Academic literature on the topic 'Seedlings growth parameters'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Seedlings growth parameters.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Seedlings growth parameters"
He, Zhong-sheng, Rong Tang, Meng-jia Li, Meng-ran Jin, Cong Xin, Jin-fu Liu, and Wei Hong. "Response of Photosynthesis and Chlorophyll Fluorescence Parameters of Castanopsis kawakamii Seedlings to Forest Gaps." Forests 11, no. 1 (December 22, 2019): 21. http://dx.doi.org/10.3390/f11010021.
Full textSaha, P., MSU Bhuiya, B. Karmakar, M. Salim, B. Ahmed, P. Shil, and SK Roy. "Effect of Age and Storage Duration of Seedling on Growth and Yield of Wet Season Rice." Bangladesh Agronomy Journal 20, no. 1 (December 11, 2017): 45–56. http://dx.doi.org/10.3329/baj.v20i1.34882.
Full textKurdi, Rozheen H. Shabaan, and Sulaiman M. Kako Al-zebari. "Effect of Growth Regulators on Seedlings Growth of Apricot (prunus Armeniaca L.)." Journal of duhok university 25, no. 2 (October 2, 2022): 170–79. http://dx.doi.org/10.26682/ajuod.2022.25.2.15.
Full textRepáč, Ivan, Zuzana Parobeková, and Martin Belko. "Ectomycorrhiza-hydrogel additive enhanced growth of Norway spruce seedlings in a nutrient-poor peat substrate." Journal of Forest Science 68, No. 5 (May 26, 2022): 170–81. http://dx.doi.org/10.17221/29/2022-jfs.
Full textSaani, Chinwe I., Joshua Kayode, Benson O. Ademiluyi, and M. Yoserizal Saragih. "Effect of Growth Media on Plumule Emergence and Early Seedling Growth of Monodora myristica." Budapest International Research in Exact Sciences (BirEx) Journal 2, no. 4 (October 9, 2020): 436–42. http://dx.doi.org/10.33258/birex.v2i4.1257.
Full textDJ, Bagyaraj. "Influence of am fungus funneliformis mosseae and k solubilizing bacterium bacillus mucilaginosus on the growth of tomato seedlings raised in pro trays Running head: influence of am fungi and ksb on the growth of tomato seedlings." Journal of Microbes and Research 1, no. 2 (November 30, 2022): 01–06. http://dx.doi.org/10.58489/2836-2187/006.
Full textSharma, R., and D. Rana. "Effect of growth media, seed size and depth of sowing on growth and quality of seedlings of physic nut (Jatropha curcas Linn.)." Indian Journal of Forestry 30, no. 4 (December 1, 2007): 467–73. http://dx.doi.org/10.54207/bsmps1000-2007-9r89qz.
Full textJia, Kai, Cunyao Yan, Huizhuan Yan, and Jie Gao. "Physiological Responses of Turnip (Brassica rapa L. subsp. rapa) Seedlings to Salt Stress." HortScience 55, no. 10 (October 2020): 1567–74. http://dx.doi.org/10.21273/hortsci15187-20.
Full textTumpa, Katarina, Antonio Vidaković, Damir Drvodelić, Mario Šango, Marilena Idžojtić, Ivan Perković, and Igor Poljak. "The Effect of Seed Size on Germination and Seedling Growth in Sweet Chestnut (Castanea sativa Mill.)." Forests 12, no. 7 (June 29, 2021): 858. http://dx.doi.org/10.3390/f12070858.
Full textNuryawan, A., S. Fatimah, K. S. Hartini, and N. Masruchin. "Experimental study on the utilization of residue from particleboard’s recycling activity." IOP Conference Series: Earth and Environmental Science 912, no. 1 (November 1, 2021): 012069. http://dx.doi.org/10.1088/1755-1315/912/1/012069.
Full textDissertations / Theses on the topic "Seedlings growth parameters"
Mwitwa, Jacob Pacific. "Growth and physiological parameters related to shoot dieback in Pterocarpus angolensis DC seedlings." Thesis, Stellenbosch : Stellenbosch University, 2004. http://hdl.handle.net/10019.1/20431.
