Dissertations / Theses on the topic 'Segmentation; Feature tracking; Computer vision'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Segmentation; Feature tracking; Computer vision.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Wiles, Charles S. "Closing the loop on multiple motions." Thesis, University of Oxford, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.320152.
Full textGraves, Alex. "GPU-Accelerated Feature Tracking." Wright State University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=wright1462372516.
Full textMöller, Sebastian. "Image Segmentation and Target Tracking using Computer Vision." Thesis, Linköpings universitet, Datorseende, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-68061.
Full textI detta examensarbete undersöks möjligheterna att detektera och spåra intressanta objekt i multispektrala infraröda videosekvenser. Den nuvarande metoden, som använder sig av rektanglar med fix storlek, har sina nackdelar. Dessa nackdelar kommer att lösas med hjälp av bildsegmentering för att uppskatta formen på önskade mål.Utöver detektering och spårning försöker vi också att hitta formen och konturen för intressanta objekt för att kunna använda den exaktare passformen vid kontrastberäkningar. Denna framsegmenterade kontur ersätter de gamla fixa rektanglarna som använts tidigare för att beräkna intensitetskontrasten för objekt i de infraröda våglängderna. Resultaten som presenteras visar att det för vissa objekt, som motmedel och facklor, är lättare att få fram en bra kontur samt målföljning än vad det är med helikoptrar, som var en annan önskad måltyp. De svårigheter som uppkommer med helikoptrar beror till stor del på att de är mycket svalare vilket gör att delar av helikoptern kan helt döljas i bruset från bildsensorn. För att kompensera för detta används metoder som utgår ifrån att objektet rör sig mycket i videon så att rörelsen kan användas som detekteringsparameter. Detta ger bra resultat för de videosekvenser där målet rör sig mycket i förhållande till sin storlek.
Rowe, Simon Michael. "Robust feature search for active tracking." Thesis, University of Oxford, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.318616.
Full textPretorius, Eugene. "An adaptive feature-based tracking system." Thesis, Link to the online version, 2008. http://hdl.handle.net/10019/1441.
Full textLan, Xiangyuan. "Multi-cue visual tracking: feature learning and fusion." HKBU Institutional Repository, 2016. https://repository.hkbu.edu.hk/etd_oa/319.
Full textSun, Shijun. "Video object segmentation and tracking using VSnakes /." Thesis, Connect to this title online; UW restricted, 2000. http://hdl.handle.net/1773/6038.
Full textRoberts, Jonathan Michael. "Attentive visual tracking and trajectory estimation for dynamic scene segmentation." Thesis, University of Southampton, 1994. https://eprints.soton.ac.uk/250163/.
Full textRoychoudhury, Shoumik. "Tracking Human in Thermal Vision using Multi-feature Histogram." Master's thesis, Temple University Libraries, 2012. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/203794.
Full textM.S.E.E.
This thesis presents a multi-feature histogram approach to track a person in thermal vision. Illumination variation is a primary constraint in the performance of object tracking in visible spectrum. Thermal infrared (IR) sensor, which measures the heat energy emitted from an object, is less sensitive to illumination variations. Therefore, thermal vision has immense advantage in object tracking in varying illumination conditions. Kernel based approaches such as mean shift tracking algorithm which uses a single feature histogram for object representation, has gained popularity in the field of computer vision due its efficiency and robustness to track non-rigid object in significant complex background. However, due to low resolution of IR images the gray level intensity information is not sufficient enough to give a strong cue for object representation using histogram. Multi-feature histogram, which is the combination of the gray level intensity information and edge information, generates an object representation which is more robust in thermal vision. The objective of this research is to develop a robust human tracking system which can autonomously detect, identify and track a person in a complex thermal IR scene. In this thesis the tracking procedure has been adapted from the well-known and efficient mean shift tracking algorithm and has been modified to enable fusion of multiple features to increase the robustness of the tracking procedure in thermal vision. In order to identify the object of interest before tracking, rapid human detection in thermal IR scene is achieved using Adaboost classification algorithm. Furthermore, a computationally efficient body pose recognition method is developed which uses Hu-invariant moments for matching object shapes. An experimental setup consisting of a Forward Looking Infrared (FLIR) camera, mounted on a Pioneer P3-DX mobile robot platform was used to test the proposed human tracking system in both indoor and uncontrolled outdoor environments. The performance evaluation of the proposed tracking system on the OTCBVS benchmark dataset shows improvement in tracking performance in comparison to the traditional mean-shift tracking algorithm. Moreover, experimental results in different indoor and outdoor tracking scenarios involving different appearances of people show tracking is robust under cluttered background, varying illumination and partial occlusion of target object.
