Academic literature on the topic 'Seed Science and Technology'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Seed Science and Technology.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Seed Science and Technology"
Groot, Steven P. C. "Seed Science and Technology. Volume 48 Issue 1 (2020)." Seed Science and Technology 48, no. 1 (April 30, 2020): 133–42. http://dx.doi.org/10.15258/sst.2020.48.1.14.
Full textHamman, Brigitte. "Seed Science and Technology. Volume 51 Issue 2 (2023)." Seed Science and Technology 51, no. 2 (August 31, 2023): 287–90. http://dx.doi.org/10.15258/sst.2023.51.2.12.
Full textTay*, David. "Seed Technology in Plant Germplasm Conservation." HortScience 39, no. 4 (July 2004): 753B—753. http://dx.doi.org/10.21273/hortsci.39.4.753b.
Full textMcKersie, Bryan D. "Principles of seed science and technology." Plant Science 162, no. 5 (May 2002): 849. http://dx.doi.org/10.1016/s0168-9452(02)00011-0.
Full textCantliffe, Daniel J. "Handbook of Seed Science and Technology." HortScience 42, no. 2 (April 2007): 422a. http://dx.doi.org/10.21273/hortsci.42.2.422a.
Full textSchmid, Rudolf, and Amarjit S. Basra. "Handbook of Seed Science and Technology." Taxon 55, no. 4 (November 1, 2006): 1071. http://dx.doi.org/10.2307/25065722.
Full textHernández Cortés, José Antonio. "Seed Science Research: Global Trends in Seed Biology and Technology." Seeds 1, no. 1 (October 9, 2021): 1–4. http://dx.doi.org/10.3390/seeds1010001.
Full textTaylor, Alan G., Masoume Amirkhani, and Hank Hill. "Modern Seed Technology." Agriculture 11, no. 7 (July 6, 2021): 630. http://dx.doi.org/10.3390/agriculture11070630.
Full textMarcos-Filho, Julio. "Seed Science and Technology. Volume 48 Issue 3 (2020)." Seed Science and Technology 48, no. 3 (December 31, 2020): 439–51. http://dx.doi.org/10.15258/sst.2020.48.3.12.
Full textBaalbaki, Riad. "Seed Science and Technology. Volume 49 Issue 3 (2021)." Seed Science and Technology 49, no. 3 (December 31, 2021): 321–30. http://dx.doi.org/10.15258/sst.2021.49.3.11.
Full textDissertations / Theses on the topic "Seed Science and Technology"
Tamang, Deepa. "Enhancement of seed vigour and viability of aromatic rice by using chemicals under climatic conditions of Darjeeling Hills." Thesis, University of North Bengal, 2022. http://ir.nbu.ac.in/handle/123456789/4810.
Full textThyagarajan, Palaniappan. "Evaluation and optimization of cranberry seed oil extraction methods." Thesis, McGill University, 2012. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=110762.
Full textClements, Megan Alexander. "Almond Seed Coat, Surface Area, and Kinetics of Removal via Blanching." Thesis, University of California, Davis, 2013. http://pqdtopen.proquest.com/#viewpdf?dispub=3565492.
Full textThis research aims to provide a more complete understanding of almond seed coats, including microscopic development and structure, the relationship of measurable properties to surface area, and the kinetics of seed coat separation from the underlying almond kernel in response to a range of temperatures.
Immature almond samples of Nonpareil and Padre varieties were microscopically examined in the 16th-20th weeks after flowering (13 through 7 weeks prior to commercial harvest). The highly vacuolate and thin-walled diploid maternal tissues and triploid support tissue that sustain the embryo during development begin to rupture and compress down above a base monolayer of distinctly intact cells to form the mature seed coat. Over the course of blanching, no substantial swelling or dissolution of microscopic tissue layers was visible, however the junction between the base layer of the seed coat and the underlying almond cotyledon moved apart until they were no longer in contact with one another.
Surface areas of Nonpareil, Monterey, and Butte-Padre almonds were measured by manually peeling rehydrated nuts and analyzing images of their seed coats. Ninety-five percent of the 1,545 almonds measured in this study had surface areas between 515.96 mm2-942.24 mm2. Surprisingly, individual dimensions (length, width, and thickness) did not increase with increasing surface area, nor they did scale in proportion to one other. An empirical model was created to predict surface area (r2=0.74), which depends on the almond variety, as well as length, width, and mass after rehydration.