Full textENGLISH ABSTRACT:Six experiments, five in the glasshouse and one in the field near Nelspruit, were carried out to ascertain the effect of factors related to shoot die-back, and of water treatments on the growth and physiological responses of Pterocarpus angolensis seedlings. The study was undertaken to broaden the knowledge and understanding of the phenomenon of shoot die-back in order to enhance our ability to regenerate the species. The following experiments were carried out (a) Assessment of biomass accumulation; anatomical characteristics of the shoot apical meristem; foliar, stem and root concentration of micro- and macronutrients associated with each phenophase, (b) Effect of seedling age and seed source on the occurrence of shoot die-back under field conditions; (c) Water treatment effects on ChI. afluorescence traits of£'. angolensis seedlings obtained by assessing the fluorescence yield of photosynthetic samples subjected to dark- and light-adaptation; (d) Genetic variation in shoot die-back and other traits of sixteen halfsib families of £.. angolensis from Malawi, Namibia and Zambia grown over two die-back seasons. Experiments conducted revealed the following 1. Patterns of growth observed in phenophases are indicators of seasonal changes in annual biomass allocation to the shoot and root. Phenophases such as leaf loss and stem senescence, whether shoot die-back occurs completely or not, are directly related to the decline in above-ground biomass and declined rate of increase in root biomass respectively. Leaf flush, expansion and maturation result in increased biomass accumulation whilst shoot die-back has a minimal downregulatory effect on root biomass accumulation compared to the shoot. Shoot dieback is not sudden, therefore from the first day of germination, seedlings synchronise growth and development with the occurrence of shoot die-back. 2. Phenophasic concentration of foliar N, Ca and Mg, stem Fe and Cu and root concentrations of P, K, Mg, Fe and B are associated with shoot die-back. Patterns of mineral nutrient concentration obtained in foliage and roots but to a lesser extent in the stem, may be related to nutrient remobilisation during shoot dieback. Higher relative mineral nutrient changes during leaf yellowing and shoot die-back may be an indication of the removal of significant volumes of mobile nutrients from senescing tissues. 3. The volume of the shoot apex of E. angolensis remains constant during different phenophases which points to seasonal uniformity in the size of the apical dome. Changes in phenology associated with declined growth, or shoot die-back, is revealed through declined cell number in the tunica which is a reflection of declined mitotic activity. 4. Shoot die-back occurs in all seedlings from nursery stock planted under field conditions and all seedlings of up to two years experience complete shoot dieback. Shoot die-back takes place irrespective of seed source or the age of nursery stock that is planted. Survival after the first shoot die-back is normally low. Water treatments had no significant effect on the function of PSIJ reaction centres of P. angolensis nursery seedlings. In the case of both dark- and light-adapted leaves, water treatment had no significant effect on the measured Chi. a fluorescence parameters or the calculated parameters (specific activities, phenomenological fluxes, structure-function and performance indexes and drivingforces). 5. Water treatments affect the shape of ChI. a fluorescence transients of lightadapted compared to that of dark-adapted photosynthetic samples of E. angolensis. No significant water treatment effect was obtained for extracted and technical Chi. afluorescence parameters, specific fluxes, quantum efficiencies and phenomenological fluxes. Quantum yield, relative electron transport and quantum yield limitation, de-excitation rate constants, structure-function, performance indexes and driving forces were also not significantly different across water treatments.6. Genetic variation was observed to exist among 16 halfsib families from Malawi, Namibia and Zambia. High heritabilities were obtained for shoot die-back and other traits, indicating that shoot die-back is genetically controlled. The trait is passed from parents to offspring and it is highly probable that it occurs, throughout its natural range, in all seedlings. Since shoot die-back is genetically programmed, it remains crucial to the ability of a seedling to regenerate in the following rainy season
