Academic literature on the topic 'Segmentation histologique de tumeur'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Segmentation histologique de tumeur.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Segmentation histologique de tumeur"
Ndiaye, M., B. Sine, AM Gaye, N. Seck Ndour, A. Sarr, C. Zé Ondo, Y. Sow, B. Diao, and AK Ndoye. "C10: Tumeur rénale de l’adulte : Facteurs de risque et aspects histopathologiques dans notre centre." African Journal of Oncology 2, no. 1 Supplement (March 1, 2022): S6. http://dx.doi.org/10.54266/ajo.2.1s.c10.tpbicalij6.
Full textTraoré, Drissa, and Et Al. "Actinomycose abdominale simulant une tumeur pariétale." Revue Malienne d'Infectiologie et de Microbiologie 16, no. 3 (January 12, 2022): 33–35. http://dx.doi.org/10.53597/remim.v16i3.2025.
Full textUnterweger, Caduff, Ochsenbein-Imhof, and Kubik-Huch. "Vaginales granulozytäres Sarkom: CT und MR Bildgebung." Praxis 91, no. 9 (February 1, 2002): 367–70. http://dx.doi.org/10.1024/0369-8394.91.9.367.
Full textChollet, P., S. Amat, H. Curé, J. –L Achard, M. A. Mouret–Reynier, J. Dauplat, and F. Penault–Llorca. "Importance de la tumeur résiduelle et de la rémission histologique complète." ONCOLOGIE 6, no. 3 (May 2004): 181–85. http://dx.doi.org/10.1007/s10269-004-0034-7.
Full textWassef, M. "Démarche diagnostique devant une tumeur des glandes salivaires, approche par profil histologique." Annales de Pathologie 27 (November 2007): 71–74. http://dx.doi.org/10.1016/s0242-6498(07)92871-0.
Full textAbbassi, I. El, F. Atfi, A. Lamrissi, K. Fichtali, and S. Bouhya. "LENDOMETRIOSE PERINEALE : A PROPOS DUN CAS." International Journal of Advanced Research 9, no. 12 (December 31, 2021): 829–32. http://dx.doi.org/10.21474/ijar01/13980.
Full textGaye, AM, F. Senghor, MCN Odah, GNC Déguénonvo, M. Gueye, I. Thiam, and MCM Dial. "C57: Caractéristiques clinicopathologiques des tumeurs de la granulosa de l'ovaire à Dakar." African Journal of Oncology 2, no. 1 Supplement (March 1, 2022): S25. http://dx.doi.org/10.54266/ajo.2.1s.c57.uezo4390.
Full textEngeler and Schmid. "Das Blasenkarzinom – eine aktuelle Übersicht." Praxis 92, no. 4 (January 1, 2003): 117–26. http://dx.doi.org/10.1024/0369-8394.92.4.117.
Full textDiagne, Ndèye Marième, Abadacar Mbengue, Bineta Ndiaye, Modeste Ogougbemy, Fatou Fall, and Abdou Rajack Ndiaye. "Prognosis of gastrointestinal stromal tumors at the main hospital of Dakar." Batna Journal of Medical Sciences (BJMS) 6, no. 2 (December 30, 2019): 97–103. http://dx.doi.org/10.48087/bjmsoa.2019.6204.
Full textDéguénonvo, GNC, A. Sow, and CMM Dial. "C86: Rhabdomyosarcomes de localisations inhabituelles : A propos de deux cas colligés au laboratoire d'Anatomie Pathologique à l'Hôpital Général Idrissa Pouye." African Journal of Oncology 2, no. 1 Supplement (March 1, 2022): S35—S36. http://dx.doi.org/10.54266/ajo.2.1s.c86.ioqi5122.
Full textDissertations / Theses on the topic "Segmentation histologique de tumeur"
Lerousseau, Marvin. "Weakly Supervised Segmentation and Context-Aware Classification in Computational Pathology." Electronic Thesis or Diss., université Paris-Saclay, 2022. http://www.theses.fr/2022UPASG015.
