision multimodale de caractéristiques géométriques d’un feu de végétation en propagation." Thesis, Corte, 2015. http://www.theses.fr/2015CORT0009/document.
Full textThis thesis presents the geometrical characteristics measurement of spreading vegetation fires with multimodal stereovision systems. Image processing and 3D registration are used in order to obtain a three-dimensional modeling of the fire at each instant of image acquisition and then to compute fire front characteristics like its position, its rate of spread, its height, its width, its inclination, its surface and its volume. The first important contribution of this thesis is the fire pixel detection. A benchmark of fire pixel detection algorithms and of those that are developed in this thesis have been on a database of 500 vegetation fire images of the visible spectra which have been characterized according to the fire properties in the image (color, smoke, luminosity). Five fire pixel detection algorithms based on fusion of data from visible and near-infrared spectra images have also been developed and tested on another database of 100 multimodal images. The second important contribution of this thesis is about the use of images fusion for the optimization of the matching point’s number between the multimodal stereo images.The second important contribution of this thesis is the registration method of 3D fire points obtained with stereovision systems. It uses information collected from a housing containing a GPS and an IMU card which is positioned on each stereovision systems. With this registration, a method have been developed to extract the geometrical characteristics when the fire is spreading.The geometrical characteristics estimation device have been evaluated on a car of known dimensions and the results obtained confirm the good accuracy of the device. The results obtained from vegetation fires are also presented
Kijak, Ewa. "Structuration multimodale des vidéos de sport par modèles stochastiques." Phd thesis, Université Rennes 1, 2003. http://tel.archives-ouvertes.fr/tel-00532944.
Full textGAUTHIER, GERVAIS. "Applications de la morphologie mathematique fonctionnelle : analyse des textures en niveaux de gris et segmentation par approche multimodale." Caen, 1995. http://www.theses.fr/1995CAEN2050.
Full textPham, Quoc Cuong. "Segmentation et mise en correspondance en imagerie cardiaque multimodale conduites par un modèle anatomique bi-cavités du coeur." Grenoble INPG, 2002. http://www.theses.fr/2002INPG0153.
Full textIrace, Zacharie. "Modélisation statistique et segmentation d'images TEP : application à l'hétérogénéité et au suivi de tumeurs." Phd thesis, Toulouse, INPT, 2014. http://oatao.univ-toulouse.fr/12201/1/irace.pdf.
Full textToulouse, Tom. "Estimation par stéréovision multimodale de caractéristiques géométriques d'un feu de végétation en propagation." Doctoral thesis, Université Laval, 2015. http://hdl.handle.net/20.500.11794/26472.
Full textThis thesis presents the geometrical characteristics measurement of spreading vegetation fires with multimodal stereovision systems. Image processing and 3D registration are used in order to obtain a three-dimensional modeling of the fire at each instant of image acquisition and then to compute fire front characteristics like its position, its rate of spread, its height, its width, its inclination, its surface and its volume. The first important contribution of this thesis is the fire pixel detection. A benchmark of fire pixel detection algorithms of the litterature and of those that are developed in this thesis have been on a database of 500 vegetation fire images of the visible spectra which have been characterized according to the fire properties in the image (color, smoke, luminosity). Five fire pixel detection algorithms based on fusion of data from visible and near-infrared spectra images have also been developed and tested on another database of 100 multimodal images. The second important contribution of this thesis is about the use of images fusion for the optimization of the matching point’s number between the multimodal stereo images. The second important contribution of this thesis is the registration method of 3D fire points obtained with stereovision systems. It uses information collected from a housing containing a GPS and an IMU card which is positioned on each stereovision systems. With this registration, a method have been developed to extract the geometrical characteristics when the fire is spreading. The geometrical characteristics estimation device have been evaluated on a car of known dimensions and the results obtained confirm the good accuracy of the device. The results obtained from vegetation fires are also presented. Key words: wildland fire, stereovision, image processing segmentation, multimodal.
Baban, a. erep Thierry Roland. "Contribution au développement d'un système intelligent de quantification des nutriments dans les repas d'Afrique subsaharienne." Electronic Thesis or Diss., Université de Toulouse (2023-....), 2024. http://www.theses.fr/2024TLSEP100.
Full textMalnutrition, including under- and overnutrition, is a global health challenge affecting billions of people. It impacts all organ systems and is a significant risk factor for noncommunicable diseases such as cardiovascular diseases, diabetes, and some cancers. Assessing food intake is crucial for preventing malnutrition but remains challenging. Traditional methods for dietary assessment are labor-intensive and prone to bias. Advancements in AI have made Vision-Based Dietary Assessment (VBDA) a promising solution for automatically analyzing food images to estimate portions and nutrition. However, food image segmentation in VBDA faces challenges due to food's non-rigid structure, high intra-class variation (where the same dish can look very different), inter-class resemblance (where different foods appear similar) and scarcity of publicly available datasets.Almost all food segmentation research has focused on Asian and Western foods, with no datasets for African cuisines. However, African dishes often involve mixed food classes, making accurate segmentation challenging. Additionally, research has largely focus on RGB images, which provides color and texture but may lack geometric detail. To address this, RGB-D segmentation combines depth data with RGB images. Depth images provide crucial geometric details that enhance RGB data, improve object discrimination, and are robust to factors like illumination and fog. Despite its success in other fields, RGB-D segmentation for food is underexplored due to difficulties in collecting food depth images.This thesis makes key contributions by developing new deep learning models for RGB (mid-DeepLabv3+) and RGB-D (ESeNet-D) image segmentation and introducing the first food segmentation datasets focused on African food images. Mid-DeepLabv3+ is based on DeepLabv3+, featuring a simplified ResNet backbone with and added skip layer (middle layer) in the decoder and SimAM attention mechanism. This model offers an optimal balance between performance and efficiency, matching DeepLabv3+'s performance while cutting computational load by half. ESeNet-D consists on two encoder branches using EfficientNetV2 as backbone, with a fusion block for multi-scale integration and a decoder employing self-calibrated convolution and learned interpolation for precise segmentation. ESeNet-D outperforms many RGB and RGB-D benchmark models while having fewer parameters and FLOPs. Our experiments show that, when properly integrated, depth information can significantly improve food segmentation accuracy. We also present two new datasets: AfricaFoodSeg for “food/non-food” segmentation with 3,067 images (2,525 for training, 542 for validation), and CamerFood focusing on Cameroonian cuisine. CamerFood datasets include CamerFood10 with 1,422 images from ten food classes, and CamerFood15, an enhanced version with 15 food classes, 1,684 training images, and 514 validation images. Finally, we address the challenge of scarce depth data in RGB-D food segmentation by demonstrating that Monocular Depth Estimation (MDE) models can aid in generating effective depth maps for RGB-D datasets
Ercolessi, Philippe. "Extraction multimodale de la structure narrative des épisodes de séries télévisées." Toulouse 3, 2013. http://thesesups.ups-tlse.fr/2056/.
