Academic literature on the topic 'Security of IoT'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Security of IoT.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Security of IoT"
Jogdand, Gopal, Shubham Kadam, Kiran Patil, and Gaurav Mate. "Iot Transaction Security." Journal of Advances and Scholarly Researches in Allied Education 15, no. 2 (April 1, 2018): 711–16. http://dx.doi.org/10.29070/15/57056.
Full textAbosata, Nasr, Saba Al-Rubaye, Gokhan Inalhan, and Christos Emmanouilidis. "Internet of Things for System Integrity: A Comprehensive Survey on Security, Attacks and Countermeasures for Industrial Applications." Sensors 21, no. 11 (May 24, 2021): 3654. http://dx.doi.org/10.3390/s21113654.
Full textToka, K. O., Y. Dikilitaş, T. Oktay, and A. Sayar. "SECURING IOT WITH BLOCKCHAIN." International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLVI-4/W5-2021 (December 23, 2021): 529–32. http://dx.doi.org/10.5194/isprs-archives-xlvi-4-w5-2021-529-2021.
Full textKotaiah, Dharavath, and Chitti Ravi Kiran. "Network Security Key Areas of IoT and IIOT- with Connected Devices Privacy and Security." International Journal for Research in Applied Science and Engineering Technology 11, no. 3 (March 31, 2023): 2076–82. http://dx.doi.org/10.22214/ijraset.2023.49873.
Full textRaimundo, Ricardo Jorge, and Albérico Travassos Rosário. "Cybersecurity in the Internet of Things in Industrial Management." Applied Sciences 12, no. 3 (February 2, 2022): 1598. http://dx.doi.org/10.3390/app12031598.
Full textAlkunidry, Dona, Shahad Alhuwaysi, and Rawan Alharbi. "Security Threads and IoT Security." Journal of Computer and Communications 11, no. 09 (2023): 76–83. http://dx.doi.org/10.4236/jcc.2023.119005.
Full textAlasmary, Hisham. "RDAF-IIoT: Reliable Device-Access Framework for the Industrial Internet of Things." Mathematics 11, no. 12 (June 15, 2023): 2710. http://dx.doi.org/10.3390/math11122710.
Full textMa, Jinnan, Xuekui Shangguan, and Ying Zhang. "IoT Security Review: A Case Study of IIoT, IoV, and Smart Home." Wireless Communications and Mobile Computing 2022 (August 21, 2022): 1–10. http://dx.doi.org/10.1155/2022/6360553.
Full textSaidkulovich, Sanjar Muminov, Husanboy Shoraimov Uktamboyevich, and Umarbek Akramov Farkhodugli. "Internet-of-things security and vulnerabilities: Iot security, iot taxonomy." ACADEMICIA: An International Multidisciplinary Research Journal 11, no. 3 (2021): 620–24. http://dx.doi.org/10.5958/2249-7137.2021.00676.5.
Full textUsman, Sahnius, Shahnurin Khanam Sanchi, Muhammad Idris, and Sadiq Abubakar Zagga. "SECURING IOT HEALTHCARE APPLICATIONS AND BLOCKCHAIN: ADDRESSING SECURITY ATTACKS." International Journal of Software Engineering and Computer Systems 9, no. 2 (July 29, 2023): 119–28. http://dx.doi.org/10.15282/ijsecs.9.2.2023.5.0116.
Full textDissertations / Theses on the topic "Security of IoT"
Laaboudi, Younes. "Reactive security of IoT communications." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-249633.
Full textIoT-nätverks sårbarheter kan skyddas genom intrångsdetektering och svarsystem (IDRS). Anomalibaserad intrångsdetektering erbjuder flera fördelar: det kan upptäcka okända attacker och det kan anpassa sig till flera typer av protokoll. Inbrottssvaret är svårare att genomföra i kombination med ett anomalibaserat detekteringssystem, delvis på grund av möjligheten till falska positiva varningar. Det här exjobbet söker sätt att förbättra anomalibaserad detektering och svar genom två implementeringar av IDRS i två distinkta IoT-nätverk. Resultaten visar att anomalibaserad detektering kan användas vid ett ZigBee IoT- nätverk för att upptäcka olika typer av attacker utan tidigare kunskaper om den här attackerna. Dessutom kan mjuka svarmetoder användas för att förbättrar detekteringskvaliteten med låg inverkan på IoT- nätverksbeteendet.
Shakra, Mohamed, and Ahmad Jabali. "Evaluating Security For An IoT Device." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-289631.