The progression of blanching was examined by quantifying the degree of seed coat separation at dozens of intermediate time-points during the blanching process, using this empirical model. Experimental temperatures were 70°C, 80°C, 90°C, and 100°C; at each temperature, seed coat separation occurred in a sigmoidal logarithmic fashion. Rates of blanching were calculated using non-linear two-parametric regression. Rates of blanching at 100°C and 90°C were not significantly different, however, blanching rates decreased semi-logarithmically with decreasing blanching temperature between 70°C and 90°C. D-values representing 90% seed coat separation were calculated as 30 seconds at 100°C, 35 seconds at 90°C, 120 seconds at 80°C, and 443 seconds at 70°C. From these, a z value for decimal reduction times between 70°C and 90°C was calculated at 18.48C degrees.
The novel empirical model for surface area could be used to improve the accuracy of mass transfer and energetic transfer calculations in almond processing. Quantifying the rate of seed coat separation could be used to explore any aspect of almond physiology dependent on or resultant from seed coat integrity, such as germination, rehydration kinetics, processing damage, or blanching efficacy. It could also potentially be used to compare the relative blanching propensity of different almond varieties, as well as evaluating the impact on skin separation of various growing, harvesting, and processing conditions. D- and z values characterizing the almond blanching process may be useful in optimizing almond processing conditions to reduce the chances of accidental seed coat separation, or to more efficiently achieve it.
Thacker, Mitchell Grant. "Use of Flash Flaming Technology to Improve Seed Handling and Delivery of Winterfat (Krascheninnikovia lanata)." BYU ScholarsArchive, 2021. https://scholarsarchive.byu.edu/etd/8928.
Full textRichardson, William Charles. "Improving Post-Wildfire Seeding Success using Germination Modeling and Seed Enhancement Technologies." BYU ScholarsArchive, 2018. https://scholarsarchive.byu.edu/etd/6783.
Full textAnderson, Ishmael Kwesi. "The relevance of science education: as seen by pupils in Ghanaian junior secondary schools." Thesis, University of the Western Cape, 2006. http://etd.uwc.ac.za/index.php?module=etd&action=viewtitle&id=gen8Srv25Nme4_9863_1182745156.
Full textThis thesis was based on a larger international comparative study called the ROSE (Relevance of Science Education) project. The study investigated the affective factors pupils perceive might be of relevance for the learning of science and technology using the ROSE survey questionnaire, and was aimed at providing data that might form part of an empirical basis for local adaptation of the science curriculum.
Chang, Yu-Wei. "Isolation and characterization of protein fractions from chickpea («Cicer arietinum» L.) and oat («Avena sativa» L.) seeds using proteomic techniques." Thesis, McGill University, 2010. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=95049.
Full textLes semences du pois chiche (Cicer arietinum L.) et de l'avoine (Avena sativa L.) sont d'importantes sources d'ingrédients protéiques dont les propriétés nutritionnelles, fonctionnelles et bioactives démontrent un grand potentiel. Les fractions protéiques ont été préparées à partir du pois chiche et de l'avoine par extraction séquentielle avec de l'eau distillée (albumine), une solution de NaCl (globuline) et une solution de NaOH (glutelines), respectivement. Les caractéristiques moléculaires des fractions de protéines individuelles ont été examinées par électrophorèse en gel de polyacrylamide (non dénaturante et SDS-PAGE, et 2-DGE) en combinaison avec la chromatographie en phase liquide à haute performance en phase inversée. Les séquences de peptides tryptiques ont été identifiées par des techniques protéomiques telles que la digestion de trypsine en gel unidimensionnelle, l'analyse chromatographique en phase liquide couplée à la spectrométrie de masse en tandem avec ionisation de type électrospray (LC-ESI-MS/MS), et la recherche d'ions MS/MS (Mascot). Les similarités séquentielles et la bioactivité potentielle des protéines ont été examinées sous analyse par BLAST et BIOPEP, respectivement. Les résultats de l'électrophorèse non dénaturante en gel de polyacrylamide démontrent que les fractions de globulines du pois chiche et d'avoine (C-Gb et O-Gb) contiennent des protéines correspondant aux légumines (11S) et avenaline (12S), respectivement. La SDS-PAGE révèle que les fractions d'albumine et de globuline de pois chiche (C-Ab et C-Gb) montrent des bandes protéiques ayant des poids moléculaires reliés à la légumine (11S) et le viciline de pois (7S) alors que la fraction de glutéline de pois chiche (C-Gt) montre des bandes protéiques avec des poids moléculaires reliés à la glutéline de riz; les fractions protéiques d'avoine (O-Ab, O-Gb et O-Gt) montrent de bandes protéiques avec des poids moléculaire
Spada, Roberta. "The second quantum revolution: designing a teaching-learning activity on the quantum manifesto to futurize science education." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/18360/.
Full textLi, Yingzhu. "Development of immersive and interactive virtual reality environment for two-player table tennis." Thesis, University of Central Lancashire, 2012. http://clok.uclan.ac.uk/5316/.
