Academic literature on the topic 'Segmentation; Feature tracking; Computer vision'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Segmentation; Feature tracking; Computer vision.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Segmentation; Feature tracking; Computer vision"
Kushwah, Chandra Pal. "Review on Semantic Segmentation of Satellite Images Using Deep Learning." International Journal for Research in Applied Science and Engineering Technology 9, no. VII (July 31, 2021): 3820–29. http://dx.doi.org/10.22214/ijraset.2021.37204.
Full textKONWAR, LAKHYADEEP, ANJAN KUMAR TALUKDAR, and KANDARPA KUMAR SARMA. "Robust Real Time Multiple Human Detection and Tracking for Automatic Visual Surveillance System." WSEAS TRANSACTIONS ON SIGNAL PROCESSING 17 (August 6, 2021): 93–98. http://dx.doi.org/10.37394/232014.2021.17.13.
Full textZhang, Yiqing, Jun Chu, Lu Leng, and Jun Miao. "Mask-Refined R-CNN: A Network for Refining Object Details in Instance Segmentation." Sensors 20, no. 4 (February 13, 2020): 1010. http://dx.doi.org/10.3390/s20041010.
Full textZhang, Xinyu, Hongbo Gao, Chong Xue, Jianhui Zhao, and Yuchao Liu. "Real-time vehicle detection and tracking using improved histogram of gradient features and Kalman filters." International Journal of Advanced Robotic Systems 15, no. 1 (January 1, 2018): 172988141774994. http://dx.doi.org/10.1177/1729881417749949.
Full textYao, Li Feng, and Jian Fei Ouyang. "Catching Data from Displayers by Machine Vision." Advanced Materials Research 566 (September 2012): 124–29. http://dx.doi.org/10.4028/www.scientific.net/amr.566.124.
Full textKhalid, Nida, Munkhjargal Gochoo, Ahmad Jalal, and Kibum Kim. "Modeling Two-Person Segmentation and Locomotion for Stereoscopic Action Identification: A Sustainable Video Surveillance System." Sustainability 13, no. 2 (January 19, 2021): 970. http://dx.doi.org/10.3390/su13020970.
Full textEt. al., Mohan kumar Shilpa ,. "An Effective Framework Using Region Merging and Learning Machine for Shadow Detection and Removal." Turkish Journal of Computer and Mathematics Education (TURCOMAT) 12, no. 2 (April 10, 2021): 2506–14. http://dx.doi.org/10.17762/turcomat.v12i2.2098.
Full textKim, Byung-Gyu, and Dong-Jo Park. "Unsupervised video object segmentation and tracking based on new edge features." Pattern Recognition Letters 25, no. 15 (November 2004): 1731–42. http://dx.doi.org/10.1016/j.patrec.2004.07.009.
Full textAbdulghafoor, Nuha, and Hadeel Abdullah. "Enhancement Performance of Multiple Objects Detection and Tracking for Real-time and Online Applications." International Journal of Intelligent Engineering and Systems 13, no. 6 (December 31, 2020): 533–45. http://dx.doi.org/10.22266/ijies2020.1231.47.
Full textVolkov, Vladimir Yu, Oleg A. Markelov, and Mikhail I. Bogachev. "IMAGE SEGMENTATION AND OBJECT SELECTION BASED ON MULTI-THRESHOLD PROCESSING." Journal of the Russian Universities. Radioelectronics 22, no. 3 (July 2, 2019): 24–35. http://dx.doi.org/10.32603/1993-8985-2019-22-3-24-35.
Full textDissertations / Theses on the topic "Segmentation; Feature tracking; Computer vision"
Wiles, Charles S. "Closing the loop on multiple motions." Thesis, University of Oxford, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.320152.
Full textGraves, Alex. "GPU-Accelerated Feature Tracking." Wright State University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=wright1462372516.
Full textMöller, Sebastian. "Image Segmentation and Target Tracking using Computer Vision." Thesis, Linköpings universitet, Datorseende, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-68061.