Full textIoT-systemanvändningen växer snabbt och är involverad i många branscher som orsakar fler potentiella säkerhetsbrister i ett nyligen nytt fält. Även glödlampor, har en ny generation som heter textit smarta glödlampor har tagit ett steg in i IoT- världen. I det här dokumentet utvärderas en prisvärd och tillgänglig glödlampa genom att använda en välkänd attack för att testa enhetens säkerhet. Det drogs slutsatsen att den studerade glödlampan befanns vara säkrad genom den mängd penetrationstester som utfördes i detta dokument. Metoderna som används för att utvärdera enheten kan dock tillämpas på vilken annan IoT som helst för framtida säkerhetsutvärdering.
Makkar, Ankush. "Enhancing IoT Security Using 5G Capabilities." Thesis, Luleå tekniska universitet, Digitala tjänster och system, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-85109.
Full textSöderquist, Mårten. "Tiny Security : Evaluating energy use for security in an IoT application." Thesis, Mittuniversitetet, Institutionen för data- och systemvetenskap, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-36860.
Full textMansouri, Mohamad. "Performance and Verifiability of IoT Security Protocols." Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS065.
Full textThe Internet of Things (IoT) is one of the most important technologies in our current world. It is composed of connected devices with sensors and processing abilities, all connected to a single platform that orchestrates them. The integration of these IoT devices into many real-life applications (eg., transportation, industries, ...) implies significant performance and efficiency improvements. As a consequence, we have seen a boom in the number of IoT devices deployed and their corresponding platforms. These IoT devices use real-time data from their deployment environment and send them to the platform. The collected data by these devices often consist of sensitive information belonging to the individual who uses this technology. Hence, the privacy of users' data is one of the important concerns in IoT. Moreover, IoT applications rely on automating frequent tasks to achieve better efficiency. Unfortunately, moving control of usually human-controlled operations to the IoT presents some non-negligible risks to the safety of IoT users. This thesis deals with the privacy and safety concerns raised by IoT. We propose security protocols that preserve the privacy of the users' data. In addition to privacy, we design verifiable solutions that guarantee the correctness of the computations performed by the IoT devices and the platform and hence increase trust toward this technology. We design these solutions while focusing on their performance. More precisely, we propose protocols that are scalable to cope with the increasing number of IoT devices. We also consider protocols that are fault-tolerant to cope with the frequent dropouts of IoT devices. We particularly focus on two security protocols: Secure Aggregation and Remote Attestation. Secure aggregation is a protocol where an aggregator computes the sum of the private inputs of a set of users. In this thesis, we propose the first verifiable secure aggregation protocol (VSA) that gives formal guarantees of security in the malicious model. Our solution preserves the privacy of users' inputs and the correctness of the aggregation result. Moreover, we propose a novel fault-tolerant secure aggregation protocol (FTSA) based on additively-homomorphic encryption. The scheme allows users in secure aggregation to drop from the protocol and offers a mechanism to recover the aggregate without affecting the privacy of the data. We show that FTSA outperforms the state-of-the-art solutions in terms of scalability with respect to the number of users. On the other hand, a remote attestation protocol is a protocol that allows an IoT device (acting as a prover) to prove its software integrity to the IoT platform (acting as the verifier). We propose a new collaborative remote attestation protocol (FADIA) in which devices collect attestations from each other and aggregate them. FADIA deals with the heterogeneity and dynamic nature of IoT by considering fairness in its design. The evaluation of FADIA shows an increase in the lifetime of the overall network
Tjäder, Hampus. "End-to-end Security Enhancement of an IoT Platform Using Object Security." Thesis, Linköpings universitet, Informationskodning, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-138838.
Full textShahidi, Hamed. "Security Challenges of Communication Protocols in IoT : Comparing security features of ZigBee and Z-Wave communication protocols in IoT devices." Thesis, Högskolan i Halmstad, Akademin för informationsteknologi, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-40113.
Full textBlázquez, Rodríguez Alberto. "Security and AAA Architectures in an IoT Marketplace." Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-234660.
Full textBeaulaton, Delphine. "Security Analysis of IoT Systems using Attack Trees." Thesis, Lorient, 2019. http://www.theses.fr/2019LORIS548.
Full textLoT is a rapidly emerging paradigm that provides a way to the user to instrument and control a large variety of objects interacting between each other over the Internet. In IoT systems, the security risks are multiplied as they involve hetero- geneous devices that are connected to a shared network and that carry critical tasks, and hence, are targets for malicious users. In this thesis, we propose a security-based framework for modeling IoT systems where attack trees are defined alongside the model to detect and prevent security risks in the system. The language we implemented aims to model the IoT paradigm in a simple way. The IoT systems are composed of entities having some communication capabilities between each other. Two entities can communicate if (i) they are connected through a communication protocol and (ii) they satisfy some constraints imposed by the protocol. In order to identify and analyze attacks on the security of a system we use attack trees which are an intuitive and practical formal method to do so. A successful attack can be a rare event in the execution of a well-designed system. When rare, such attacks are hard to detect with usual model checking techniques. Hence, we use importance splitting as a statistical model checking technique for rare events
Szreder, Mikael. "IoT Security in Practice : A Computer Security Analysis of the IKEA “TRÅDFRI” Platform." Thesis, Linköpings universitet, Informationskodning, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-161042.