Full textOur contributions concern the extraction of the structure of TV series episodes at two hierarchical levels. The first level of structuring is to find the scene transitions based on the analysis of the color information and the speakers involved in the scenes. We show that the analysis of the speakers improves the result of a color-based segmentation into scenes. It is common to see several stories (or lines of action) told in parallel in a single TV series episode. Thus, the second level of structure is to cluster scenes into stories. We seek to deinterlace the stories in order to visualize the different lines of action independently. The main difficulty is to determine the most relevant descriptors for grouping scenes belonging to the same story. We explore the use of descriptors from the three different modalities described above. We also propose methods to combine these three modalities. To address the variability of the narrative structure of TV series episodes, we propose a method that adapts to each episode. It can automatically select the most relevant clustering method among the various methods we propose. Finally, we developed StoViz, a tool for visualizing the structure of a TV series episode (scenes and stories). It allows an easy browsing of each episode, revealing the different stories told in parallel. It also allows playback of episodes story by story, and visualizing a summary of the episode by providing a short overview of each story
Yang, Yingyu. "Analyse automatique de la fonction cardiaque par intelligence artificielle : approche multimodale pour un dispositif d'échocardiographie portable." Electronic Thesis or Diss., Université Côte d'Azur, 2023. http://www.theses.fr/2023COAZ4107.
Full textAccording to the 2023 annual report of the World Heart Federation, cardiovascular diseases (CVD) accounted for nearly one third of all global deaths in 2021. Compared to high-income countries, more than 80% of CVD deaths occurred in low and middle-income countries. The inequitable distribution of CVD diagnosis and treatment resources still remains unresolved. In the face of this challenge, affordable point-of-care ultrasound (POCUS) devices demonstrate significant potential to improve the diagnosis of CVDs. Furthermore, by taking advantage of artificial intelligence (AI)-based tools, POCUS enables non-experts to help, thus largely improving the access to care, especially in less-served regions.The objective of this thesis is to develop robust and automatic algorithms to analyse cardiac function for POCUS devices, with a focus on echocardiography (ECHO) and electrocardiogram (ECG). Our first goal is to obtain explainable cardiac features from each single modality respectively. Our second goal is to explore a multi-modal approach by combining ECHO and ECG data.We start by presenting two novel deep learning (DL) frameworks for echocardiography segmentation and motion estimation tasks, respectively. By incorporating shape prior and motion prior into DL models, we demonstrate through extensive experiments that such prior can help improve the accuracy and generalises well on different unseen datasets. Furthermore, we are able to extract left ventricle ejection fraction (LVEF), global longitudinal strain (GLS) and other useful indices for myocardial infarction (MI) detection.Next, we propose an explainable DL model for unsupervised electrocardiogram decomposition. This model can extract interpretable information related to different ECG subwaves without manual annotation. We further apply those parameters to a linear classifier for myocardial infarction detection, which showed good generalisation across different datasets.Finally, we combine data from both modalities together for trustworthy multi-modal classification. Our approach employs decision-level fusion with uncertainty, allowing training with unpaired multi-modal data. We further evaluate the trained model using paired multi-modal data, showcasing the potential of multi-modal MI detection to surpass that from a single modality.Overall, our proposed robust and generalisable algorithms for ECHO and ECG analysis demonstrate significant potential for portable cardiac function analysis. We anticipate that our novel framework could be further validated using real-world portable devices. We envision that such advanced integrative tools may significantly contribute towards better identification of CVD patients
Hu, Sijie. "Deep multimodal visual data fusion for outdoor scenes analysis in challenging weather conditions." Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPAST121.
Full textMulti-modal visual data can provide different information about the same scene, thus enhancing the accuracy and robustness of scene analysis. This thesis mainly focuses on how to effectively utilize multi-modal visual data such as color images, infrared images, and depth images, and how to fuse these visual data for a more comprehensive understanding of the environment. Semantic segmentation and object detection, two representative computer vision tasks, were selected for investigating and verifying different multi-modal visual data fusion methods. Then, we propose an additive-attention-based RGB-D fusion scheme, considering the depth map as an auxiliary modality to provide additional geometric clues, and solving the high cost associated with self-attention. Considering the complexity of scene perception under low-light conditions, we designed a cross-fusion module that uses channel and spatial attention to explore the complementary information of visible-infrared image pairs, enhancing the system's perception of the environment. Additionally, we also researched the application of multi-modal visual data in unsupervised domain adaptation. We proposed to leverage depth cues to guide the model to learn domain-invariant feature representation. Extensive research results indicate that the proposed methods outperform others on multiple publicly available multi-modal datasets and can be extended to different types of models, which further demonstrating the robustness and generalization capabilities of our methods in outdoor scene perception tasks
Barquero, Harold. "Limited angular range X-ray micro-computerized tomography : derivation of anatomical information as a prior for optical luminescence tomography." Thesis, Strasbourg, 2015. http://www.theses.fr/2015STRAE033/document.
Full textThis thesis addresses the combination of an Optical Luminescence Tomograph (OLT) and X-ray Computerized Tomograph (XCT), dealing with geometrical constraints defined by the existing OLT system in which the XCT must be integrated. The result is an acquisition geometry of XCT with a 90 degrees angular range only. The aim is to derive an anatomical information from the morphological image obtained with the XCT. Our approach consisted i) in the implementation of a regularized iterative algorithm for the tomographic reconstruction with limited angle data, ii) in the construction of a statistical anatomical atlas of the mouse and iii) in the implementation of an automatic segmentation workflow performing the segmentation of XCT images, the labelling of the segmented elements, the registration of the statistical atlas on these elements and consequently the estimation of the outlines of low contrast tissues that can not be identified in practice in a standard XCT image
Lambert, C. P. "Multimodal segmentation of deep cortical structures." Thesis, University College London (University of London), 2012. http://discovery.ucl.ac.uk/1344055/.
Full textCoimbra, Danilo Barbosa. "Segmentação de cenas em telejornais: uma abordagem multimodal." Universidade de São Paulo, 2011. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-28062011-103714/.
Full textThis work aims to develop a method for scene segmentation in digital video which deals with semantically complex segments. As proof of concept, we present a multimodal approach that uses a more general definition for TV news scenes, covering both: scenes where anchors appear on and scenes where no anchor appears. The results of the multimodal technique were significantly better when compared with the results from monomodal techniques applied separately. The tests were performed in four groups of Brazilian news programs obtained from two different television stations, containing five editions each, totaling twenty newscasts
Tochon, Guillaume. "Analyse hiérarchique d'images multimodales." Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAT100/document.