Full textAnatomic pathology is the medical discipline responsible for the diagnosis and characterization of diseases through the macroscopic, microscopic, molecular and immunologic inspection of tissues. Modern technologies have made possible the digitization of tissue glass slides into whole slide images, which can themselves be processed by artificial intelligence to enhance the capabilities of pathologists. This thesis presented several novel and powerful approaches that tackle pan-cancer segmentation and classification of whole slide images. Learning segmentation models for whole slide images is challenged by an annotation bottleneck which arises from (i) a shortage of pathologists, (ii) an intense cumbersomeness and boring annotation process, and (iii) major inter-annotators discrepancy. My first line of work tackled pan-cancer tumor segmentation by designing two novel state-of-the-art weakly supervised approaches that exploit slide-level annotations that are fast and easy to obtain. In particular, my second segmentation contribution was a generic and highly powerful algorithm that leverages percentage annotations on a slide basis, without needing any pixelbased annotation. Extensive large-scale experiments showed the superiority of my approaches over weakly supervised and supervised methods for pan-cancer tumor segmentation on a dataset of more than 15,000 unfiltered and extremely challenging whole slide images from snap-frozen tissues. My results indicated the robustness of my approaches to noise and systemic biases in annotations. Digital slides are difficult to classify due to their colossal sizes, which range from millions of pixels to billions of pixels, often weighing more than 500 megabytes. The straightforward use of traditional computer vision is therefore not possible, prompting the use of multiple instance learning, a machine learning paradigm consisting in assimilating a whole slide image as a set of patches uniformly sampled from it. Up to my works, the greater majority of multiple instance learning approaches considered patches as independently and identically sampled, i.e. discarded the spatial relationship of patches extracted from a whole slide image. Some approaches exploited such spatial interconnection by leveraging graph-based models, although the true domain of whole slide images is specifically the image domain which is more suited with convolutional neural networks. I designed a highly powerful and modular multiple instance learning framework that leverages the spatial relationship of patches extracted from a whole slide image by building a sparse map from the patches embeddings, which is then further processed into a whole slide image embedding by a sparse-input convolutional neural network, before being classified by a generic classifier model. My framework essentially bridges the gap between multiple instance learning, and fully convolutional classification. I performed extensive experiments on three whole slide image classification tasks, including the golden task of cancer pathologist of subtyping tumors, on a dataset of more than 20,000 whole slide images from public data. Results highlighted the superiority of my approach over all other widespread multiple instance learning methods. Furthermore, while my experiments only investigated my approach with sparse-input convolutional neural networks with two convolutional layers, the results showed that my framework works better as the number of parameters increases, suggesting that more sophisticated convolutional neural networks can easily obtain superior results
Clément, Nathalie. "Les tumeurs papillaires du pancréas : étude histologique, immunohistochimique et ultrastructurale : à propos de trois observations." Aix-Marseille 2, 1988. http://www.theses.fr/1988AIX20296.
Full textBAILLY, PASCALE. "Etude clinique, radiologique et histologique d'une serie de 31 cas de cystadenomes, tumeurs mucineuses frontieres et cyctadenocarcinomes du pancreas." Besançon, 1991. http://www.theses.fr/1991BESA3051.
Full textLeonardi, Valentin. "Modélisation dynamique et suivi de tumeur dans le volume rénal." Thesis, Aix-Marseille, 2014. http://www.theses.fr/2014AIXM4056/document.
Full textThis Ph.D. thesis deals with the 3D dynamic modeling of the kidney and tracking a tumor of this organ. It is in line with the KiTT project (Kidney Tumor Tracking) which gathers researchers from different fileds: geometric modeling, radiology and urology. This work arised from the tendency of nowadays surgical gestures to be less and less invasive (HIFU, coelioscopy). Its goal is to result in a totally non-invasive protocol of kidney tumors eradication by transmitting ultrasound waves through the skin without breaking in it. As the kidney presents motions and deformations during the breathing phase, the main issue is to know the kidney and tumor positions at any time in order to adjust the waves accordingly
Gerin, Chloé. "Modélisation et étude histologique de gliomes diffus de bas grade." Phd thesis, Université Paris-Diderot - Paris VII, 2012. http://tel.archives-ouvertes.fr/tel-00820353.
Full textEsneault, Simon. "Planning pour la thérapie de tumeur du foie par ultrasons haute intensité." Phd thesis, Université Rennes 1, 2009. http://tel.archives-ouvertes.fr/tel-00497749.
Full textStawiaski, Jean. "Morphologie mathématique et graphes : application à la segmentation interactive d'images médicales." Phd thesis, École Nationale Supérieure des Mines de Paris, 2008. http://pastel.archives-ouvertes.fr/pastel-00004807.
Full textZhang, Nan. "Feature selection based segmentation of multi-source images : application to brain tumor segmentation in multi-sequence MRI." Phd thesis, INSA de Lyon, 2011. http://tel.archives-ouvertes.fr/tel-00701545.
Full textKhotanlou, Hassan. "Segmentation 3D de tumeurs et de structures internes du cerveau en IRM." Phd thesis, Télécom ParisTech, 2008. http://pastel.archives-ouvertes.fr/pastel-00003662.
Full textSignolle, Nicolas. "Approches multiéchelles pour la segmentation de très grandes images : application à la quantification de biomarqueurs en histopathologie cancérologique." Phd thesis, Université de Caen, 2009. http://tel.archives-ouvertes.fr/tel-01073319.
Full textConference papers on the topic "Segmentation histologique de tumeur"
Sergheraert, J., S. Grenier, C. Mauprivez, B. Lefevre, and S. Laurence. "Cystadénome papillaire d’une glande salivaire accessoire. A propos d’un cas." In 66ème Congrès de la SFCO. Les Ulis, France: EDP Sciences, 2020. http://dx.doi.org/10.1051/sfco/20206602011.
Full textde Cidrac, L., L. Radoï, R. Pecorari, and T. Nguyen. "Tumeur à cellules géantes : à propos d’un cas récidivant et agressif à localisation mandibulaire." In 66ème Congrès de la SFCO. Les Ulis, France: EDP Sciences, 2020. http://dx.doi.org/10.1051/sfco/20206603021.
Full textGossiome, C., F. Rufino, G. Herve, M. Benassarou, P. Goudot, V. Descroix, and G. Lescaille. "Découverte fortuite d’une lésion mandibulaire, un cas de kyste anévrismal." In 66ème Congrès de la SFCO. Les Ulis, France: EDP Sciences, 2020. http://dx.doi.org/10.1051/sfco/20206603020.
Full text