AFRIKAANSE OPSOMMING:Ses eksperimente, vyf in die glashuis en een in die veld naby Nelspruit, is uitgevoer om die effek van faktore wat verwant is aan die terugsterwing van lote op saailinge, sowel as om die effek van waterstres op die groei en fisiologiese responsies van Pterocarpus angolensis saailinge, te ondersoek. Die studie is ondemeem om die kennis en begrip aangaande die regenerasie-dinamika van die spesies te verbeter. Die volgende eksperimente is uitgevoer: (a) Evaluering van die effek van jisiologiese veranderings op biomassa; blaar-, stam- en wortelkonsentrasies van spoor- en makro-voedingselemente, en anatomiese eienskappe van die apikale meristeem van die lote. (b) Effek van saailingouderdom en saadbron op die voorkoms van lootterugsterwing onder veldtoestande. (c) Waterbehandelingseffekte op Chi. ajluorisensie eienskappe van ,e. angolensis saailinge wat verkry is deur die jluorisensie te evalueer van fotosintesemonsters wat aan donker- en lig-adaptasies onderwerp is. (d) Genetiese variasie in loot-terugsterwing en ander groei-eienskappe van 16 halfsib families van ,e. angolensis vanaf Malawi, Namibia en Zambia wat gekweek is oor twee terugsterj-seisoene. Die eksperimente het die volgende aan die lig gebring: 1. Groeipatrone waargeneem gedurende die fenofases is indikatore van seisoenale veranderings in jaarlikse biomassa allokasies aan die loot en die wortels. Fenofases soos blaarverlies en lootafsterwing, ongeag of loot-terugsterwing volledig is of nie, is direk verwant aan die afname in bogrondse biomassa en afnemende tempo van toename in wortelbiomassa respektiewelik. Bottende blare, vergroting en rypwording van blare lei tot toenemende biomassa akkumulasie terwyl loot-terugsterwing 'n minimale afskalende effek op akkumulasie van wortelbiomassa het in vergelyking met die van die loot. Loot-terugsterwing is nie skielik, met ander woorde vanaf die eerste dag van ontkieming sinchroniseer saailinge groei en ontwikkeling met die voorkoms van loot-terugsterwing. 2. Fenofase konsentrasies van en veranderings in blaar N en Ca en loot Fe, asook veranderings in waargenome wortel N, K, Ca, Mn, Cu, Zn en B is sterk geassosieer met loot-terugsterwing. Patrone van minerale voedingselementkonsentrasies wat in blare en wortels, en in minder mate in die loot, verkry is, mag direk verwant wees aan hermobilisering van voedingselemente gedurende loot-terugsterwing. Hoe relatiewe minerale voedingselementveranderings gedurende die vergeling van blare en lootterugsterwing mag 'n indikasie wees van die verwydering van betekenisvoUe hoeveelhede mobiele nutriente vanaf sterwende weefsel. 3. Die volume van die groeipunt van r. angolensis bly konstant gedurende verskillende fenofases wat dui op seisoenale uniformiteit in die grootte van die apikale koepel. Veranderings in fenologie ge-assosieer met afnemende groei, of loot-terugsterwing, word gerejlekteer deur afnemende selgetaUe in die tunika wat dui op afnemende mitotiese aktiwiteit. 4. VoUedige loot-terugsterwing kom voor in aUe saailinge vanaf die kwekery wat in die veld geplant word tot op die ouderdom van twee iaar. Dit kom voor angeag van saadbron of ouderdom van saailinge ten tye van planting. Oorlewing na aanvanklike loot-terugsterwing is normaalweg laag. 5. Water behandelings het geen beduidende effek op die funksie van PSII reaksiesentra van r. angolensis kewekery-saailinge gehad. Vir beide donker- en lig-aangepaste blare is geen beduidende waterbehandelingseffek verkry vir waargenome ChI. a jluoresensie parameters of die berekende parameters (spes ifieke aktiwiteite, jenomenologiese jlukse, struktuur-funksie-indekse, "perjormance-indekse oj" driving forces" ). 6. Genetiese variasie tussen 16 halfsibfamilies vanaf Malawi, Namibie en Zambie is verkry vir loot-terugsterwing en ander groei-eienskappe. Dit dui op genetiese beheer van terugsterwing en dat die eienskap oorerjbaar is, en waarskynlik in die hele natuurlike verspreidingsgebied van die spesies in aUe saailinge voorkom. Aangesien loot-terugsterwing gene ties geprogrammeer is, is dit noodsaaklik vir die vermoe van die plant om in die volgende reenseisoen te regenereer.