Temple University--Theses
Fang, Jian. "Optical Imaging and Computer Vision Technology for Corn Quality Measurement." OpenSIUC, 2011. https://opensiuc.lib.siu.edu/theses/733.
Full textJackson, Jeremy D. "Layered Deformotion with Radiance: A Model for Appearance, Segmentation, Registration, and Tracking." Diss., Available online, Georgia Institute of Technology, 2007, 2007. http://etd.gatech.edu/theses/available/etd-07092007-104249/.
Full textVela, Patricio, Committee Member ; Tannenbaum, Allen, Committee Member ; Yezzi, Anthony, Committee Chair ; Turk, Greg, Committee Member ; Lanterman, Aaron, Committee Member.
Ozertem, Kemal Arda. "Vision-assisted Object Tracking." Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614073/index.pdf.
Full textfor moving object detection, two different background modeling methods are developed. The second part is feature extraction and estimation of optical flow between video frames. As the feature extraction method, a well-known corner detector algorithm is employed and this extraction is applied only at the moving regions in the scene. For the feature points, the optical flow vectors are calculated by using an improved version of Kanade Lucas Tracker. The resulting optical flow field between consecutive frames is used directly in proposed tracking method. In the third part, a particle filter structure is build to provide tracking process. However, the particle filter is improved by adding optical flow data to the state equation as a correction term. In the last part of the study, the performance of the proposed approach is compared against standard implementations particle filter based trackers. Based on the simulation results in this study, it could be argued that insertion of vision-based optical flow estimation to tracking formulation improves the overall performance.
Arif, Omar. "Robust target localization and segmentation using statistical methods." Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/33882.
Full textKrieger, Evan. "Adaptive Fusion Approach for Multiple Feature Object Tracking." University of Dayton / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=dayton15435905735447.
Full textHou, Yali, and 侯亚丽. "Video-based people counting and crowd segmentation." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2011. http://hub.hku.hk/bib/B47032339.
Full textDambreville, Samuel. "Statistical and geometric methods for shape-driven segmentation and tracking." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/22707.
Full textCommittee Chair: Allen Tannenbaum; Committee Member: Anthony Yezzi; Committee Member: Marc Niethammer; Committee Member: Patricio Vela; Committee Member: Yucel Altunbasak.
Pal, Chris. "A Probabilistic Approach to Image Feature Extraction, Segmentation and Interpretation." Thesis, University of Waterloo, 2000. http://hdl.handle.net/10012/1049.
Full textParks, Matthew Raymond. "Vision-Based Self-Motion Estimation in a Fixed-Wing Aerial Vehicle." Thesis, Virginia Tech, 2006. http://hdl.handle.net/10919/33855.
Full textThis paper describes a complete algorithm to estimate the motion of a fixed-wing aircraft given a series of digitized flight images. The algorithm was designed for fixed-wing aircraft because carefully procured flight images and corresponding navigation data were available to us for testing. After image pre-processing, optic flow data is determined by automatically finding and tracking good features between pairs of images. The image coordinates of matched features are then processed by a rigid-object linear optic flow-motion estimation algorithm. Input factors are weighed to provide good testing techniques. Error analysis is performed with simulation data keeping these factors in mind to determine the effectiveness of the optic flow algorithm. The output of this program is an estimate of rotation and translation of the imaged environment in relation to the camera, and thereby the airplane. Real flight images from NASA test flights are used to confirm the accuracy of the algorithm. Where possible, the estimated motion parameters are compared with recorded flight instrument data to confirm the correctness of the algorithm. Results show that the algorithm is accurate to within a degree provided that enough optic flow feature points are tracked.