Full textBenzel, Katie Rebecca. "Defoliation effects on Spotted Knapweed seed production and viability." Thesis, Montana State University, 2008. http://etd.lib.montana.edu/etd/2008/benzel/BenzelK0508.pdf.
Full textBooks on the topic "Seed Science and Technology"
Copeland, Lawrence O. Seed science and technology. 3rd ed. London: Chapman & Hall, 1995.
Find full textDadlani, Malavika, and Devendra K. Yadava, eds. Seed Science and Technology. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-5888-5.
Full textS, Basra Amarjit, ed. Handbook of seed science and technology. New York: Food Products Press, 2005.
Find full textCopeland, Larry O., and Miller B. McDonald. Principles of Seed Science and Technology. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-1783-2.
Full textCopeland, Lawrence O., and Miller B. McDonald. Principles of Seed Science and Technology. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1619-4.
Full textB, McDonald M., ed. Principles of seed science and technology. 2nd ed. Minneapolis, Minn: Burgess Pub. Co., 1985.
Find full textAnzola, M. Constanza. Thesaurus on seed science and technology. [Cali, Colombia]: Centro Internacional de Agricultura Tropical, Seed Unit, 1986.
Find full textCopeland, Lawrence O. Principles of Seed Science and Technology. 4th ed. Boston, MA: Springer US, 2001.
Find full textB, McDonald M., ed. Principles of seed science and technology. 3rd ed. New York, N.Y: Chapman & Hall, 1995.
Find full textB, McDonald M., ed. Principles of seed science and technology. 4th ed. Boston: Kluwer Academic Publishers, 2001.
Find full textBook chapters on the topic "Seed Science and Technology"
Chakrabarty, Shyamal K., Sudipta Basu, and W. Schipprach. "Hybrid Seed Production Technology." In Seed Science and Technology, 173–212. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-5888-5_9.
Full textPandita, Vinod K., P. M. Singh, and Nakul Gupta. "Vegetable Seed Production." In Seed Science and Technology, 133–52. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-5888-5_7.
Full textWeissmann, Elmar A., K. Raja, Arnab Gupta, Manish Patel, and Alexander Buehler. "Seed Quality Enhancement." In Seed Science and Technology, 391–414. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-5888-5_16.
Full textCopeland, Larry O., and Miller B. McDonald. "Seed Enhancements." In Principles of Seed Science and Technology, 258–76. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-1783-2_11.
Full textCopeland, Larry O., and Miller B. McDonald. "Seed Certification." In Principles of Seed Science and Technology, 277–95. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-1783-2_12.
Full textCopeland, Larry O., and Miller B. McDonald. "Seed Testing." In Principles of Seed Science and Technology, 296–325. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-1783-2_13.
Full textCopeland, Larry O., and Miller B. McDonald. "Seed Marketing." In Principles of Seed Science and Technology, 352–61. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-1783-2_15.
Full textCopeland, Larry O., and Miller B. McDonald. "Seed Germination." In Principles of Seed Science and Technology, 59–110. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-1783-2_4.
Full textCopeland, Larry O., and Miller B. McDonald. "Seed Dormancy." In Principles of Seed Science and Technology, 127–52. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-1783-2_6.
Full textCopeland, Larry O., and Miller B. McDonald. "Seed Production." In Principles of Seed Science and Technology, 221–41. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-1783-2_9.
Full textConference papers on the topic "Seed Science and Technology"
Jantianus, E. E. Surbakti, R. W. Sembiring, P. Silaen, and Khairul. "Implementation Weighted Product Method for the Best Carrot Seed Recommendations." In International Conference on Applied Science and Technology on Engineering Science. SCITEPRESS - Science and Technology Publications, 2021. http://dx.doi.org/10.5220/0010954100003260.
Full textZhang, Yangguang, Qi Chen, Ji Shen, Qihao Shi, and Can Wang. "Adaptive Seed Minimization for Diversified Influence Maximization." In 2022 5th International Conference on Data Science and Information Technology (DSIT). IEEE, 2022. http://dx.doi.org/10.1109/dsit55514.2022.9943966.
Full textLam, Steve T., Robert J. Marks II, and Paul S. Cho. "Three-dimensional Seed Reconstruction in Prostate Brachytherapy Using Hough Transformations." In International Symposium on Optical Science and Technology, edited by Andrew G. Tescher. SPIE, 2002. http://dx.doi.org/10.1117/12.456521.
Full textDarmayanti, Agung S., Esti E. Ariyanti, Ilham K. Abywijaya, Melisnawati H. Angio, and Dewi Lestari. "Seed exploration in Meru Betiri National Park and its conservation in seed bank of Purwodadi Botanic Garden, East Java, Indonesia." In THE 4TH INTERNATIONAL CONFERENCE ON LIFE SCIENCE AND TECHNOLOGY (ICoLiST). AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0112781.