ROSHAN, MANESH REZA. "Uptake, Toxicity and Translocation of Engineered Nanoparticles in Plants." Doctoral thesis, Università di Siena, 2017. http://hdl.handle.net/11365/1055368.
Full textLukic, Veronika. "Examination of physiological and morphological parameters of a population of lodgepole pine, Pinus contorta Dougl. spp. latifolia, seedling roots in relation to first year seedling growth." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/mq22629.pdf.
Full textHuth, Franka. "Untersuchungen zur Verjüngungsökologie der Sand-Birke (Betula pendula Roth)." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-27734.
Full text- Objectives - The main goal of this study was to describe comprehensively the particular stages of the regeneration cycle of Betula pendula Roth. Investigations were carried out in local stand and site conditions of a research area in South-East Germany (Tharandter Forest) are considered. In this context options for integrating Silver birch regeneration into silvicultural management concepts of old Spruce stands (Picea abies L.) with lacking vitality are pointed out. - Research area - The Tharandter Forest is located (50°00’N, 13°35’E.) in Saxony (South-East Germany) with an area of around 6.000 ha. It is dominated by Norway spruce stands, and ranges from colline to submontane altitudinal belt (350 to 420 m a.s.l.). These sites are part of the northern declivity of the Ore Mountains. Mono-layered Norway spruce stands with soils of medium trophy and well drained, but featured highly variable soil moisture levels during the growing season were selected for this study. The stand age was ≥ 80 years. Seed trees of Silver birch were mixed as single trees or small groups. - Methodical aspects - The methodical work was concentrated on relevant regeneration aspects like fructification of seed trees, seeds, seedlings, saplings and established regeneration of Silver birch. Growth parameters of seed trees and the amount of fructification were used to quantify allometric relationships. The multi-level research design was based on measurements under stand conditions, pot and laboratory experiments. Seed traps and plots (1m x 1m) were located in spruce stands with regard to different stages of Silver birch development. Therefore micro-environmental growth conditions like soil humidity and photosynthetic active radiation were measured, and plants of ground cover characterized. As examples of ground cover variants with highest presence in homogeneous spruce stands mineral soil, needle litter, Calamagrostis villosa CHAIX (GMEL.) und Deschampsia flexuosa L. (TRIN.) were chosen. Using the program WALDSTAT (NÄTHER & WÄLDER 2003) spatial distribution of dispersed seeds (diaspores) and seedlings could be modelled. Additionally pot experiments were done to compare quantitative and qualitative development of birch seedlings between stand and open site conditions. Regeneration density, number of leaves, shoot and root growth and allocations were measured as important growth parameters to evaluate single plant development under different environmental conditions. Finally, spatial distribution of seedlings in microsites and intraspecific competition were calculated by tessellation models, aggregation indices after CLARK & EVANS, Gini-coefficient and ‘constant yield law’. - Main results - - Measurements on seed trees of B. pendula indicate stand specific differences significantly in dimension, height and biosocial position of trees within the birch population (crown classes). For specific height-dbh curves logarithmic and quadratic equations were adapted. The relative crown length for seed trees was located between 37 % and 49 %. Allometric relationships between crown parameters (e.g. crown diameter, crown length and crown surface) were strongly correlated. In specific cases crown structures (e.g. dry mass of leaves and twigs) were also correlated, certainly with different grades. Direct seed counting of felled seed trees provided the relationships between dbh and number of seeds. Counted seeds for single Silver birch trees ranged between 2.300.000 - 4.200.000. - As one result of seed trapping huge varieties in seed