Full textThere is a growing interest in the development of adapted processing tools for multimodal images (several images acquired over the same scene with different characteristics). Allowing a more complete description of the scene, multimodal images are of interest in various image processing fields, but their optimal handling and exploitation raise several issues. This thesis extends hierarchical representations, a powerful tool for classical image analysis and processing, to multimodal images in order to better exploit the additional information brought by the multimodality and improve classical image processing techniques. %when applied to real applications. This thesis focuses on three different multimodalities frequently encountered in the remote sensing field. We first investigate the spectral-spatial information of hyperspectral images. Based on an adapted construction and processing of the hierarchical representation, we derive a segmentation which is optimal with respect to the spectral unmixing operation. We then focus on the temporal multimodality and sequences of hyperspectral images. Using the hierarchical representation of the frames in the sequence, we propose a new method to achieve object tracking and apply it to chemical gas plume tracking in thermal infrared hyperspectral video sequences. Finally, we study the sensorial multimodality, being images acquired with different sensors. Relying on the concept of braids of partitions, we propose a novel methodology of image segmentation, based on an energetic minimization framework
Gan, Rui. "Robust multimodal medical image registration and statistical cerebrovascular segmentation /." View abstract or full-text, 2006. http://library.ust.hk/cgi/db/thesis.pl?COMP%202006%20GAN.
Full textDamoni, Arben. "Multimodal segmentation for data mining applications in multimedia engineering." Thesis, London South Bank University, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.631732.
Full textHewa, Thondilege Akila Sachinthani Pemasiri. "Multimodal Image Correspondence." Thesis, Queensland University of Technology, 2022. https://eprints.qut.edu.au/235433/1/Akila%2BHewa%2BThondilege%2BThesis%281%29.pdf.
Full textKim, Eun Young Reinhardt Joseph M. Johnson Hans J. "Multistructure segmentation of multimodal brain images using artificial neural networks." [Iowa City, Iowa] : University of Iowa, 2009. http://ir.uiowa.edu/etd/387.
Full textKim, Eun Young. "Multistructure segmentation of multimodal brain images using artificial neural networks." Thesis, University of Iowa, 2009. https://ir.uiowa.edu/etd/387.
Full textHe, Linbo. "Improving 3D Point Cloud Segmentation Using Multimodal Fusion of Projected 2D Imagery Data : Improving 3D Point Cloud Segmentation Using Multimodal Fusion of Projected 2D Imagery Data." Thesis, Linköpings universitet, Datorseende, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-157705.
Full textSingh, Vivek Kumar. "Segmentation and classification of multimodal medical images based on generative adversarial learning and convolutional neural networks." Doctoral thesis, Universitat Rovira i Virgili, 2019. http://hdl.handle.net/10803/668445.
Full textEl objetivo principal de esta tesis es crear un sistema CAD avanzado para cualquier tipo de modalidad de imagen médica con altas tasas de sensibilidad y especificidad basadas en técnicas de aprendizaje profundo. Más concretamente, queremos mejorar el método automático de detección de las regiones de interés (ROI), que son áreas de la imagen que contienen posibles tejidos enfermos, así como la segmentación de los hallazgos (delimitación de la frontera) y, en definitiva, una predicción del diagnóstico más adecuado (clasificación). En esta tesis nos centramos en diversos campos, que incluyen mamografías y ecografías para diagnosticar un cáncer de mama, análisis de lesiones de la piel en imágenes dermoscòpiques y inspección del fondo de la retina para evitar la retinopatía diabética
The main aim of this thesis is to create an advanced CAD system for any type of medical image modality with high sensitivity and specificity rates based on deep learning techniques. More specifically, we want to improve the automatic method of detection of Regions of Interest (ROI), which are areas of the image that contain possible ill tissues, as well as segmentation of the findings (delimitation with a boundary), and ultimately, a prediction of a most suitable diagnose (classification). In this thesis, we focus on several topics including mammograms and ultrasound images to diagnose breast cancer, skin lesions analysis in dermoscopic images and retinal fundus images examination to avoid diabetic retinopathy.
Xu, Hao. "Probabilistic atlas statistical estimation with multimodal datasets and its application to atlas based segmentation." Palaiseau, Ecole polytechnique, 2014. http://pastel.archives-ouvertes.fr/docs/00/96/91/76/PDF/Thesis.pdf.
Full textComputerized anatomical atlases play an important role in medical image analysis. While an atlas usually refers to a standard or mean image also called template, that presumably represents well a given population, it is not enough to characterize the observed population in detail. A template image should be learned jointly with the geometric variability of the shapes represented in the observations. These two quantities will in the sequel form the atlas of the corresponding population. The geometric variability is modelled as deformations of the template image so that it fits the observations. In the first part of the work, we provide a detailed analysis of a new generative statistical model based on dense deformable templates that represents several tissue types observed in medical images. Our atlas contains both an estimation of probability maps of each tissue (called class) and the deformation metric. We use a stochastic algorithm for the estimation of the probabilistic atlas given a dataset. This atlas is then used for atlas-based segmentation method to segment the new images. Experiments are shown on brain T1 MRI datasets. Traditional analyses of Functional Magnetic Resonance Imaging use little anatomical information. The registration of the images to a template is based on the individual anatomy and ignores functional information; subsequently detected activations are not confined to gray matter. In the second part of the work, we propose a statistical model to estimate a probabilistic atlas from functional and T1 MRIs that summarizes both anatomical and functional information and the geometric variability of the population. Registration and Segmentation are performed jointly along the atlas estimation and the functional activity is constrained to the gray matter, increasing the accuracy of the atlas. Inferring protein abundances from peptide intensities is the key step in quantitative proteomics. The inference is necessarily more accurate when many peptides are taken into account for a given protein. Yet, the information brought by the peptides shared by different proteins is commonly discarded. In the third part of the work, we propose a statistical framework based on a hierarchical modeling to include that information. Our methodology, based on a simultaneous analysis of all the quantified peptides, handles the biological and technical errors as well as the peptide effect. In addition, we propose a practical implementation suitable for analyzing large datasets. Compared to a method based on the analysis of one protein at a time (that does not include shared peptides), our methodology proved to be far more reliable for estimating protein abundances and testing abundance changes
Zhang, Yifei. "Real-time multimodal semantic scene understanding for autonomous UGV navigation." Thesis, Bourgogne Franche-Comté, 2021. http://www.theses.fr/2021UBFCK002.