Master of Science
Tran, Antoine. "Object representation in local feature spaces : application to real-time tracking and detection." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLY010/document.
Full textVisual representation is a fundamental problem in computer vision. The aim is to reduce the information to the strict necessary for a query task. Many types of representation exist, like color features (histograms, color attributes...), shape ones (derivatives, keypoints...) or filterbanks.Low-level (and local) features are fast to compute. Their power of representation are limited, but their genericity have an interest for autonomous or multi-task systems, as higher level ones derivate from them. We aim to build, then study impact of low-level and local feature spaces (color and derivatives only) for two tasks: generic object tracking, requiring features robust to object and environment's aspect changes over the time; object detection, for which the representation should describe object class and cope with intra-class variations.Then, rather than using global object descriptors, we use entirely local features and statisticals mecanisms to estimate their distribution (histograms) and their co-occurrences (Generalized Hough Transform).The Generalized Hough Transform (GHT), created for detection of any shape, consists in building a codebook, originally indexed by gradient orientation, then to diverse features, modeling an object, a class. As we work on local features, we aim to remain close to the original GHT.In tracking, after presenting preliminary works combining the GHT with a particle filter (using color histograms), we present a lighter and fast (100 fps) tracker, more accurate and robust.We present a qualitative evaluation and study the impact of used features (color space, spatial derivative formulation).In detection, we used Gall's Hough Forest. We aim to reduce Gall's feature space and discard HOG features, to keep only derivatives and color ones.To compensate the reduction, we enhanced two steps: the support of local descriptors (patches) are partially chosen using a geometrical measure, and node training is done by using a specific probability map based on patches used at this step.With reduced feature space, the detector is less accurate than with Gall's feature space, but for the same training time, our works lead to identical results, but with higher stability and then better repeatability
Magnusson, Klas E. G. "Segmentation and tracking of cells and particles in time-lapse microscopy." Doctoral thesis, KTH, Signalbehandling, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-196911.
Full textInom biologi används många olika typer av mikroskopi för att studera celler. Det finns många typer av genomlysningsmikroskopi, där ljus passerar genom cellerna, som kan användas utan färgning eller andra åtgärder som riskerar att skada cellerna. Det finns också fluorescensmikroskopi där fluorescerande proteiner eller färger förs in i cellerna eller i delar av cellerna, så att de emitterar ljus av en viss våglängd då de belyses med ljus av en annan våglängd. Många fluorescensmikroskop kan ta bilder på flera olika djup i ett prov och på så sätt bygga upp en tre-dimensionell bild av provet. Fluorescensmikroskopi kan även användas för att studera partiklar, som exempelvis virus, inuti celler. Moderna mikroskop har ofta digitala kameror eller liknande utrustning för att ta bilder och spela in bildsekvenser. När biologer gör experiment på celler spelar de ofta in bildsekvenser eller sekvenser av tre-dimensionella volymer för att se hur cellerna beter sig när de utsätts för olika läkemedel, odlingssubstrat, eller andra yttre faktorer. Tidigare har analysen av inspelad data ofta gjorts manuellt, men detta är mycket tidskrävande och resultaten blir ofta subjektiva och svåra att reproducera. Därför finns det ett stort behov av teknik för automatiserad analys av bildsekvenser med celler och partiklar inuti celler. Sådan teknik behövs framförallt inom biologisk forskning