Full textPradeep, Sankeerth, B. S. Vinay, Tenzin Thinlay, Bharath Shyam, and C. H. Patel. "Development of seed sowing robot using shrimp mechanism." In 1ST INTERNATIONAL CONFERENCE ON ADVANCES IN MATERIAL SCIENCE AND TECHNOLOGY: ICAMST2022. AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0192317.
Full textMekel, Alfred, and Tineke Saroinsong. "Control System in Crusher and Sorting Nutmeg Seed Machine based on Arduino Uno." In International Conference on Applied Science and Technology on Engineering Science. SCITEPRESS - Science and Technology Publications, 2021. http://dx.doi.org/10.5220/0010966200003260.
Full textLi, Hui, Chengjun Zou, and Xuliang Duan. "Research progress of crop seed quality detection based on spectral imaging technology." In Eighth International Conference on Electronic Technology and Information Science (ICETIS 2023), edited by Hu Sheng and Huajun Dong. SPIE, 2023. http://dx.doi.org/10.1117/12.2682450.
Full textKummara, Harikrishna, Sai Ajay Enagandula, Hari Teja Mallisetty, and Chetan Hanumanthappa Patel. "Design and fabrication of multi-tool seed sowing machine." In 1ST INTERNATIONAL CONFERENCE ON ADVANCES IN MATERIAL SCIENCE AND TECHNOLOGY: ICAMST2022. AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0195201.
Full textSetiawan, Herlan, Daya Agung Sarwono, Moch Subechi, Anung Pujiyanto, Mujinah Mujinah, Dede Kurniasih, and Witarti Witarti. "Preparation and characterization of Samarium-153 bioceramics for seed brachytherapy." In INTERNATIONAL CONFERENCE ON NUCLEAR SCIENCE, TECHNOLOGY, AND APPLICATIONS – ICONSTA 2022. AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0192960.
Full textShin, Youngjoo, Dongyoung Koo, Joobeom Yun, and Junbeom Hur. "SEED: Enabling Serverless and Efficient Encrypted Deduplication for Cloud Storage." In 2016 IEEE International Conference on Cloud Computing Technology and Science (CloudCom). IEEE, 2016. http://dx.doi.org/10.1109/cloudcom.2016.0084.
Full textReports on the topic "Seed Science and Technology"
Mahat, Marian, Guy Morrow, Brian Long, Siew Fang Law, Amy Gullickson, and Chengxin Guo. Developing an impact framework for Science Gallery Network: Final report. University of Melbourne, 2022. http://dx.doi.org/10.46580/124372.
Full textKelsey, Tom. When Missions Fail: Lessons in ‘High Technology’ From Post-War Britain. Blavatnik School of Government, December 2023. http://dx.doi.org/10.35489/bsg-wp_2023/056.
Full textBonner, F. T., James A. Vozzo, W. W. Elam, and S. B. Land. Tree Seed Technology Training Course. New Orleans, LA: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station, 1994. http://dx.doi.org/10.2737/so-gtr-107.
Full textBonner, F. T., John A. Vozzo, W. W. Elam, and S. B. Land. Tree Seed Technology Training Course - Instructor's Manual. New Orleans, LA: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station, 1994. http://dx.doi.org/10.2737/so-gtr-106.
Full textBonner, F. T., and John A. Vozzo. Seed Biology and Technology of Quercus. New Orleans, LA: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station, 1987. http://dx.doi.org/10.2737/so-gtr-66.
Full textSmith, B. F., N. Sauer, R. M. Chamberlin, S. Gottesfeld, B. R. Mattes, D. Q. Li, and B. Swanson. Separation science and technology. Office of Scientific and Technical Information (OSTI), December 1998. http://dx.doi.org/10.2172/307877.
Full textENGLER, O., J. BINGERT, and ET AL. TEXTURE SCIENCE AND TECHNOLOGY. Office of Scientific and Technical Information (OSTI), November 1999. http://dx.doi.org/10.2172/787262.
Full textJones, Anita, and Larry Lynn. Defense Science and Technology. Fort Belvoir, VA: Defense Technical Information Center, May 2002. http://dx.doi.org/10.21236/ada403874.
Full textM. ABRAMS, R. BAKER, and ET AL. CATALYSIS SCIENCE AND TECHNOLOGY. Office of Scientific and Technical Information (OSTI), August 2000. http://dx.doi.org/10.2172/768735.
Full textDEPARTMENT OF THE ARMY WASHINGTON DC. Army Science and Technology. Fort Belvoir, VA: Defense Technical Information Center, April 1998. http://dx.doi.org/10.21236/ada353425.
Full text