Full textRobust semantic scene understanding is challenging due to complex object types, as well as environmental changes caused by varying illumination and weather conditions. This thesis studies the problem of deep semantic segmentation with multimodal image inputs. Multimodal images captured from various sensory modalities provide complementary information for complete scene understanding. We provided effective solutions for fully-supervised multimodal image segmentation and few-shot semantic segmentation of the outdoor road scene. Regarding the former case, we proposed a multi-level fusion network to integrate RGB and polarimetric images. A central fusion framework was also introduced to adaptively learn the joint representations of modality-specific features and reduce model uncertainty via statistical post-processing.In the case of semi-supervised semantic scene understanding, we first proposed a novel few-shot segmentation method based on the prototypical network, which employs multiscale feature enhancement and the attention mechanism. Then we extended the RGB-centric algorithms to take advantage of supplementary depth cues. Comprehensive empirical evaluations on different benchmark datasets demonstrate that all the proposed algorithms achieve superior performance in terms of accuracy as well as demonstrating the effectiveness of complementary modalities for outdoor scene understanding for autonomous navigation
De, goussencourt Timothée. "Système multimodal de prévisualisation “on set” pour le cinéma." Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAT106/document.
Full textPreviz on-set is a preview step that takes place directly during the shootingphase of a film with special effects. The aim of previz on-set is to show to the film director anassembled view of the final plan in realtime. The work presented in this thesis focuses on aspecific step of the previz : the compositing. This step consists in mixing multiple images tocompose a single and coherent one. In our case, it is to mix computer graphics with an imagefrom the main camera. The objective of this thesis is to propose a system for automaticadjustment of the compositing. The method requires the measurement of the geometry ofthe scene filmed. For this reason, a depth sensor is added to the main camera. The data issent to the computer that executes an algorithm to merge data from depth sensor and themain camera. Through a hardware demonstrator, we formalized an integrated solution in avideo game engine. The experiments gives encouraging results for compositing in real time.Improved results were observed with the introduction of a joint segmentation method usingdepth and color information. The main strength of this work lies in the development of ademonstrator that allowed us to obtain effective algorithms in the field of previz on-set
Glatz, Andreas. "Characterisation and segmentation of basal ganglia mineralization in normal ageing with multimodal structural MRI." Thesis, University of Edinburgh, 2016. http://hdl.handle.net/1842/22905.
Full textSundelius, Carl. "Deep Fusion of Imaging Modalities for Semantic Segmentation of Satellite Imagery." Thesis, Linköpings universitet, Datorseende, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-145193.
Full textButko, Taras. "Feature selection for multimodal: acoustic event detection." Doctoral thesis, Universitat Politècnica de Catalunya, 2011. http://hdl.handle.net/10803/32176.
Full textLa detecció d'esdeveniments acústics (Acoustic Events -AEs-) que es produeixen naturalment en una sala de reunions pot ajudar a descriure l'activitat humana i social. La descripció automàtica de les interaccions entre els éssers humans i l'entorn pot ser útil per a proporcionar: ajuda implícita a la gent dins de la sala, informació sensible al context i al contingut sense requerir gaire atenció humana ni interrupcions, suport per a l'anàlisi d'alt nivell de l'escena acústica, etc. La detecció i la descripció d'activitat és una funcionalitat clau de les interfícies perceptives que treballen en entorns de comunicació humana com sales de reunions. D'altra banda, el recent creixement ràpid del contingut audiovisual disponible requereix l'existència d'eines per a l'anàlisi, indexació, cerca i recuperació dels documents existents. Donat un document d'àudio, el primer pas de processament acostuma a ser la seva segmentació (Audio Segmentation (AS)), és a dir, la partició de la seqüència d'entrada d'àudio en regions acústiques homogènies que s'etiqueten d'acord amb un conjunt predefinit de classes com parla, música, soroll, etc. De fet, l'AS pot ser vist com un cas particular de la detecció d’esdeveniments acústics, i així es fa en aquesta tesi. La detecció d’esdeveniments acústics (Acoustic Event Detection (AED)) és un dels objectius d'aquesta tesi. Es proposa tot una varietat de característiques que provenen no només de l'àudio, sinó també de la modalitat de vídeo, per fer front al problema de la detecció en dominis de sala de reunions i de difusió de notícies. En aquest treball s'investiguen dos enfocaments bàsics de detecció: 1) la realització conjunta de segmentació i classificació utilitzant models de Markov ocults (Hidden Markov Models (HMMs)) amb models de barreges de gaussianes (Gaussian Mixture Models (GMMs)), i 2) la detecció per classificació utilitzant màquines de vectors suport (Support Vector Machines (SVM)) discriminatives. Per al primer cas, en aquesta tesi es desenvolupa un algorisme de selecció de característiques ràpid d'un sol pas per tal de seleccionar, per a cada AE, el subconjunt de característiques multimodals que aconsegueix la millor taxa de detecció. L'AED en entorns de sales de reunió té com a objectiu processar els senyals recollits per micròfons distants i càmeres de vídeo per tal d'obtenir la seqüència temporal dels (possiblement superposats) esdeveniments acústics que s'han produït a la sala. Quan s'aplica als seminaris interactius amb un cert grau d'espontaneïtat, la detecció d'esdeveniments acústics a partir de només la modalitat d'àudio mostra una gran quantitat d'errors, que és sobretot a causa de la superposició temporal dels sons. Aquesta tesi inclou diverses contribucions pel que fa a la tasca d'AED multimodal. En primer lloc, l'ús de característiques de vídeo. Ja que en la modalitat de vídeo les fonts acústiques no se superposen (exceptuant les oclusions), les característiques proposades Resum iv milloren la detecció en els enregistraments en escenaris de caire espontani. En segon lloc, la inclusió de característiques de localització acústica, que, en combinació amb les característiques habituals d'àudio espectrotemporals, signifiquen nova millora en la taxa de reconeixement. En tercer lloc, la comparació d'estratègies de fusió a nivell de característiques i a nivell de decisions, per a la utilització combinada de les modalitats d'àudio i vídeo. En el darrer cas, les puntuacions de sortida del sistema es combinen fent ús de dos mètodes estadístics: la mitjana aritmètica ponderada i la integral difusa. D'altra banda, a causa de l'escassetat de dades multimodals anotades, i, en particular, de dades amb superposició temporal de sons, s'ha gravat i anotat manualment una nova base de dades multimodal amb una rica varietat d'AEs de sala de reunions, i s'ha posat a disposició pública per a finalitats d'investigació. Per a la segmentació d'àudio en el domini de difusió de notícies, es proposa una arquitectura jeràrquica de sistema, que agrupa apropiadament un conjunt de detectors, cada un dels quals correspon a una de les classes acústiques d'interès. S'han desenvolupat dos sistemes diferents de SA per a dues bases de dades de difusió de notícies: la primera correspon a gravacions d'àudio del programa de debat Àgora del canal de televisió català TV3, i el segon inclou diversos segments d'àudio del canal de televisió català 3/24 de difusió de notícies. La sortida del primer sistema es va utilitzar com a primera etapa dels sistemes de traducció automàtica i de subtitulat del projecte Tecnoparla, un projecte finançat pel govern de la Generalitat en el que es desenvoluparen diverses tecnologies de la parla per extreure tota la informació possible del senyal d'àudio. El segon sistema d'AS, que és un sistema de detecció jeràrquica basat en HMM-GMM amb selecció de característiques, ha obtingut resultats competitius en l'avaluació de segmentació d'àudio Albayzín2010. Per acabar, val la pena esmentar alguns resultats col·laterals d’aquesta tesi. L’autor ha sigut responsable de l'organització de l'avaluació de sistemes de segmentació d'àudio dins de la campanya Albayzín-2010 abans esmentada. S'han especificat les classes d’esdeveniments, les bases de dades, la mètrica i els protocols d'avaluació utilitzats, i s'ha realitzat una anàlisi posterior dels sistemes i els resultats presentats pels vuit grups de recerca participants, provinents d'universitats espanyoles i portugueses. A més a més, s'ha implementat en la sala multimodal de la UPC un sistema de detecció d'esdeveniments acústics per a dues fonts simultànies, basat en HMM-GMM, i funcionant en temps real, per finalitats de test i demostració.