Full textI detta examensarbete undersöks möjligheterna att detektera och spåra intressanta objekt i multispektrala infraröda videosekvenser. Den nuvarande metoden, som använder sig av rektanglar med fix storlek, har sina nackdelar. Dessa nackdelar kommer att lösas med hjälp av bildsegmentering för att uppskatta formen på önskade mål.Utöver detektering och spårning försöker vi också att hitta formen och konturen för intressanta objekt för att kunna använda den exaktare passformen vid kontrastberäkningar. Denna framsegmenterade kontur ersätter de gamla fixa rektanglarna som använts tidigare för att beräkna intensitetskontrasten för objekt i de infraröda våglängderna. Resultaten som presenteras visar att det för vissa objekt, som motmedel och facklor, är lättare att få fram en bra kontur samt målföljning än vad det är med helikoptrar, som var en annan önskad måltyp. De svårigheter som uppkommer med helikoptrar beror till stor del på att de är mycket svalare vilket gör att delar av helikoptern kan helt döljas i bruset från bildsensorn. För att kompensera för detta används metoder som utgår ifrån att objektet rör sig mycket i videon så att rörelsen kan användas som detekteringsparameter. Detta ger bra resultat för de videosekvenser där målet rör sig mycket i förhållande till sin storlek.
Rowe, Simon Michael. "Robust feature search for active tracking." Thesis, University of Oxford, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.318616.
Full textPretorius, Eugene. "An adaptive feature-based tracking system." Thesis, Link to the online version, 2008. http://hdl.handle.net/10019/1441.
Full textLan, Xiangyuan. "Multi-cue visual tracking: feature learning and fusion." HKBU Institutional Repository, 2016. https://repository.hkbu.edu.hk/etd_oa/319.
Full textSun, Shijun. "Video object segmentation and tracking using VSnakes /." Thesis, Connect to this title online; UW restricted, 2000. http://hdl.handle.net/1773/6038.
Full textRoberts, Jonathan Michael. "Attentive visual tracking and trajectory estimation for dynamic scene segmentation." Thesis, University of Southampton, 1994. https://eprints.soton.ac.uk/250163/.
Full textRoychoudhury, Shoumik. "Tracking Human in Thermal Vision using Multi-feature Histogram." Master's thesis, Temple University Libraries, 2012. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/203794.
Full textM.S.E.E.
This thesis presents a multi-feature histogram approach to track a person in thermal vision. Illumination variation is a primary constraint in the performance of object tracking in visible spectrum. Thermal infrared (IR) sensor, which measures the heat energy emitted from an object, is less sensitive to illumination variations. Therefore, thermal vision has immense advantage in object tracking in varying illumination conditions. Kernel based approaches such as mean shift tracking algorithm which uses a single feature histogram for object representation, has gained popularity in the field of computer vision due its efficiency and robustness to track non-rigid object in significant complex background. However, due to low resolution of IR images the gray level intensity information is not sufficient enough to give a strong cue for object representation using histogram. Multi-feature histogram, which is the combination of the gray level intensity information and edge information, generates an object representation which is more robust in thermal vision. The objective of this research is to develop a robust human tracking system which can autonomously detect, identify and track a person in a complex thermal IR scene. In this thesis the tracking procedure has been adapted from the well-known and efficient mean shift tracking algorithm and has been modified to enable fusion of multiple features to increase the robustness of the tracking procedure in thermal vision. In order to identify the object of interest before tracking, rapid human detection in thermal IR scene is achieved using Adaboost classification algorithm. Furthermore, a computationally efficient body pose recognition method is developed which uses Hu-invariant moments for matching object shapes. An experimental setup consisting of a Forward Looking Infrared (FLIR) camera, mounted on a Pioneer P3-DX mobile robot platform was used to test the proposed human tracking system in both indoor and uncontrolled outdoor environments. The performance evaluation of the proposed tracking system on the OTCBVS benchmark dataset shows improvement in tracking performance in comparison to the traditional mean-shift tracking algorithm. Moreover, experimental results in different indoor and outdoor tracking scenarios involving different appearances of people show tracking is robust under cluttered background, varying illumination and partial occlusion of target object.
Temple University--Theses
Fang, Jian. "Optical Imaging and Computer Vision Technology for Corn Quality Measurement." OpenSIUC, 2011. https://opensiuc.lib.siu.edu/theses/733.
Full textBooks on the topic "Segmentation; Feature tracking; Computer vision"
Video segmentation and its applications. New York: Springer, 2011.
Find full textNgan, King Ngi, and Hongliang Li. Video Segmentation and Its Applications. Springer, 2011.
Find full textNgan, King Ngi, and Hongliang Li. Video Segmentation and Its Applications. Springer, 2014.
Find full textBook chapters on the topic "Segmentation; Feature tracking; Computer vision"
Kwolek, Bogdan. "Foreground Segmentation via Segments Tracking." In Computer Vision and Graphics, 270–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02345-3_27.
Full textÖzuysal, Mustafa, Vincent Lepetit, François Fleuret, and Pascal Fua. "Feature Harvesting for Tracking-by-Detection." In Computer Vision – ECCV 2006, 592–605. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11744078_46.