och utveckling av läkemedel. Men tekniken skulle också kunna användas kliniskt, exempelvis för att skräddarsy en cancerbehandling till en enskild patient genom att utvärdera olika behandlingar på celler från en biopsi. I denna avhandling presenteras algoritmer för att hitta celler och partiklar i bilder, och för att beräkna trajektorier som visar hur de har förflyttat sig under ett experiment. Vi har utvecklat ett komplett system som kan hitta och följa celler i alla vanligt förekommande typer av mikroskopi. Vi valde ut och vidareutvecklade ett antal existerande segmenteringsalgoritmer, och skapade på så sätt ett heltäckande verktyg för att hitta cellkonturer. För att länka ihop de segmenterade objekten till trajektorier utvecklade vi en ny länkningsalgoritm. Algoritmen lägger till trajektorier en och en med hjälp av dynamisk programmering, och har många fördelar jämfört med tidigare algoritmer. Bland annat är den snabb, den beräknar trajektorier som är optimala över hela bildsekvensen, och den kan hantera fall då flera celler felaktigt segmenterats som ett objekt. För att kunna använda information om objektens hastighet vid länkningen utvecklade vi en metod där objektens positioner förbehandlas med hjälp av ett filter innan länkningen utförs. Detta är betydelsefullt för följning av vissa partiklar inuti celler och för följning av cellkärnor i vissa embryon. Vi har utvecklat en mjukvara med öppen källkod, som innehåller alla verktyg som krävs för att analysera bildsekvenser med celler eller partiklar. Den har verktyg för segmentering och följning av objekt, optimering av inställningar, manuell korrektion, och analys av konturer och trajektorier. Vi utvecklade mjukvaran i samarbete med biologer som använde den i sin forskning. Mjukvaran har redan använts för dataanalys i ett antal biologiska publikationer. Vårt system har även uppnått enastående resultat i tre internationella objektiva jämförelser av system för följning av celler.
QC 20161125
Lankton, Shawn M. "Localized statistical models in computer vision." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/31644.
Full textCommittee Chair: Tannenbaum, Allen; Committee Member: Al Regib, Ghassan; Committee Member: Niethammer, Marc; Committee Member: Shamma, Jeff; Committee Member: Stillman, Arthur; Committee Member: Yezzi, Anthony. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Doyle, Jason Emory. "Automatic Dynamic Tracking of Horse Head Facial Features in Video Using Image Processing Techniques." Thesis, Virginia Tech, 2019. http://hdl.handle.net/10919/87582.
Full textMS
Solis, Montero Andres. "Efficient Feature Extraction for Shape Analysis, Object Detection and Tracking." Thesis, Université d'Ottawa / University of Ottawa, 2016. http://hdl.handle.net/10393/34830.
Full textHannuksela, J. (Jari). "Camera based motion estimation and recognition for human-computer interaction." Doctoral thesis, University of Oulu, 2008. http://urn.fi/urn:isbn:9789514289781.
Full textFlodin, Frida. "Improved Data Association for Multi-Pedestrian Tracking Using Image Information." Thesis, Linköpings universitet, Datorseende, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-169419.
Full textDesai, Alok. "An Efficient Feature Descriptor and Its Real-Time Applications." BYU ScholarsArchive, 2015. https://scholarsarchive.byu.edu/etd/5465.
Full textLindner, Claudia. "Statistical shape analysis of the proximal femur : development of a fully automatic segmentation system and its applications." Thesis, University of Manchester, 2014. https://www.research.manchester.ac.uk/portal/en/theses/statistical-shape-analysis-of-the-proximal-femur-development-of-a-fully-automatic-segmentation-system-and-its-applications(b36076bd-32da-4b00-9518-d05060aaa594).html.
Full textÄrleryd, Sebastian. "Realtime Virtual 3D Image of Kidney Using Pre-Operative CT Image for Geometry and Realtime US-Image for Tracking." Thesis, Uppsala universitet, Avdelningen för visuell information och interaktion, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-234991.
