Academic literature on the topic 'Security of machine learning classifiers'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Security of machine learning classifiers.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Security of machine learning classifiers"
Atnafu, Surafel Mehari, and Prof (Dr ). Anuja Kumar Acharya. "Comparative Analysis of Intrusion Detection Attack Based on Machine Learning Classifiers." Indian Journal of Artificial Intelligence and Neural Networking 1, no. 2 (April 10, 2021): 22–28. http://dx.doi.org/10.35940/ijainn.b1025.041221.
Full textAtnafu, Surafel Mehari, and Prof (Dr ). Anuja Kumar Acharya. "Comparative Analysis of Intrusion Detection Attack Based on Machine Learning Classifiers." Indian Journal of Artificial Intelligence and Neural Networking 1, no. 2 (April 10, 2021): 22–28. http://dx.doi.org/10.54105/ijainn.b1025.041221.
Full textALGorain, Fahad T., and John A. Clark. "Covering Arrays ML HPO for Static Malware Detection." Eng 4, no. 1 (February 9, 2023): 543–54. http://dx.doi.org/10.3390/eng4010032.
Full textKatzir, Ziv, and Yuval Elovici. "Quantifying the resilience of machine learning classifiers used for cyber security." Expert Systems with Applications 92 (February 2018): 419–29. http://dx.doi.org/10.1016/j.eswa.2017.09.053.
Full textGongada, Sandhya Rani, Muktevi Chakravarthy, and Bhukya Mangu. "Power system contingency classification using machine learning technique." Bulletin of Electrical Engineering and Informatics 11, no. 6 (December 1, 2022): 3091–98. http://dx.doi.org/10.11591/eei.v11i6.4031.
Full textMehanović, Dželila, and Jasmin Kevrić. "Phishing Website Detection Using Machine Learning Classifiers Optimized by Feature Selection." Traitement du Signal 37, no. 4 (October 10, 2020): 563–69. http://dx.doi.org/10.18280/ts.370403.
Full textDeshmukh, Miss Maithili, and Dr M. A. Pund. "Implementation Paper on Network Data Verification Using Machine Learning Classifiers Based on Reduced Feature Dimensions." International Journal for Research in Applied Science and Engineering Technology 10, no. 4 (April 30, 2022): 2921–24. http://dx.doi.org/10.22214/ijraset.2022.41938.
Full textRunwal, Akshat. "Anomaly based Intrusion Detection System using Machine Learning." International Journal for Research in Applied Science and Engineering Technology 9, no. 9 (September 30, 2021): 255–60. http://dx.doi.org/10.22214/ijraset.2021.37955.
Full textAbdulrezzak, Sarah, and Firas Sabir. "An Empirical Investigation on Snort NIDS versus Supervised Machine Learning Classifiers." Journal of Engineering 29, no. 2 (February 1, 2023): 164–78. http://dx.doi.org/10.31026/j.eng.2023.02.11.
Full textSingh, Ravi, and Virender Ranga. "Performance Evaluation of Machine Learning Classifiers on Internet of Things Security Dataset." International Journal of Control and Automation 11, no. 5 (May 31, 2018): 11–24. http://dx.doi.org/10.14257/ijca.2018.11.5.02.
Full textDissertations / Theses on the topic "Security of machine learning classifiers"
Lubenko, Ivans. "Towards robust steganalysis : binary classifiers and large, heterogeneous data." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:c1ae44b8-94da-438d-b318-f038ad6aac57.
Full textNowroozi, Ehsan. "Machine Learning Techniques for Image Forensics in Adversarial Setting." Doctoral thesis, Università di Siena, 2020. http://hdl.handle.net/11365/1096177.
Full textSingh, Gurpreet. "Statistical Modeling of Dynamic Risk in Security Systems." Thesis, KTH, Matematisk statistik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-273599.
Full textBig data har använts regelbundet inom ekonomi för att bygga prognosmodeller, det är dock ett relativt nytt koncept inom säkerhetsbranschen. Denna studie förutsäger vilka larmkoder som kommer att låta under de kommande 7 dagarna på plats $L$ genom att observera de senaste 7 dagarna. Logistisk regression och neurala nätverk används för att lösa detta problem. Eftersom att problemet är av en multi-label natur tillämpas logistisk regression i kombination med binary relevance och classifier chains. Modellerna tränas på data som har annoterats med två separata metoder. Den första metoden annoterar datan genom att endast observera plats $L$ och den andra metoden betraktar $L$ och $L$:s omgivning. Eftersom problemet är multi-labeled kommer annoteringen sannolikt att vara obalanserad och därför används resamplings metoden, SMOTE, och random over-sampling för att öka frekvensen av minority labels. Recall, precision och F1-score mättes för att utvärdera modellerna. Resultaten visar att den andra annoterings metoden presterade bättre för alla modeller och att classifier chains och binary relevance presterade likartat. Binary relevance och classifier chains modellerna som tränades på datan som använts sig av resamplings metoden SMOTE gav ett högre macro average F1-score, dock sjönk prestationen för neurala nätverk. Resamplings metoden SMOTE presterade även bättre än random over-sampling. Neurala nätverksmodellen överträffade de andra två modellerna på alla metoder och uppnådde högsta F1-score.