production of Silver birch were detectable between years with different seed potential. Spatial modeling of seed dispersal supported strong influences caused by wind (direction and speed). Hence, best fitted model estimations were found for anisotropic scenarios. The maximum in seed density was recorded with 20.700 seeds per m². As data for ‘Mean Dispersal Distances’ (MDD) the program WALDSTAT calculated between 37 m and 90 m. Furthermore the amount of seeds produced by a single tree was estimated with 180.000 - 7.400.000 depending on dbh. Physical quality evaluations for seeds have shown a mean proportion of damaged and not germinable seeds between 5 % and 8 %. - Direct effects of ground cover variants have been identified for seedling density and growth. Seedling density was highest on mineral soil for both, stand conditions and pot experiment, but these birch seedlings developed slowly compared with individuals in the other ground cover variants. The best growth was realized by birch seedlings in needle litter and D. flexuosa. Regarding to root length and mass, birches in ground cover variants without grass competition (mineral soil and needle litter) have shown a significant better development of underground parts. Root dry mass of these birch seedlings reached proportions between 56 % and 60 % of whole plant dry mass. By contrast the aboveground dry mass (leaves and shoot) was higher for birches competing with grasses. Overall results of birch seedling distribution and competition were significant correlations between densities, space, and growth per single plant. - For saplings and established birch regeneration a notable decrease in mortality rates were found. According to regeneration analyses under stand conditions age distributions in Silver birch regeneration have been controlled by ground cover variants and their environment conditions. The average age of Silver birch seedlings was high in areas with C. villosa (7.6 years) and low in needle litter (4.7 years). Furthermore growth influencing environmental conditions like light, humidity, and distance of old spruce trees have shown differences between variants in ground cover. The growth of regenerated Silver birches at the age of 2 to 6 years under those stand conditions can be described by an exponential function with high degree of adaptation (p ≤ 0,000). There were also differences in sapling densities, mortality and growth rates caused by ground cover variants in the pot experiments. After 2.5 years maximum regeneration densities in pots were registered on ground covers with needle litter. Allocations in regeneration dry mass were less influenced by ground cover variants than in previous stages. Density dependent growth rates could not be proved during last measurements. Finally, the presented results provide the opportunity to characterize temporal and spatial presence of different regeneration stages of Silver birch, its potential of competition and further development in old Norway spruce stands of the Tharandter Forest. They document heterogeneous structures of micro-environmental conditions in these spruce stands, which have sustainable effects on regeneration establishment of this studied pioneer tree species. On the basis of spatial modeling it is possible to estimate spatial distribution of seeds and seedlings depending on seed tree positions. Overall the results involve a high potential of successful regeneration in Silver birch, which opens up promising vistas for silvicultural management. More detailed knowledge in particular regeneration stages induces possibilities for selective control in silviculture with Silver birch. Additionally, estimating the regeneration risks and the success under given surrounding conditions will be more precisely. Considering uncertainty in giving prognoses for climate change Silver birch should be integrated in silvicultural strategies because of its role as admixed tree species and pioneer crop combined with comparably high resilience against warming
Huth, Franka. "Untersuchungen zur Verjüngungsökologie der Sand-Birke (Betula pendula Roth)." Doctoral thesis, 2009. https://tud.qucosa.de/id/qucosa%3A25272.