Full textLind, Johan. "Make it Meaningful : Semantic Segmentation of Three-Dimensional Urban Scene Models." Thesis, Linköpings universitet, Datorseende, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-143599.
Full textAranda, Joan. "Aportació als mètodes de seguiment tridimensional d'objectes d'alta velocitat d'operació mitjançant l'estereovisió." Doctoral thesis, Universitat Politècnica de Catalunya, 1997. http://hdl.handle.net/10803/6205.
Full textNdiour, Ibrahima Jacques. "Dynamic curve estimation for visual tracking." Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/37283.
Full textEdwards, Barrett Bruce. "An Onboard Vision System for Unmanned Aerial Vehicle Guidance." BYU ScholarsArchive, 2010. https://scholarsarchive.byu.edu/etd/2381.
Full textMolin, Joel. "Foreground Segmentation of Moving Objects." Thesis, Linköping University, Department of Electrical Engineering, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-52544.
Full textForeground segmentation is a common first step in tracking and surveillance applications. The purpose of foreground segmentation is to provide later stages of image processing with an indication of where interesting data can be found. This thesis is an investigation of how foreground segmentation can be performed in two contexts: as a pre-step to trajectory tracking and as a pre-step in indoor surveillance applications.
Three methods are selected and detailed: a single Gaussian method, a Gaussian mixture model method, and a codebook method. Experiments are then performed on typical input video using the methods. It is concluded that the Gaussian mixture model produces the output which yields the best trajectories when used as input to the trajectory tracker. An extension is proposed to the Gaussian mixture model which reduces shadow, improving the performance of foreground segmentation in the surveillance context.
Petit, Antoine. "Robust visual detection and tracking of complex objects : applications to space autonomous rendez-vous and proximity operations." Phd thesis, Université Rennes 1, 2013. http://tel.archives-ouvertes.fr/tel-00931604.
Full textDemirdjian, David. "Le mouvement projectif : théorie et applications pour l'autocalibrage et la segmentation du mouvement." Phd thesis, Grenoble INPG, 2000. http://tel.archives-ouvertes.fr/tel-00590318.
Full textSangi, P. (Pekka). "Object motion estimation using block matching with uncertainty analysis." Doctoral thesis, Oulun yliopisto, 2013. http://urn.fi/urn:isbn:9789526200774.
Full textTiivistelmä Tässä väitöskirjassa tutkitaan yhtä videonkäsittelyn ja konenäön perusongelmaa, kaksiulotteisen liikkeen estimointia. Työ käsittelee kahta yleistä tehtävää taustan ja etualan kohteiden liikkeiden määrittämisessä: hallitsevan liikkeen estimointia ja liikepohjaista kuvan segmentointia. Tutkituissa ratkaisuissa lähtökohtana käytetään lohkosovitukseen perustuvaa paikallisen liikkeen määritystä, jossa sovituksen kriteerinä käytetään poikkeutettujen kehysten pikseliarvojen erotusta. Tähän liittyen tarkastellaan estimoinnin luotettavuuden analyysin tekniikoita ja näiden hyödyntämistä edellä mainittujen tehtävien ratkaisuissa. Yleensä ottaen paikallisen liikkeen estimointia vaikeuttaa apertuuriongelma. Tämän vuoksi tarvitaan analyysitekniikoita, jotka kykenevät antamaan täydentävää tietoa liike-estimaattien luotettavuudesta. Työn ensimmäisessä osassa kehitetty analyysimenetelmä käyttää lähtötietona lohkosovituksen kriteerin arvoja, jotka on saatu eri liikekandidaateille. Erotuksena aiempiin menetelmiin kehitetty ratkaisu ottaa huomioon kuvagradientin vaikutuksen. Työn toisessa osassa tutkitaan nelivaiheista