Full textBooks on the topic "Security of IoT"
Chaki, Rituparna, and Debdutta Barman Roy. Security in IoT. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003149507.
Full textNayak, Padmalaya, Niranjan Ray, and P. Ravichandran. IoT Applications, Security Threats, and Countermeasures. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003124252.
Full textHancke, Gerhard P., and Konstantinos Markantonakis, eds. Radio Frequency Identification and IoT Security. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62024-4.
Full textMitton, Nathalie, Hakima Chaouchi, Thomas Noel, Thomas Watteyne, Alban Gabillon, and Patrick Capolsini, eds. Interoperability, Safety and Security in IoT. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-52727-7.
Full textFortino, Giancarlo, Carlos E. Palau, Antonio Guerrieri, Nora Cuppens, Frédéric Cuppens, Hakima Chaouchi, and Alban Gabillon, eds. Interoperability, Safety and Security in IoT. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-93797-7.
Full textDehghantanha, Ali, and Kim-Kwang Raymond Choo, eds. Handbook of Big Data and IoT Security. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-10543-3.
Full textJeyanthi, N., Ajith Abraham, and Hamid Mcheick, eds. Ubiquitous Computing and Computing Security of IoT. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-01566-4.
Full textAzrour, Mourade, Jamal Mabrouki, Azidine Guezzaz, and Said Benkirane. Blockchain and Machine Learning for IoT Security. New York: Chapman and Hall/CRC, 2023. http://dx.doi.org/10.1201/9781003438779.
Full textPrasad, Ajay, Thipendra P. Singh, and Samidha Dwivedi Sharma, eds. Communication Technologies and Security Challenges in IoT. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-0052-3.
Full textJiang, Hongbo, Hongyi Wu, and Fanzi Zeng, eds. Edge Computing and IoT: Systems, Management and Security. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-73429-9.
Full textBook chapters on the topic "Security of IoT"
Monshizadeh, Mehrnoosh, and Vikramajeet Khatri. "IoT Security." In A Comprehensive Guide to 5G Security, 245–66. Chichester, UK: John Wiley & Sons, Ltd, 2018. http://dx.doi.org/10.1002/9781119293071.ch11.
Full textJabraeil Jamali, Mohammad Ali, Bahareh Bahrami, Arash Heidari, Parisa Allahverdizadeh, and Farhad Norouzi. "IoT Security." In Towards the Internet of Things, 33–83. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18468-1_3.
Full textLedwaba, Lehlogonolo P. I., and Gerhard P. Hancke. "IoT Security." In Encyclopedia of Wireless Networks, 681–85. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-319-78262-1_291.
Full textLedwaba, Lehlogonolo P. I., and Gerhard P. Hancke. "IoT Security." In Encyclopedia of Wireless Networks, 1–4. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-32903-1_291-1.
Full textKalaga, Gunneswara Rao VSSS. "IoT Security." In Design of Internet of Things, 121–28. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003303206-15.
Full textChakravarthi, Veena S. "IoT Security." In Internet of Things and M2M Communication Technologies, 123–36. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-79272-5_8.
Full textSniatala, Pawel, S. S. Iyengar, and Sanjeev Kaushik Ramani. "IoT Security." In Evolution of Smart Sensing Ecosystems with Tamper Evident Security, 17–24. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-77764-7_3.
Full textUpadhyay, Nidhi. "IoT Security." In Internet of Things, 101–17. New York: Apple Academic Press, 2023. http://dx.doi.org/10.1201/9781003304609-6.
Full textRussell, Brian. "IoT Cyber Security." In Intelligent Internet of Things, 473–512. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-30367-9_10.
Full textGolani, Neha, and Rajkumar Rajasekaran. "IoT Challenges: Security." In Internet of Things (IoT), 211–34. Boca Raton : Taylor & Francis, CRC Press, 2018.: CRC Press, 2017. http://dx.doi.org/10.1201/9781315269849-11.
Full textConference papers on the topic "Security of IoT"
Barrie, Glenn, Andrew Whyte, and Joyce Bell. "IoT security." In ICC '17: Second International Conference on Internet of Things, Data and Cloud Computing. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3018896.3018933.
Full textKovatcheva, Eugenia, Milena Koleva, Jose Luis Del Val Roman, and Jose Antonio Campos Granados. "IOT SECURITY NUGGETS." In 13th International Conference on Education and New Learning Technologies. IATED, 2021. http://dx.doi.org/10.21125/edulearn.2021.1969.