Xu, Hao. "Estimation statistique d'atlas probabiliste avec les données multimodales et son application à la segmentation basée sur l'atlas." Phd thesis, Ecole Polytechnique X, 2014. http://pastel.archives-ouvertes.fr/pastel-00969176.
Full textAl, Madi Naser S. "A STUDY OF LEARNING PERFORMANCE AND COGNITIVE ACTIVITY DURING MULTIMODAL COMPREHENSION USING SEGMENTATION-INTEGRATION MODEL AND EEG." Kent State University / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=kent1416868268.
Full textLilja, Harald. "Semantic Scene Segmentation using RGB-D & LRF fusion." Thesis, Högskolan i Halmstad, CAISR Centrum för tillämpade intelligenta system (IS-lab), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-42239.
Full textHu, Zhihong. "Multimodal 3-D segmentation of optic nerve head structures from spectral domain Oct volumes and color fundus photographs." Diss., University of Iowa, 2011. https://ir.uiowa.edu/etd/3470.
Full textDUBOZ, AMANDINE. "The intention to use real-time multimodal information to change travel behaviour. The use of psychosocial variables for the market segmentation." Doctoral thesis, Politecnico di Torino, 2018. http://hdl.handle.net/11583/2711201.
Full textLecesne, Erwan. "Planification et assistance par fusion d'images multimodales pour l'optimisation de gestes de réparation tissulaire en insuffisance cardiaque." Electronic Thesis or Diss., Université de Rennes (2023-....), 2024. http://www.theses.fr/2024URENS001.
Full textThe research in this thesis is situated in the clinical context aimed at optimizing procedures during cardiac endoventricular interventions. This study primarily focuses on guidance for the diagnosis and treatment of endoventricular conditions using catheters. The specific intervention under consideration is the endoventricular biopsy used for diagnosing patients with cardiac sarcoidosis. Indeed, the catheter must be precisely guided to the fibrotic zone. However, the lack of precise visual information on the location of fibrosis during the intervention increases the risk of false negatives for the collected samples. Additionally, there is a risk of complications such as myocardial perforation, also known as cardiac tamponade. The objectives of this thesis are articulated in two distinct parts: The first part, preoperative, involves developing a 3D model of the heart, encompassing the left ventricle, right ventricle, and myocardium. This model is constructed from segmentations of MRI images, including cine sequences for the main structures and late gadolinium-enhanced (LGE) images to locate fibrotic zones. The segmentation methods developed rely on deep learning, and the fibrosis segmentation method is the subject of an ongoing publication. The second part, intraoperative, aims to assist the procedure by providing precise information about the anatomy and location of the fibrotic zone. This optimizes the positioning of the catheter on the periphery of this fibrotic zone, thereby contributing to improving the precision and efficiency of the intervention. Finally, the entire processing pipeline has been successfully tested on three patients, providing valuable feedback for clinicians. These advancements aim to reduce the risks associated with endoventricular biopsy and enhance the precision of cardiac sarcoidosis diagnosis, paving the way for significant progress in the management of this pathology
Wojak, Julien. "Analyse d'images multimodales TEP-TDM du thorax : Application à l'oncologie : segmentation de tumeurs, d'organes à risque et suivi longitudinal pour la radiothérapie." Paris, Télécom ParisTech, 2010. http://pastel.archives-ouvertes.fr/pastel-00567100.
Full textIn oncological thoracic imaging, computerized tomography (CT) and positron emission tomography (PET) are widely used jointly, for diagnosis or treatment planing. The development of combined scanners enables the acquisition of pairs of CT-PET volumes, allowing their joint exploitation in clinical routine, without the prerequisite for complex registration. One goal of this thesis work was to propose a segmentation method jointly exploiting PET and CT image information. The proposed methodology therefore focuses on a detailed segmentation of the CT images, using PET information to guide the tumor segmentation. The framework of variational segmentation methods is used to design our algorithms and the specific constraints based on PET information. In addition to target structures for radiotherapy (tumors, nodules), organs at risk which need to be preserved from radiations, must be segmented. An additional goal of this thesis is to provide segmentation methods for these organs. The methods rely on strong a priori knowledge on the non-parametric intensity distributions and on the shapes of the different organs. A final goal of the thesis is to propose a methodological framework for the segmentation of tumors in the context of longitudinal follow up of patients with registered images. The proposed segmentation methods were tested on multiple data sets. When manual tracing is available, quantitive comparisons of the segmentations are presented, demonstrating the performance and accuracy of the proposed segmentation framework
Toumoulin, Christine. "Traitement d'images multimodalite dans un reseau d'imagerie medicale : application a la segmentation d'images de radiologie numerique et de resonance magnetique." Rennes 1, 1987. http://www.theses.fr/1987REN10131.
Full textDaul, Christian. "Segmentation, recalage et reconstruction 3D de données.Traitement d'images médicales et industrielles." Habilitation à diriger des recherches, Institut National Polytechnique de Lorraine - INPL, 2008. http://tel.archives-ouvertes.fr/tel-00326078.
Full textMiri, Mohammad Saleh. "A multimodal machine-learning graph-based approach for segmenting glaucomatous optic nerve head structures from SD-OCT volumes and fundus photographs." Diss., University of Iowa, 2016. https://ir.uiowa.edu/etd/5574.
Full textBosc, Marcel. "Contribution à la détection de changements dans des séquences IRM 3D multimodales." Phd thesis, Université Louis Pasteur - Strasbourg I, 2003. http://tel.archives-ouvertes.fr/tel-00005163.