piirrepohjaista ratkaisua hallitsevan liikkeen estimoimiseksi. Perushavaintoina mallissa käytetään liikepiirteitä, jotka koostuvat valittujen kuvapisteiden koordinaateista, näissä pisteissä lasketuista liike-estimaateista ja estimaattien epävarmuuden esityksestä. Jälkimmäinen esitetään parametrisessa muodossa käyttäen laskentaan työn ensimmäisessä osassa esitettyä menetelmää. Tätä epävarmuustietoa käytetään piirteiden painottamiseen hallitsevan liikkeen estimoinnissa. Lisäksi tutkitaan gradienttipohjaista piirteiden valintaa. Kokeellisessa osassa erilaisia suunnitteluvalintoja verrataan toisiinsa käyttäen synteettisiä ja todellisia kuvasekvenssejä. Väitöstyön kolmannessa osassa esitetään piirrepohjainen menetelmä taustan ja etualan kohteen liikkeiden erottamiseksi toisistaan. Algoritmi tekee analyysin kahta liikettä sisältävälle näkymälle käyttäen sekä spatiaalista että ajallista segmentointitiedon välittämistä. Piirteiden painotus hyödyntää epävarmuustietoa tässä yhteydessä, jonka osoitetaan kokeellisesti parantavan liike-estimoinnin suorituskykyä. Viimeisessä osassa kehitetään viitekehys liikepohjaisen kohteen ilmaisun, segmentoinnin ja seurannan toteutukselle. Se perustuu lohkopohjaiseen esitystapaan ja näytteistyksen soveltamiseen liikkeen estimoinnissa. Analyysitekniikka segmentoinnin määrittämiseksi esitellään. Lopuksi ratkaisu integroidaan työn kolmannessa osassa esitetyn menetelmän kanssa, ja menetelmien yhdistelmän osoitetaan kokeellisesti parantavan sekä näytteistyksen tehokkuutta että segmentoinnin tarkkuutta
Lee, Jehoon. "Statistical and geometric methods for visual tracking with occlusion handling and target reacquisition." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/43582.
Full textBarbosa, Daniel. "Automated assessment of cardiac morphology and function : An integrated B-spline framework for real-time segmentation and tracking of the left ventricle." Thesis, Lyon, INSA, 2013. http://www.theses.fr/2013ISAL0111.
Full textThe fundamental goal of the present thesis was the development of automatic strategies for left ventricular (LV) segmentation and tracking in RT3DE data. Given the challenging nature of RT3DE data, classical computer vision algorithms often face complications when applied to ultrasound. Furthermore, the proposed solutions were formalized and built to respect the following requirements: they should allow (nearly) fully automatic analysis and their computational burden should be low, thus enabling real-time processing for optimal online clinical use. With this in mind, we have proposed a novel segmentation framework where the latest developments in level-set-based image segmentation algorithms could be straightforwardly integrated, while avoiding the heavy computational burden often associated with level-set algorithms. Furthermore, a strong validation component was included in order to assess the performance of the proposed algorithms in realistic scenarios comprising clinical data. First, the performance of the developed tools was evaluated from a global perspective, focusing on its use in clinical daily practice. Secondly, also the spatial accuracy of the estimated left ventricular boundaries was assessed. As a final step, we aimed at the integration of the developed methods in an in-house developed software suite used for research purposes. This included user-friendly solutions for efficient daily use, namely user interactive tools to adjust the segmented left ventricular boundaries
Villa, Jacopo. "Optical Navigation for Autonomous Approach of Unexplored Small Bodies." Thesis, KTH, Rymdteknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-285863.