Sayin, Günel Burcu. "Towards Reliable Hybrid Human-Machine Classifiers." Doctoral thesis, Università degli studi di Trento, 2022. http://hdl.handle.net/11572/349843.
Full textMcClintick, Kyle W. "Training Data Generation Framework For Machine-Learning Based Classifiers." Digital WPI, 2018. https://digitalcommons.wpi.edu/etd-theses/1276.
Full textDang, Robin, and Anders Nilsson. "Evaluation of Machine Learning classifiers for Breast Cancer Classification." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-280349.
Full textBröstcancer är en vanlig och dödlig sjukdom bland kvinnor globalt där en tidig upptäckt är avgörande för att förbättra prognosen för patienter. I dagens digitala samhälle kan datorer och komplexa algoritmer utvärdera och diagnostisera sjukdomar mer effektivt och med större säkerhet än erfarna läkare. Flera studier har genomförts för att automatisera tekniker med medicinska avbildningsmetoder, genom maskininlärnings tekniker, för att förutsäga och upptäcka bröstcancer. I den här rapport utvärderas och jämförs lämpligheten hos fem olika maskininlärningsmetoder att klassificera huruvida bröstcancer är av god- eller elakartad karaktär. Vidare undersöks hur metodernas effektivitet, med avseende på klassificeringssäkerhet samt exekveringstid, påverkas av förbehandlingsmetoden Principal component analysis samt ensemble metoden Bootstrap aggregating. I teorin skall båda förbehandlingsmetoder gynna vissa maskininlärningsmetoder och således öka klassificeringssäkerheten. Undersökningen är baserat på ett välkänt bröstcancer dataset från Wisconsin som används till att träna algoritmerna. Resultaten är evaluerade genom applicering av statistiska metoder där träffsäkerhet, känslighet och exekveringstid tagits till hänsyn. Följaktligen jämförs resultaten mellan de olika klassificerarna. Undersökningen visade att användningen av varken Principal component analysis eller Bootstrap aggregating resulterade i några nämnvärda förbättringar med avseende på klassificeringssäkerhet. Dock visade resultaten att klassificerarna Support vector machines Linear och RBF presterade bäst. I och med att undersökningen var begränsad med avseende på antalet dataset samt val av olika evalueringsmetoder med medförande justeringar är det därför osäkert huruvida det erhållna resultatet kan generaliseras över andra dataset och populationer.
Rigaki, Maria. "Adversarial Deep Learning Against Intrusion Detection Classifiers." Thesis, Luleå tekniska universitet, Datavetenskap, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-64577.
Full textFord, John M. "Pulsar Search Using Supervised Machine Learning." NSUWorks, 2017. http://nsuworks.nova.edu/gscis_etd/1001.
Full textBurago, Igor. "Automated Attacks on Compression-Based Classifiers." Thesis, University of Oregon, 2014. http://hdl.handle.net/1794/18439.
Full textIshii, Shotaro, and David Ljunggren. "A Comparative Analysis of Robustness to Noise in Machine Learning Classifiers." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-302532.
Full textData som härstammar från verkliga mätningar innehåller ofta förvrängningar i viss utsträckning. Sådana förvrängningar kan i vissa fall leda till försämrad klassificeringsnoggrannhet. I den här studien jämförs tre klassificeringsalgoritmer med avseende på hur pass robusta de är när den data de presenteras innehåller syntetiska förvrängningar. Mer specifikt så tränades och jämfördes slumpskogar, stödvektormaskiner och artificiella neuronnät på fyra olika mängder data med varierande nivåer av syntetiska förvrängningar. Sammanfattningsvis så presterade slumpskogen bäst, och var den mest robusta klassificeringsalgoritmen på åtta av tio förvrängningsnivåer, tätt följt av det artificiella neuronnätet. På de två återstående förvrängningsnivåerna presterade stödvektormaskinen med linjär kärna bäst och var den mest robusta klassificeringsalgoritmen.
Books on the topic "Security of machine learning classifiers"
Learning kernel classifiers: Theory and algorithms. Cambridge, Mass: MIT Press, 2002.
Find full textChen, Xiaofeng, Willy Susilo, and Elisa Bertino, eds. Cyber Security Meets Machine Learning. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6726-5.
Full textChen, Xiaofeng, Hongyang Yan, Qiben Yan, and Xiangliang Zhang, eds. Machine Learning for Cyber Security. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-62223-7.