Full textHamadeh, Mohamad Ali. "Une approche unifiée pour la segmentation et la mise en correspondance 3D/2D d'images multimodales : application à l'étude cinématique 3D de la colonne vertébrale." Grenoble INPG, 1997. http://www.theses.fr/1997INPG0035.
Full textTobón, Gómez Catalina. "Three-dimensional statistical shape models for multimodal cardiac image analysis." Doctoral thesis, Universitat Pompeu Fabra, 2011. http://hdl.handle.net/10803/37473.
Full textCardiovascular diseases (CVDs) are the major cause of death in the Western world. The desire to prevent and treat CVDs has triggered a rapid development of medical imaging systems. As a consequence, the amount of imaging data collected in health care institutions has increased considerably. This fact has raised the need for automated analysis tools to support diagnosis with reliable and reproducible image interpretation. The interpretation task requires to translate raw imaging data into quantitative parameters, which are considered relevant to classify the patient’s cardiac condition. To achieve this task, statistical shape model approaches have found favoritism given the 3D (or 3D+t) nature of cardiovascular imaging datasets. By deforming the statistical shape model to image data from a patient, the heart can be analyzed in a more holistic way. Currently, the field of cardiovascular imaging is constituted by different modalities. Each modality exploits distinct physical phenomena, which allows us to observe the cardiac organ from different angles. Clinicians collect all these pieces of information to form an integrated mental model. The mental model includes anatomical and functional information to display a full picture of the patient’s heart. It is highly desirable to transform this mental model into a computational model able to integrate the information in a comprehensive manner. Generating such a model is not simply a visualization challenge. It requires having a methodology able to extract relevant quantitative parameters by applying the same principle. This assures that the measurements are directly comparable. Such a methodology should be able to: 1) accurately segment the cardiac cavities from multimodal datasets, 2) provide a unified frame of reference to integrate multiple information sources, and 3) aid the classification of a patient’s cardiac condition. This thesis builds upon the idea that statistical shape models, in particular Active Shape Models, are a robust and accurate approach with the potential to incorporate all these requirements. In order to handle multiple image modalities, we separate the statistical shape information from the appearance information. We obtain the statistical shape information from a high resolution modality and include the appearance information by simulating the physics of acquisition of other modalities. The contributions of this thesis can be summarized as: 1) a generic method to automatically construct intensity models for Active Shape Models based on simulating the physics of acquisition of the given imaging modality, 2) the first extension of a Magnetic Resonance Imaging (MRI) simulator tailored to produce realistic cardiac images, and 3) a novel automatic intensity model and reliability training strategy applied to cardiac MRI studies. Each of these contributions represents an article published or submitted to a peer-review archival journal.
DUMAS, EMMANUEL. "Elaboration d'outils de segmentation et de recalage d'images multimodales application a l'etude des accidents vasculaires cerebraux a partir d'angiographie irm chez le primate non humain." Caen, 2000. http://www.theses.fr/2000CAEN2005.
Full textChenoune, Yasmina. "Estimation des déformations myocardiques par analyse d'images." Thesis, Paris Est, 2008. http://www.theses.fr/2008PEST0014/document.
Full textThe work presented in this thesis is related to the cardiac images processing and the cardiac contractile function study, for a better comprehension of cardiac physiopathology and diagnosis. We implemented a method for the segmentation of the endocardial walls on standard MRI without tags. We used an approach based on the level set method, with a region-based formulation which gives satisfactory results on healthy and pathological cases. We proposed a practical method for the quantification of the segmental deformations in order to characterize the myocardial contractility. The method was clinically validated by the assesment of doctors and by comparison with the HARP method on tagget MRI. To improve the measurements precision, we proposed an iconic MRI/CT multimodal registration algorithm, using the maximization of the mutual information. We applied it to the localization of short-axis slices in CT volumes with good results. This work has as prospect its application to obtain high spatial and temporal resolutions CT sequences
Robert, Damien. "Efficient learning on large-scale 3D point clouds." Electronic Thesis or Diss., Université Gustave Eiffel, 2024. http://www.theses.fr/2024UEFL2003.
Full textFor the past decade, deep learning has been driving progress in the automated understanding of complex data structures as diverse as text, image, audio, and video. In particular, transformer-based models and self-supervised learning have recently ignited a global competition to learn expressive textual and visual representations by training the largest possible model on Internet-scale datasets, with the help of massive computational resources. This thesis takes a different path, by proposing resource-efficient deep learning methods for the analysis of large-scale 3D point clouds.The efficiency of the introduced approaches comes in various flavors: fast training, few parameters, small compute or memory footprint, and leveraging realistically-available data.In doing so, we strive to devise solutions that can be used by researchers and practitioners with minimal hardware requirements.We first introduce a 3D semantic segmentation model which combines the efficiency of superpoint-based methods with the expressivity of transformers. We build a hierarchical data representation which drastically reduces the size of the 3D point cloud parsing problem, facilitating the processing of large point clouds en masse. Our self-attentive network proves to match or even surpass state-of-the-art approaches on a range of sensors and acquisition environments, while boasting orders of magnitude fewer parameters, faster training, and swift inference.We then build upon this framework to tackle panoptic segmentation of large-scale point clouds. Existing instance and panoptic segmentation methods need to solve a complex matching problem between predicted and ground truth instances for computing their supervision loss.Instead, we frame this task as a scalable graph clustering problem, which a small network is trained to address from local objectives only, without computing the actual object instances at train time. Our lightweight model can process ten-million-point scenes at once on a single GPU in a few seconds, opening the door to 3D panoptic segmentation at unprecedented scales. Finally, we propose to exploit the complementarity of image and point cloud modalities to enhance 3D scene understanding.We place ourselves in a realistic acquisition setting where multiple arbitrarily-located images observe the same scene, with potential occlusions.Unlike previous 2D-3D fusion approaches, we learn to select information from various views of the same object based on their respective observation conditions: camera-to-object distance, occlusion rate, optical distortion, etc. Our efficient implementation achieves state-of-the-art results both in indoor and outdoor settings, with minimal requirements: raw point clouds, arbitrarily-positioned images, and their cameras poses. Overall, this thesis upholds the principle that in data-scarce regimes,exploiting the structure of the problem unlocks both efficient and performant architectures
Mozaffari, Maaref Mohammad Hamed. "A Real-Time and Automatic Ultrasound-Enhanced Multimodal Second Language Training System: A Deep Learning Approach." Thesis, Université d'Ottawa / University of Ottawa, 2020. http://hdl.handle.net/10393/40477.
Full textDahbi, Radouan. "Conception d’une chaîne de traitements pour la segmentation texture d’images multimodales de pièces de bois en chêne. Application à la détection des singularités et la discrimination du grain du bois." Electronic Thesis or Diss., Université de Lorraine, 2023. http://www.theses.fr/2023LORR0143.