Full textDetta examensarbete presenterar en strategi för ett autonomt visionsbaserat navigationssystem för att närma sig en liten himlakropp. Strategin har utvecklats av robotikavdelningen vid NASA Jet Propulsion Laboratory i USA. Nuvarande system som används för att närma sig en liten himlakropp bygger till största delen på markstationer och mänskligt beslutsfattande, vilka utgör komplexa rutiner och begränsar spektrumet av möjliga aktiviteter under rymduppdraget. I jämförelse, det autonoma system presenterat i denna rapport är utformat för att köras helt från rymdfarkosten och utan krav på kontakt med markstationer. Genom att använda enbart optisk information uppskattar systemet himlakroppens rotation, poler och form samt genomför en identifiering och spårning av landmärken på himlakroppens yta för relativ terrängnavigering. En simulering har genomförts för att validera det autonoma navigationssystemet. Simuleringen utgick ifrån bilder av himlakroppen och avslutades med en lösning på banbestämningsproblemet. Fasen då rymdfarkosten i ESA:s Rosetta-rymduppdrag närmar sig kometen valdes som fallstudie för simuleringen och slutsatsen från denna fallstudie var att systemets autonoma navigationsprestanda var i linje med toppmoderna system. Den detaljerade beskrivningen av det autonoma systemet och resultaten från studien har presenterats i ett konferensbidrag, som ingår som bilaga till rapporten. Inledningen av rapporten syftar till att förtydliga bakgrunden och implementering som komplement till innehållet i bilagan.
Dorini, Leyza Elmeri Baldo. "Propagação de pontos caracteristicos e suas incertezas utilizando a transformada unscented." [s.n.], 2006. http://repositorio.unicamp.br/jspui/handle/REPOSIP/276486.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Computação
Made available in DSpace on 2018-08-06T08:17:58Z (GMT). No. of bitstreams: 1 Dorini_LeyzaElmeriBaldo_M.pdf: 1659888 bytes, checksum: 3ac1fe51a9d8159f6fa5df97cb4f52bc (MD5) Previous issue date: 2006
Resumo: O correto estabelecimento de correspondências entre imagens tomadas de diferentes pontos de vista é um problema fundamental na área de visão computacional, sendo base para diversas tarefas de alto nível, tais como reconstrução 3D e análise de movimento. A grande maioria dos algoritmos de rastreamento de características não possui uma incerteza associada a posição estimada das características sendo rastreadas, informação esta de extrema importância, considerando sua vasta aplicabilidade. Exatamente este o foco principal deste trabalho, onde introduzimos um framework genérico que expande algoritmos de rastreamento de tal forma que eles possam propagar também informações de incerteza. Neste trabalho, por questão de simplicidade, utilizamos o algoritmo de rastreamento de características Kanade-Lucas-Tomasi (KLT) para demonstrar as vantagens do nosso método, denominado Unscented Feature Tracking (UFT). A abordagem consiste na introdução de Variáveis Aleatórias Gaussianas (GRVs) para a representação da localização dos pontos característicos, e utiliza a Transformada Unscented com Escala (SUT) para propagar e combinar GRVs. Mostramos uma aplicação do UFT em um procedimento de bundle adjustment, onde a função custo leva em conta a informação das GRVs, fornecendo melhores estimativas. O método é robusto, considerando que identifica e descarta anomalias, que podem comprometer de maneira expressiva o resultado de tarefas que utilizam as correspondências. Experimentos com seqüências de imagens reais e sintéticas comprovam os benefícios do método proposto
Abstract: To determine reliable correspondences between a pair of images is a fundamental problem in the computer vision community. It is the foundation of several high level tasks, such as 3D reconstruction and motion analysis. Although there are many feature tracking algorithms, most of them do not maintain information about the uncertainty of the feature locations' estimates. This information is very useful, since large errors can disturb the results of the correspondence-based tasks. This is the goal of this work, a new generic framework that augments feature tracking algorithms so that they also propagate uncertainty information. In this work, we use the well-known Kanade-Lucas-Tomasi (KLT) feature tracker to demonstrate the benefits of our method, called Unscented Feature Tracking (UFT). The approach consists on the introduction of Gaussian Random Variables (GRVs) for the representation of the features' locations, and on the use of the Scaled Unscented Transform (SUT) to propagate and combine GRVs. We also describe an improved bundle adjustment procedure as an application, where the cost function takes into account the information of the GRVs, and provides better estimates. Experiments with real and synthetic images confirm that UFT improves the quality of the feature tracking process and is a robust method for detect and reject outliers
Mestrado
Visão Computacional
Mestre em Ciência da Computação
Pati, Nishikanta. "Occlusion Tolerant Object Recognition Methods for Video Surveillance and Tracking of Moving Civilian Vehicles." Thesis, University of North Texas, 2007. https://digital.library.unt.edu/ark:/67531/metadc5133/.