Full text- Objectives - The main goal of this study was to describe comprehensively the particular stages of the regeneration cycle of Betula pendula Roth. Investigations were carried out in local stand and site conditions of a research area in South-East Germany (Tharandter Forest) are considered. In this context options for integrating Silver birch regeneration into silvicultural management concepts of old Spruce stands (Picea abies L.) with lacking vitality are pointed out. - Research area - The Tharandter Forest is located (50°00’N, 13°35’E.) in Saxony (South-East Germany) with an area of around 6.000 ha. It is dominated by Norway spruce stands, and ranges from colline to submontane altitudinal belt (350 to 420 m a.s.l.). These sites are part of the northern declivity of the Ore Mountains. Mono-layered Norway spruce stands with soils of medium trophy and well drained, but featured highly variable soil moisture levels during the growing season were selected for this study. The stand age was ≥ 80 years. Seed trees of Silver birch were mixed as single trees or small groups. - Methodical aspects - The methodical work was concentrated on relevant regeneration aspects like fructification of seed trees, seeds, seedlings, saplings and established regeneration of Silver birch. Growth parameters of seed trees and the amount of fructification were used to quantify allometric relationships. The multi-level research design was based on measurements under stand conditions, pot and laboratory experiments. Seed traps and plots (1m x 1m) were located in spruce stands with regard to different stages of Silver birch development. Therefore micro-environmental growth conditions like soil humidity and photosynthetic active radiation were measured, and plants of ground cover characterized. As examples of ground cover variants with highest presence in homogeneous spruce stands mineral soil, needle litter, Calamagrostis villosa CHAIX (GMEL.) und Deschampsia flexuosa L. (TRIN.) were chosen. Using the program WALDSTAT (NÄTHER & WÄLDER 2003) spatial distribution of dispersed seeds (diaspores) and seedlings could be modelled. Additionally pot experiments were done to compare quantitative and qualitative development of birch seedlings between stand and open site conditions. Regeneration density, number of leaves, shoot and root growth and allocations were measured as important growth parameters to evaluate single plant development under different environmental conditions. Finally, spatial distribution of seedlings in microsites and intraspecific competition were calculated by tessellation models, aggregation indices after CLARK & EVANS, Gini-coefficient and ‘constant yield law’. - Main results - - Measurements on seed trees of B. pendula indicate stand specific differences significantly in dimension, height and biosocial position of trees within the birch population (crown classes). For specific height-dbh curves logarithmic and quadratic equations were adapted. The relative crown length for seed trees was located between 37 % and 49 %. Allometric relationships between crown parameters (e.g. crown diameter, crown length and crown surface) were strongly correlated. In specific cases crown structures (e.g. dry mass of leaves and twigs) were also correlated, certainly with different grades. Direct seed counting of felled seed trees provided the relationships between dbh and number of seeds. Counted seeds for single Silver birch trees ranged between 2.300.000 - 4.200.000. - As one result of seed trapping huge varieties in seed production of Silver birch were detectable between years with different seed potential. Spatial modeling of seed dispersal supported strong influences caused by wind (direction and speed). Hence, best fitted model estimations were found for anisotropic scenarios. The maximum in seed density was recorded with 20.700 seeds per m². As data for ‘Mean Dispersal Distances’ (MDD) the program WALDSTAT calculated between 37 m and 90 m. Furthermore the amount of seeds produced by a single tree was estimated with 180.000 - 7.400.000 depending on dbh. Physical quality evaluations for seeds have shown a mean proportion of damaged and not germinable seeds between 5 % and 8 %. - Direct effects of ground cover variants have been identified for seedling density and growth. Seedling density was highest on mineral soil for both, stand conditions and pot experiment, but these birch seedlings developed slowly compared with individuals in the other ground cover variants. The best growth was realized by birch seedlings in needle litter and D. flexuosa. Regarding to root length and mass, birches in ground cover variants without grass competition (mineral soil and needle litter) have shown a significant better development of underground parts. Root dry mass of these birch seedlings reached proportions between 56 % and 60 % of whole plant dry mass. By contrast the aboveground dry mass (leaves and shoot) was higher for birches competing with grasses. Overall results of birch seedling distribution and competition were significant correlations between densities, space, and growth per single plant. - For saplings and established birch regeneration a notable decrease in mortality rates were found. According to regeneration analyses under stand conditions age distributions in Silver birch regeneration have been controlled by ground cover variants and their environment conditions. The average age of Silver birch seedlings was high in areas with C. villosa (7.6 years) and low in needle litter (4.7 years). Furthermore growth influencing environmental conditions like light, humidity, and distance of old spruce trees have shown differences between variants in ground cover. The growth of regenerated Silver birches at the age of 2 to 6 years under those stand conditions can be described by an exponential function with high degree of adaptation (p ≤ 0,000). There were also differences in sapling densities, mortality and growth rates caused by ground cover variants in the pot experiments. After 2.5 years maximum regeneration densities in pots were registered on ground covers with needle litter. Allocations in regeneration dry mass were less influenced by ground cover variants than in previous stages. Density dependent growth rates could not be proved during last measurements. Finally, the presented results provide the opportunity to characterize temporal and spatial presence of different regeneration stages of Silver birch, its potential of competition and further development in old Norway spruce stands of the Tharandter Forest. They document heterogeneous structures of micro-environmental conditions in these spruce stands, which have sustainable effects on regeneration establishment of this studied pioneer tree species. On the basis of spatial modeling it is possible to estimate spatial distribution of seeds and seedlings depending on seed tree positions. Overall the results involve a high potential of successful regeneration in Silver birch, which opens up promising vistas for silvicultural management. More detailed knowledge in particular regeneration stages induces possibilities for selective control in silviculture with Silver birch. Additionally, estimating the regeneration risks and the success under given surrounding conditions will be more precisely. Considering uncertainty in giving prognoses for climate change Silver birch should be integrated in silvicultural strategies because of its role as admixed tree species and pioneer crop combined with comparably high resilience against warming.