Full textThe work presented in this CIFRE thesis, associating CRAN and CRITT Bois for the ANR-OPTIFIN project, contributes to the development of an image processing chain for the texture segmentation of multimodal images of sawn oak timber pieces. The idea is to combine multimodal acquisition techniques in visible and near-infrared (NIR) range with texture analysis methods using covariance matrices and texture segmentation methods in the Riemannian manifold, for the detection of singularities and discrimination of wood grain. In the first chapter, we present a state of the art on automated inspection of wood pieces; with a special focus on hardwood species (e.g. oak) for which inspection is still an open problem. The second chapter deals with the implementation of the multimodal imagery platform (PIM) and the calibration of color, grayscale, direct and scatter images in the visible range and abundance maps, obtained from NIR hyperspectral images. We propose an original methodology for the scatter images by optimizing the acquisition parameters on sawn oak timber pieces. The third chapter concerns the study of the registration of monomodal and multimodal images and the application of a method for the suppression of their background. In the fourth chapter, we propose a texture analysis methodology based on the fusion of multimodal images and/or their textural images (LBP, nriLBP, GLCM and Gradient) by covariance matrices. We exploit the covariance matrices by K-means clustering andk-ppv supervised classification methods, extended to the Riemannian case, for segmentation. In the last chapter, we present results ensuring a relevant and fast segmentation of the covariance matrices. They are obtained after having determined the best parameters for the K-means setting. The clustering results show that the use of multimodal images alone leads to an optimal segmentation of compact singularities. They also show the importance of integrating textural images in the modality sets to obtain a better segmentation of regional type singularities. For wood grain, an efficient segmentation is obtained by using only textural images. Finally, we propose to apply k-ppv in the Riemannian manifold on the selected modalities to obtain a more accurate segmentation
Saleh, Mohamed Ibrahim. "Using Ears for Human Identification." Thesis, Virginia Tech, 2007. http://hdl.handle.net/10919/33158.
Full textMaster of Science
Fernández, Abenoza Roberto. "Improving Travel Satisfaction with Public Transport." Licentiate thesis, KTH, Systemanalys och ekonomi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-200734.
Full textKontinuerlig urban tillväxt, miljöproblem, konkurrens om begränsat utrymme, längre pendlingsavstånd samt behovet av att främja rättvisa och jämlikhet i samhället är de främsta anledningarna till förbättringar av kollektivtrafikens (KT) tjänster och attraktionskraft för att få fler resenärer att byta från bil till KT och därmed en viktig politisk fråga i många länder över hela världen. Den befintliga kopplingen mellan KT-resenärens tillfredsställelse, antalet passagerare och lojalitet visar betydelsen av att förbättra resans övergripande tillfredsställelse. De tre artiklar som ingår i denna licentiatavhandling presenterar en rad tillvägagångssätt och metoder som syftar till att öka den totala tillfredsställelsen med KT i ”från dörr till dörr”-resor samt täcker viktiga frågor som tidigare forskning har misslyckats med att ta itu med. Dessa kunskapsluckor inkluderar de olika behov och prioriteringar som olika typer av resenärer har, utveckling över tid och över geografiska områden som total tillfredsställelse och tillfredsställelse med specifika serviceattribut kan påverkas av samt försummelsen av resans av- och påstigningsdelar. Baserat på den svenska kundtillfredsställelsebarometern Svensk Kollektivtrafikbarometer (SKT) visar en undersökning av bestämningsfaktorerna för KT- tillfredsställelse och deras utveckling över tiden för KT-användare under åren 2001-2013 att (Artikel I): a) det skett en försämring av den sammanlagda tillfredsställelsen med KT i Sverige under de senaste åren som drivits av en minskning av tillfredsställelsen med kundgränssnittet och resans tid; b) att dessa två serviceaspekter samt drift är helt avgörande för övergripande tillfredsställelse och som resenärer konsekvent graderar bland de minst tillfredsställande. Mångfalden av behov och prioriteringar för SKT-resenärer reducerades till 5 distinkta multimodala resenärsgrupper (Artikel II). Dessa resenärsgrupper uppvisade geografiska skillnader och en i mellan-grupper övergripande likhet i vikt som fästs vid serviceattribut. Likväl kan några märkbara skillnader observeras. Serviceattributens betydelse avslöjar övergripande förändringar i uppskattnings- och konsumtionsmål över tid. De mer frekventa KT-användarsegmenten är mer nöjda över hela spektret och kännetecknas av en mer balanserad fördelning av attributens betydelse, medan en av grupperna – bilpendlare på landsbygden - är markant missnöjda med service- och driftattribut. Ett antal både normativa och heuristiska regler för aggregerad tillfredsställelse testas på METPEX-data (A Measurement Tool to determine the quality of the Passenger EXperience) för olika typer av resekonfigurationer (Artikel III). Detta görs för att förstå hur resenärer kombinerar delresors tillfredsställelse i en övergripande utvärdering av hela resan och för att undersöka den relativa betydelsen av tillfredsställelse med påstignings-, huvud- och avstigningsdel för hela reseupplevelsen i ”från dörr till dörr”-resor. Resultaten visar att normativa regler bättre kan återge övergripande resetillfredsställelse än heuristiska regler, vilket tyder på att alla resans delar måste beaktas när man utvärderar den samlade reseupplevelsen. I synnerhet ger viktning av tillfredsställelse med individuella delresor och de upplevda delresornas restider den bästa predikatorn för övergripande resetillfredsställelse, särskilt vid tillämpning av en väntetidsvikt på 3 eller 4 gånger i fordons- eller gångtid. Denna uppsättning artiklar skulle kunna hjälpa myndigheter att bättre utvärdera och tillgodose resenärernas behov genom att stödja tilldelning av resurser och prioriterandet av åtgärder i den mest effektfulla delen i en ”från dörr till dörr”-resa.