Full textMakadia, Ameesh. "Feature Tracking for Wide-Baseline Image Retrieval." In Computer Vision – ECCV 2010, 310–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15555-0_23.
Full textSouthall, B., J. A. Marchant, T. Hague, and B. F. Buxton. "Model based tracking for navigation and segmentation." In Computer Vision — ECCV'98, 797–811. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/bfb0055705.
Full textRaja, Yogesh, Stephen J. McKenna, and Shaogang Gong. "Segmentation and tracking using colour mixture models." In Computer Vision — ACCV'98, 607–14. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/3-540-63930-6_173.
Full textZhang, Zhenli, Xiangyu Zhang, Chao Peng, Xiangyang Xue, and Jian Sun. "ExFuse: Enhancing Feature Fusion for Semantic Segmentation." In Computer Vision – ECCV 2018, 273–88. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01249-6_17.
Full textLe, Hieu, Vu Nguyen, Chen-Ping Yu, and Dimitris Samaras. "Geodesic Distance Histogram Feature for Video Segmentation." In Computer Vision – ACCV 2016, 275–90. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-54181-5_18.
Full textGehrig, Daniel, Henri Rebecq, Guillermo Gallego, and Davide Scaramuzza. "Asynchronous, Photometric Feature Tracking Using Events and Frames." In Computer Vision – ECCV 2018, 766–81. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01258-8_46.
Full textZheng, Linyu, Ming Tang, Yingying Chen, Jinqiao Wang, and Hanqing Lu. "Learning Feature Embeddings for Discriminant Model Based Tracking." In Computer Vision – ECCV 2020, 759–75. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58555-6_45.
Full textAlismail, Hatem, Brett Browning, and Simon Lucey. "Enhancing Direct Camera Tracking with Dense Feature Descriptors." In Computer Vision – ACCV 2016, 535–51. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-54190-7_33.
Full textConference papers on the topic "Segmentation; Feature tracking; Computer vision"
Allili, Mohand Said, and Djemel Ziou. "Using Feature Selection For Object Segmentation and Tracking." In >Fourth Canadian Conference on Computer and Robot Vision. IEEE, 2007. http://dx.doi.org/10.1109/crv.2007.67.
Full textSun, Chuan, Marshall Tappen, and Hassan Foroosh. "Feature-Independent Action Spotting without Human Localization, Segmentation, or Frame-wise Tracking." In 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2014. http://dx.doi.org/10.1109/cvpr.2014.344.
Full textAllili, Mohand Said, and Djemel Ziou. "Object of Interest segmentation and Tracking by Using Feature Selection and Active Contours." In 2007 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2007. http://dx.doi.org/10.1109/cvpr.2007.383449.
Full textRing, Dan, and Anil Kokaram. "Feature-Cut: Video object segmentation through local feature correspondences." In 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops. IEEE, 2009. http://dx.doi.org/10.1109/iccvw.2009.5457644.
Full textBrendel, William, and Sinisa Todorovic. "Video object segmentation by tracking regions." In 2009 IEEE 12th International Conference on Computer Vision (ICCV). IEEE, 2009. http://dx.doi.org/10.1109/iccv.2009.5459242.
Full textRen, Xiaofeng, and Jitendra Malik. "Tracking as Repeated Figure/Ground Segmentation." In 2007 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2007. http://dx.doi.org/10.1109/cvpr.2007.383177.
Full textDing, Henghui, Xudong Jiang, Ai Qun Liu, Nadia Magnenat Thalmann, and Gang Wang. "Boundary-Aware Feature Propagation for Scene Segmentation." In 2019 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, 2019. http://dx.doi.org/10.1109/iccv.2019.00692.
Full textIkedo, Ryota, and Kazuhiro Hotta. "Feature Sharing Cooperative Network for Semantic Segmentation." In 16th International Conference on Computer Vision Theory and Applications. SCITEPRESS - Science and Technology Publications, 2021. http://dx.doi.org/10.5220/0010312505770584.
Full textAllili, Mohand Saïd, Djemel Ziou, Nizar Bouguila, and Sabri Boutemedjet. "Unsupervised Feature Selection and Learning for Image Segmentation." In 2010 Canadian Conference on Computer and Robot Vision. IEEE, 2010. http://dx.doi.org/10.1109/crv.2010.44.
Full text"Sparse Motion Segmentation using Propagation of Feature Labels." In International Conference on Computer Vision Theory and Applications. SciTePress - Science and and Technology Publications, 2013. http://dx.doi.org/10.5220/0004281203960401.
Full text