Full textGokalp, Erem, and Muhammed Ali Aydin. "Security of IoT." In 2018 3rd International Conference on Computer Science and Engineering (UBMK). IEEE, 2018. http://dx.doi.org/10.1109/ubmk.2018.8566345.
Full textNaik, Swapnil, and Vikas Maral. "Cyber security — IoT." In 2017 2nd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT). IEEE, 2017. http://dx.doi.org/10.1109/rteict.2017.8256700.
Full textRamesh Kumar, M., and Pradeep Sudhakaran. "Comprehensive Survey on Detecting Security Attacks of IoT Intrusion Detection Systems." In International Research Conference on IOT, Cloud and Data Science. Switzerland: Trans Tech Publications Ltd, 2023. http://dx.doi.org/10.4028/p-270t9z.
Full text"T1C: IoT Security: - Threats, Security Challenges and IoT Security Research and Technology Trends." In 2018 31st IEEE International System-on-Chip Conference (SOCC). IEEE, 2018. http://dx.doi.org/10.1109/socc.2018.8618571.
Full textRizvi, Syed, Andrew Kurtz, Joseph Pfeffer, and Mohammad Rizvi. "Securing the Internet of Things (IoT): A Security Taxonomy for IoT." In 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). IEEE, 2018. http://dx.doi.org/10.1109/trustcom/bigdatase.2018.00034.
Full textKumar, Rakesh, Bipin Kandpal, and Vasim Ahmad. "Industrial IoT (IIOT): Security Threats and Countermeasures." In 2023 International Conference on Innovative Data Communication Technologies and Application (ICIDCA). IEEE, 2023. http://dx.doi.org/10.1109/icidca56705.2023.10100145.
Full textTyou, Iifan, Hiroki Nagayama, Takuya Saeki, Yukio Nagafuchi, and Masaki Tanikawa. "Decentralized IoT Security Gateway." In 2018 3rd Cloudification of the Internet of Things (CIoT). IEEE, 2018. http://dx.doi.org/10.1109/ciot.2018.8627128.
Full textKodali, Ravi Kishore, Sasweth C. Rajanarayanan, Anvesh Koganti, and Lakshmi Boppana. "IoT based security system." In TENCON 2019 - 2019 IEEE Region 10 Conference (TENCON). IEEE, 2019. http://dx.doi.org/10.1109/tencon.2019.8929420.
Full textReports on the topic "Security of IoT"
Wendzel, Steffen, and Saffija Kasem-Madani. IoT Security: The Improvement-Decelerating 'Cycle of Blame'. Denmark: River Publishers, September 2016. http://dx.doi.org/10.13052/popcas010.
Full textHowell, Gema. Security Analysis of IoT Management Solutions for First Responders. Gaithersburg, MD: National Institute of Standards and Technology, 2022. http://dx.doi.org/10.6028/nist.tn.2223.
Full textGunathilake, Nilupulee, Ahmed Al-Dubai, and William Buchanan. Recent advances and trends in lightweight cryptography for IoT security. Peeref, March 2023. http://dx.doi.org/10.54985/peeref.2303p1883219.
Full textGarcia-Morchon, O., S. Kumar, and M. Sethi. Internet of Things (IoT) Security: State of the Art and Challenges. RFC Editor, April 2019. http://dx.doi.org/10.17487/rfc8576.
Full textKhalafalla, Aya, Adam Summers, Ifeoma Onunkwo, and Adrian Chavez. Cyber and Physical Security Analysis of GSI and Noventum Application for IoT Communications. Office of Scientific and Technical Information (OSTI), December 2022. http://dx.doi.org/10.2172/2004898.
Full textPhillips, Paul. The Application of Satellite-based Internet of Things for New Mobility. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, January 2024. http://dx.doi.org/10.4271/epr2024001.
Full textSwallow, Brent M. Tenure security: Why it matters. Washington, DC: International Food Policy Research Institute, 2021. http://dx.doi.org/10.2499/p15738coll2.134784.
Full textBadger, Lee, Murugiah Souppaya, Mark Trapnell, Eric Trapnell, Dylan Yaga, and Karen Scarfone. Guide to securing Apple OS X 10.10 systems for IT professionals: a NIST security configuration checklist. Gaithersburg, MD: National Institute of Standards and Technology, December 2016. http://dx.doi.org/10.6028/nist.sp.800-179.
Full textFalco, J., K. Stouffer, A. Wavering, and F. Proctor. IT security for industrial control systems. Gaithersburg, MD: National Institute of Standards and Technology, 2002. http://dx.doi.org/10.6028/nist.ir.6859.
Full textWilson, Elizabeth F. Homeland Security - Can It be Done? Fort Belvoir, VA: Defense Technical Information Center, April 2003. http://dx.doi.org/10.21236/ada415743.
Full text