El rápido crecimiento urbano, problemas medioambientales, la competencia por el uso de espacios cada vez más limitados, el aumento de la distancia en los viajes pendulares así como la necesidad de fomentar una sociedad más equitativa e igualitaria, son algunas de las principales razones que hacen de la mejora de los servicios de transporte público (TP) y del trasvase de usuarios del transporte privado motorizado al TP una política clave en muchos países del mundo. La relación existente entre la mejora de la satisfacción del usuario de TP con el incremento de usuarios y de su fidelidad, prueban la importancia de mejorar la satisfacción global del usuario con el viaje. Los tres artículos incluidos en esta tesis de mitad de doctorado, en Suecia Licentiate thesis, presentan un variedad de enfoques y métodos que tienen como objetivo incrementar la satisfacción global con los viajes de puerta a puerta (desde el origen hasta el destino final) en los que el transporte público está involucrado, a la par de cubrir cuestiones importantes que no han abordado estudios previos. Estas lagunas de conocimientos incluyen: ignorar las distintas prioridades y necesidades de distintos tipos de viajeros; pasar por alto que tanto la satisfacción global con el viaje como la satisfacción con los atributos específicos del servicio pueden experimentar cambios a lo largo del tiempo y entre diversas zonas geográficas; y, el obviar la importancia que otras etapas del viaje (acceso y egreso), diferentes a la principal, pueden ejercer sobre la valoración global del viaje. Basado en el barómetro sueco de satisfacción del usuario de transporte público (SKT), se estudian los determinantes de la satisfacción con el TP y su evolución temporal, para usuarios de TP y para el período 2001-2013 (Artículo I). El artículo muestra que: a) el deterioro de la satisfacción global con el TP sueco experimentado en los últimos años se debe a la disminución de la satisfacción con el modo en el que la agencia de TP gestiona las quejas y el trato con los usuarios (customer interface), y de la duración del viaje (length of trip time); b) frequencia y la fiabilidad del servicio (operation) se suman a los dos ya mencionados atributos del servicio como factores determinantes de la satisfacción global con el TP. Son precisamente estos tres atributos los que consistentemente reciben unas valoraciones situadas entre las menos satisfactorias. Basándose en las características de tipo socio-económico, en las del viaje y en coeficientes de accesibilidad, se obtienen cinco grupos de viajeros multimodales relativamente homogéneos, los cuales ayudan a simplificar la complejidad existente, en términos de necesidades y prioridades, de todos los viajeros suecos - SKT (Artículo II). Los cinco grupos de viajeros exhiben disparidades geográficas y, en general, una semejanza entre grupos en la importancia atribuida a los atributos del servicio. Sin embargo, existen algunas diferencias notorias. A lo largo del tiempo, los niveles de importancia de los atributos del servicio revelan cambios generales en las apreciaciones y objetivos de consumo. Los grupos de viajeros que viajan más frecuentemente con transporte público están, de forma generalizada, más satisfechos con el viaje y muestran una distribución más equilibrada de la importancia dada a los atributos del servicio. Se hace destacable la marcada insatisfacción que uno de los grupos – los automovilistas rurales pendulares (rural motorist commuters)- muestran con los atributos relacionados con la operación (fiabilidad y frequencia). Una serie de reglas de agregación de la satisfacción del viajero, tanto normativas como heurísticas, son examinadas en el conjunto de datos de METPEX (Una herramienta de medición para determinar la calidad de la experiencia del viajero) para distintos tipos de configuraciones de viaje (Artículo III). El objetivo de este artículo es; entender como los viajeros combinan la satisfacción con cada una de las etapas del viaje en su valoración global del viaje, e investigar la importancia relativa que cada una de las tres etapas del viaje (acceso, principal y egreso) tienen sobre la experiencia de un viaje completo de puerta a puerta. Los resultados muestran que, en comparación con las reglas heurísticas, las reglas normativas pueden reproducir de una mejor manera la satisfacción global con el viaje; indicando que todas las etapas del viaje necesitan ser consideradas cuando se evalúa la experiencia global del viaje. En particular la ponderación de la satisfacción con cada una de los segmentos del viaje[1] con la duración percibida para cada una de los segmentos del viaje produce el mejor indicador de la satisfacción global del viaje, especialmente cuando se aplica una penalización por cada minuto de espera equivalente a 3 o 4 veces el tiempo en movimiento y/o caminando. Éste conjunto de artículos pretende ayudar a las operadores y autoridades pertinentes a evaluar y proveer de la mejor manera posible las necesidades de los viajeros mediante la priorización de medidas y asignación de recursos a la parte más relevante del viaje multimodal puerta a puerta. [1] Un segmento del viaje (trip leg) es la parte más pequeña en la que se descompone un viaje de puerta a puerta. Una etapa del viaje puede estar compuesta de uno o más segmentos del viaje.
QC 20170202
Lopez-Hernandez, Juan. "Imagerie Cardiaque Multimodalités 2D et 3D :application à la Coronarographie/Tomoscintigraphie/TEP-CT." Phd thesis, Institut National Polytechnique de Lorraine - INPL, 2006. http://tel.archives-ouvertes.fr/tel-00118991.
Full textTomography") sont deux techniques d'imagerie utilisées couramment pour diagnostiquer les maladies
cardiovasculaires. La première modalité est constituée de séquences d'images à rayon X visualisant chacune,
dans un même plan, les artères coronaires situées sur la face avant et la face arrière du coeur. Les images à
rayons X fournissent des informations anatomiques liées à l'arbre artériel et mettent en évidence d'éventuels
rétrécissements des artères (sténoses). La modalité SPECT (imagerie nucléaire) fournit une représentation 3D
de la perfusion du volume myocardique. Cette information fonctionnelle permet la visualisation de régions
myocardiques souffrant de défauts d'irrigations. Le but du travail présenté est de superposer, en 3D, les
informations fonctionnelles et anatomiques pour établir un lien visuel entre des lésions artérielles et leurs
conséquences en termes de défauts d'irrigation. Dans la représentation 3D choisie pour faciliter le diagnostic, la
structure d'un arbre artériel schématique, comprenant les sténoses, est placée sur le volume de perfusion. Les
données initiales sont constituées d'une liste de points représentatifs de l'arbre artériel (points d'arrivée et de
départs de segments d'artères, bifurcations, sténoses, etc.) marqués par le coronarographiste dans les images à
rayons X des différentes incidences. Le volume de perfusion est ensuite projeté sous les incidences des images
de coronarographie. Un algorithme de recalage superposant les images à rayons X et les projections SPECT
correspondantes fournit les paramètres des transformations géométriques ramenant les points marqués dans les
images à rayons X dans une position équivalente dans les images SPECT. Un algorithme de reconstruction 3D
permet ensuite de placer les points artériels et les sténoses sur le volume de perfusion et de former un arbre
schématique servant de repère au clinicien. Une base de données formée de 28 patients a été utilisée pour
effectuer 40 superpositions 3D de données anatomo-fonctionnelles. Ces reconstructions ont montré que la
représentation 3D est suffisamment précise pour permettre d'établir visuellement un lien entre sténoses et
défauts de perfusions. Nos algorithmes de superpositions 3D ont ensuite été complétés pour remplacer la
modalité SPECT par les données de l'examen bimodal TEP/CT (Tomographie par Emission de
Positons/Tomodensitométrie). Les données d'un cas clinique trimodal TEP/CT/coronarographie ont été utilisées
pour vérifier l'adéquation de nos algorithmes à la nouvelle modalité d'imagerie.