Book chapters on the topic "Seedlings growth parameters"
Kapoor, Riti Thapar. "Effect of Calcium Silicate Supplementation on the Growth of Trigonella Foenum-Graecum L. Variety Hisar Sonali Under Saline Conditions." In Proceedings of the Conference BioSangam 2022: Emerging Trends in Biotechnology (BIOSANGAM 2022), 214–24. Dordrecht: Atlantis Press International BV, 2022. http://dx.doi.org/10.2991/978-94-6463-020-6_21.
Full textCéspedes, Reina, Noel Arrieta, Miguel Barquero, Ana Abdelnour, Nielen Stephan, and Ingelbretch Ivan. "Determination of radiosensitivity of Coffea arabica var. 'Venecia' seeds to gamma-ray irradiation." In Mutation breeding, genetic diversity and crop adaptation to climate change, 320–25. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781789249095.0033.
Full textBasu, Sudipta, and Steven P. C. Groot. "Seed Vigour and Invigoration." In Seed Science and Technology, 67–89. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-5888-5_4.
Full textMotyleva, Svetlana, Galina Upadysheva, Tatyana Tumaeva, and Ivan Kulikov. "Stock Influence on Growth, Morphological and Biochemical Leaf Parameters Prunus domestica L." In Prunus - Recent Advances [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.99522.
Full textZelenyanskaya, Natalya. "SCIENTIFIC SUBSTANTIATION AND DEVELOPMENT OF MODERN TECHNOLOGY IN CULTURE OF GRAPEVINE PLANTING." In Science, technology, and innovation: the experience of European countries and prospects for Ukraine. Publishing House “Baltija Publishing”, 2021. http://dx.doi.org/10.30525/978-9934-26-190-9-4.
Full textRajhi, Imene, Bechir Baccouri, Safa Khalifa, Fethi Barhoumi, Moez Amri, and Haythem Mhadhbi. "Genotype-specific Patterns of Physiological, Photosynthetic, and Biochemical Responses in Faba Bean Contrasting Pair to Salinity." In Life in Extreme Environments - Diversity, Adaptability and Valuable Resources of Bioactive Molecules [Working Title]. IntechOpen, 2023. http://dx.doi.org/10.5772/intechopen.106979.
Full textConference papers on the topic "Seedlings growth parameters"
DUMINS, Karlis, Toms STALS, and Dagnija LAZDINA. "FOREST REGENERATION QUALITY ASSESSMENT BY ASTA SYSTEM." In RURAL DEVELOPMENT. Aleksandras Stulginskis University, 2018. http://dx.doi.org/10.15544/rd.2017.178.
Full textSerdyuk О.А., О. А., V. S. Trubina V.S., and L. A. Gorlova L.A. "Comparative assessment of biometric parameters of seedlings of winter and spring forms of rapeseed and brown mustard." In Растениеводство и луговодство. Тимирязевская сельскохозяйственная академия, 2020. http://dx.doi.org/10.26897/978-5-9675-1762-4-2020-34.