Full textChen, Xiaofeng, Hongyang Yan, Qiben Yan, and Xiangliang Zhang, eds. Machine Learning for Cyber Security. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-62460-6.
Full textChen, Xiaofeng, Hongyang Yan, Qiben Yan, and Xiangliang Zhang, eds. Machine Learning for Cyber Security. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-62463-7.
Full textChen, Xiaofeng, Xinyi Huang, and Jun Zhang, eds. Machine Learning for Cyber Security. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-30619-9.
Full textXu, Yuan, Hongyang Yan, Huang Teng, Jun Cai, and Jin Li, eds. Machine Learning for Cyber Security. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-20102-8.
Full textXu, Yuan, Hongyang Yan, Huang Teng, Jun Cai, and Jin Li, eds. Machine Learning for Cyber Security. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-20096-0.
Full textXu, Yuan, Hongyang Yan, Huang Teng, Jun Cai, and Jin Li, eds. Machine Learning for Cyber Security. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-20099-1.
Full textDolev, Shlomi, Oded Margalit, Benny Pinkas, and Alexander Schwarzmann, eds. Cyber Security Cryptography and Machine Learning. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-78086-9.
Full textBook chapters on the topic "Security of machine learning classifiers"
Padmavathi, G., D. Shanmugapriya, and A. Roshni. "Evaluation of Supervised Machine Learning Classifiers to Detect Mobile Malware." In Progressions Made in Cyber-Security World, 10–21. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003302384-2.
Full textSingh, Amit Kumar, and Rajendra Pamula. "Vehicular Delay Tolerant Network Based Communication Using Machine Learning Classifiers." In Architectural Wireless Networks Solutions and Security Issues, 195–208. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0386-0_11.
Full textWu, Datong, Taotao Wu, and Xiaotong Wu. "A Differentially Private Random Decision Tree Classifier with High Utility." In Machine Learning for Cyber Security, 376–85. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-62223-7_32.
Full textPatil, Rohini, and Kamal Shah. "Performance Evaluation of Machine Learning Classifiers for Prediction of Type 2 Diabetes Using Stress-Related Parameters." In Data Science and Security, 93–101. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2211-4_8.
Full textPreethi, N., and W. Jaisingh. "Analysis of Fine Needle Aspiration Images by Using Hybrid Feature Selection and Various Machine Learning Classifiers." In Data Science and Security, 383–92. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2211-4_34.
Full textBojjagani, Sriramulu, B. Ramachandra Reddy, Mulagala Sandhya, and Dinesh Reddy Vemula. "CybSecMLC: A Comparative Analysis on Cyber Security Intrusion Detection Using Machine Learning Classifiers." In Communications in Computer and Information Science, 232–45. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0419-5_19.
Full textBhattacharya, Madhubrata, and Debabrata Datta. "Development of Predictive Models of Diabetes Using Ensemble Machine Learning Classifier." In Advancements in Smart Computing and Information Security, 377–88. Cham: Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-23092-9_30.
Full textAggarwal, Ritu, and Prateek Thakral. "Meticulous Presaging Arrhythmia Fibrillation for Heart Disease Classification Using Oversampling Method for Multiple Classifiers Based on Machine Learning." In Advances in Data Computing, Communication and Security, 99–107. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8403-6_9.
Full textArulmurugan, A., R. Kaviarasan, and Saiyed Faiayaz Waris. "Fault Tolerance-Based Attack Detection Using Ensemble Classifier Machine Learning with IOT Security." In Big data management in Sensing, 115–48. New York: River Publishers, 2022. http://dx.doi.org/10.1201/9781003337355-9.
Full textTran, Quang Duy, and Fabio Di Troia. "Word Embeddings for Fake Malware Generation." In Silicon Valley Cybersecurity Conference, 22–37. Cham: Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-24049-2_2.
Full textConference papers on the topic "Security of machine learning classifiers"
Gao, Sida, and Geethapriya Thamilarasu. "Machine-Learning Classifiers for Security in Connected Medical Devices." In 2017 26th International Conference on Computer Communication and Networks (ICCCN). IEEE, 2017. http://dx.doi.org/10.1109/icccn.2017.8038507.
Full textKoli, J. D. "RanDroid: Android malware detection using random machine learning classifiers." In 2018 Technologies for Smart-City Energy Security and Power (ICSESP). IEEE, 2018. http://dx.doi.org/10.1109/icsesp.2018.8376705.
Full textRadhi Hadi, Mhmood, and Adnan Saher Mohammed. "A Novel Approach to Network Intrusion Detection System using Deep Learning for SDN: Futuristic Approach." In 4th International Conference on Machine Learning & Applications (CMLA 2022). Academy and Industry Research Collaboration Center (AIRCC), 2022. http://dx.doi.org/10.5121/csit.2022.121106.