Full textRackham, Thomas. "Ultrasound segmentation tools and their application to assess fetal nutritional health." Thesis, University of Oxford, 2016. http://ora.ox.ac.uk/objects/uuid:5d102b18-dd32-4004-8aa5-b04242139daa.
Full textLee, Yeongseon. "Bayesian 3D multiple people tracking using multiple indoor cameras and microphones." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/29668.
Full textCommittee Chair: Rusell M. Mersereau; Committee Member: Biing Hwang (Fred) Juang; Committee Member: Christopher E. Heil; Committee Member: Georgia Vachtsevanos; Committee Member: James H. McClellan. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Trejo, Guerrero Sandra. "Model-Based Eye Detection and Animation." Thesis, Linköping University, Department of Electrical Engineering, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-7059.
Full textIn this thesis we present a system to extract the eye motion from a video stream containing a human face and applying this eye motion into a virtual character. By the notation eye motion estimation, we mean the information which describes the location of the eyes in each frame of the video stream. Applying this eye motion estimation into a virtual character, we achieve that the virtual face moves the eyes in the same way than the human face, synthesizing eye motion into a virtual character. In this study, a system capable of face tracking, eye detection and extraction, and finally iris position extraction using video stream containing a human face has been developed. Once an image containing a human face is extracted from the current frame of the video stream, the detection and extraction of the eyes is applied. The detection and extraction of the eyes is based on edge detection. Then the iris center is determined applying different image preprocessing and region segmentation using edge features on the eye picture extracted.
Once, we have extracted the eye motion, using MPEG-4 Facial Animation, this motion is translated into the Facial Animation arameters (FAPs). Thus we can improve the quality and quantity of Facial Animation expressions that we can synthesize into a virtual character.
Kong, Longbo. "Accurate Joint Detection from Depth Videos towards Pose Analysis." Thesis, University of North Texas, 2018. https://digital.library.unt.edu/ark:/67531/metadc1157524/.
Full textSundaramoorthi, Ganesh. "Global Optimizing Flows for Active Contours." Diss., Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/16145.
Full textMartinez, Pujol Oriol. "Template tracking of articulated objects using active contours." Doctoral thesis, Universitat Pompeu Fabra, 2016. http://hdl.handle.net/10803/373919.
Full textIn this dissertation we fuse two of the traditional topics in Computer Vision: object segmentation and tracking. For segmentation we use the Active Contours (AC) framework and for tracking we use the Template Tracking (TT) scheme. Our aim is to combine them to create efficient and robust methods to segment and track articulated or deformable objects. In Chapter 1, we review the AC framework and we apply it over MilliMeter-Waves (MMW) images to segment bodies and concealed threats (such as explosives or guns) behind their wearing clothes. In Chapter 2 we review two of the main trends of TT methods: Lucas-Kanade optical flow and particle filters. Moreover, we combine them with an AC method to create a robust tracker for articulated or deformable objects without using prior shape information. Finally, in Chapter 3 we give the clues of how to efficiently introduce shape priors into the TT framework using AC methods.
Choi, Changhyun. "Visual object perception in unstructured environments." Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/53003.
Full textUsher, Kane. "Visual homing for a car-like vehicle." Queensland University of Technology, 2005. http://eprints.qut.edu.au/16309/.
Full textGroulík, Tomáš. "Kamerový subsystém mobilního robotu Minidarpa." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2010. http://www.nusl.cz/ntk/nusl-218317.
Full text