Full textKanjevac, Milica, Biljana Bojović, Marija Todorović, Dragana Jakovljević, Jovana Momčilović, and Milan Stanković. "EFEKAT HORMOPRAJMINGA NA POBOLJŠANJE OTPORNOSTI KLIJANACA KUKURUZA NA USLOVE SLANOG STRESA." In XXVII savetovanje o biotehnologiji. University of Kragujevac, Faculty of Agronomy, 2022. http://dx.doi.org/10.46793/sbt27.449k.
Full textSultanova, L. A., E. A. Maslyukov, and V. A. Kravchenko. "THE INFLUENCE OF ULTRA-LOW DOSES OF LASER RADIATION ON WATERCRESS MICROGREENS GROWTH." In SAKHAROV READINGS 2022: ENVIRONMENTAL PROBLEMS OF THE XXI CENTURY. International Sakharov Environmental Institute of Belarusian State University, 2022. http://dx.doi.org/10.46646/sakh-2022-1-321-324.
Full textAkhtyamova, Z. A. "Comparison of the reaction of barley plants to treatment with microorganisms producing auxins and cytokinins." In 2nd International Scientific Conference "Plants and Microbes: the Future of Biotechnology". PLAMIC2020 Organizing committee, 2020. http://dx.doi.org/10.28983/plamic2020.011.
Full textPTACH, Wiesław, Ariel ŁANGOWSKI, Roman ROLBIECKI, Stanisław ROLBIECKI, Barbara JAGOSZ, Vilda GRYBAUSKIENE, and Mateusz KOKOSZEWSKI. "THE INFLUENCE OF IRRIGATION ON THE GROWTH OF PAULOWNIA TREES AT THE FIRST YEAR OF CULTIVATION IN A LIGHT SOIL." In RURAL DEVELOPMENT. Aleksandras Stulginskis University, 2018. http://dx.doi.org/10.15544/rd.2017.121.
Full textGRYBAUSKIENE, Vilda, and Gitana VYČIENĖ. "EVAPOTRANSPIRATION-BASED IRRIGATION SCHEDULING FOR PICEA ABIES (SPRUCE) SEEDLINGS." In Rural Development 2015. Aleksandras Stulginskis University, 2015. http://dx.doi.org/10.15544/rd.2015.062.
Full textDAUTARTĖ, Anželika, Vidmantas SPRUOGIS, Romualdas ZEMECKIS, Edmundas BARTKEVIČIUS, and Algirdas GAVENAUSKAS. "THE INFLUENCE OF BIOORGANIC PREPARATIONS ON THE PRODUCTIVITY OF CONVENTIONALY GROWN WINTER RAPE ACTIVATING AND SAVING THE USE OF SYNTHETIC CHEMICALS." In RURAL DEVELOPMENT. Aleksandras Stulginskis University, 2018. http://dx.doi.org/10.15544/rd.2017.051.
Full textAbouelezz, Ahmed Helmy Hassan, and Talaat Ahmed. "The Efficacy of Two Household Cleaning and Disinfecting Agents on Lentil (Lens culinaris Medik) and Faba bean (Vicia faba) Seed Germination." In Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2021. http://dx.doi.org/10.29117/quarfe.2021.0023.
Full textSemenova, E. F., K. V. Vedernikova, and E. Yu Schetneva. "In vitro culture of Nonea pulla DC. seeds." In CURRENT STATE, PROBLEMS AND PROSPECTS OF THE DEVELOPMENT OF AGRARIAN SCIENCE. Federal State Budget Scientific Institution “Research Institute of Agriculture of Crimea”, 2020. http://dx.doi.org/10.33952/2542-0720-2020-5-9-10-95.
Full textReports on the topic "Seedlings growth parameters"
Israel, Alvaro, and John Merrill. Production of Seed Stocks for Sustainable Tank Cultivation of the Red Edible Seaweed Porphyra. United States Department of Agriculture, 2006. http://dx.doi.org/10.32747/2006.7696527.bard.
Full textPorat, Ron, Doron Holland, and Linda Walling. Identification of Citrus Fruit-Specific and Pathogen-Induced Promoters and Their Use in Molecular Engineering. United States Department of Agriculture, January 2001. http://dx.doi.org/10.32747/2001.7585202.bard.
Full text