Full textYazdani-Abyaneh, Amir-Hossein, and Marwan Krunz. "Automatic Machine Learning for Multi-Receiver CNN Technology Classifiers." In WiSec '22: 15th ACM Conference on Security and Privacy in Wireless and Mobile Networks. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3522783.3529524.
Full textThapa, Bipun. "Sentiment Analysis of Cyber Security Content on Twitter and Reddit." In 3rd International Conference on Data Mining and Machine Learning (DMML 2022). Academy and Industry Research Collaboration Center (AIRCC), 2022. http://dx.doi.org/10.5121/csit.2022.120708.
Full textAlnashashibi, May, Wael Hadi, and Nuha El-Khalili. "Predicting stress levels of automobile drivers using classical machine learning classifiers." In 2022 International Conference on Business Analytics for Technology and Security (ICBATS). IEEE, 2022. http://dx.doi.org/10.1109/icbats54253.2022.9759005.
Full textAdeshina, Qozeem Adeniyi, and Baidya Nath Saha. "Using Machine Learning to Predict Distributed Denial-of-Service (DDoS) Attack." In Intelligent Computing and Technologies Conference. AIJR Publisher, 2021. http://dx.doi.org/10.21467/proceedings.115.21.
Full textVerticale, Giacomo. "On the Portability of Trained Machine Learning Classifiers for Early Application Identification." In 2008 Second International Conference on Emerging Security Information, Systems and Technologies (SECUREWARE). IEEE, 2008. http://dx.doi.org/10.1109/securware.2008.13.
Full textJamil, Hasibul, Ning Yang, and Ning Weng. "Securing Home IoT Network with Machine Learning Based Classifiers." In 2021 IEEE 7th World Forum on Internet of Things (WF-IoT). IEEE, 2021. http://dx.doi.org/10.1109/wf-iot51360.2021.9594932.
Full textAghakhani, Hojjat, Fabio Gritti, Francesco Mecca, Martina Lindorfer, Stefano Ortolani, Davide Balzarotti, Giovanni Vigna, and Christopher Kruegel. "When Malware is Packin' Heat; Limits of Machine Learning Classifiers Based on Static Analysis Features." In Network and Distributed System Security Symposium. Reston, VA: Internet Society, 2020. http://dx.doi.org/10.14722/ndss.2020.24310.
Full textReports on the topic "Security of machine learning classifiers"
Barreno, Marco, Blaine A. Nelson, Anthony D. Joseph, and Doug Tygar. The Security of Machine Learning. Fort Belvoir, VA: Defense Technical Information Center, April 2008. http://dx.doi.org/10.21236/ada519143.
Full textLucas, Christine, Emily Hadley, Jason Nance, Peter Baumgartner, Rita Thissen, David Plotner, Christine Carr, and Aerian Tatum. Machine Learning for Medical Coding in Health Care Surveys. National Center for Health Statistics (U.S.), October 2021. http://dx.doi.org/10.15620/cdc:109828.
Full textPoppeliers, Christian. LDRD 218327: Seismic Spatial Gradients and Machine Learning-Based Classifiers for Explosion Monitoring. Office of Scientific and Technical Information (OSTI), September 2021. http://dx.doi.org/10.2172/1854996.
Full textVerzi, Stephen, Raga Krishnakumar, Drew Levin, Daniel Krofcheck, and Kelly Williams. Data Science and Machine Learning for Genome Security. Office of Scientific and Technical Information (OSTI), September 2021. http://dx.doi.org/10.2172/1855003.
Full textCaley, Jeffrey. A Survey of Systems for Predicting Stock Market Movements, Combining Market Indicators and Machine Learning Classifiers. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.2000.
Full textRitchey, Ralph P., Garrett S. Payer, and Richard E. Harang. Compilation of a Network Security/Machine Learning Toolchain for Android ARM Platforms. Fort Belvoir, VA: Defense Technical Information Center, July 2014. http://dx.doi.org/10.21236/ada609411.
Full textBuchanan, Ben. A National Security Research Agenda for Cybersecurity and Artificial Intelligence. Center for Security and Emerging Technology, May 2020. http://dx.doi.org/10.51593/2020ca001.
Full textBuchanan, Ben. The AI Triad and What It Means for National Security Strategy. Center for Security and Emerging Technology, August 2020. http://dx.doi.org/10.51593/20200021.
Full textTayeb, Shahab. Taming the Data in the Internet of Vehicles. Mineta Transportation Institute, January 2022. http://dx.doi.org/10.31979/mti.2022.2014.
Full textPerdigão, Rui A. P. Information physics and quantum space technologies for natural hazard sensing, modelling and prediction. Meteoceanics, September 2021. http://dx.doi.org/10.46337/210930.
Full text