Journal articles on the topic 'Second harmonic generation'

To see the other types of publications on this topic, follow the link: Second harmonic generation.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Second harmonic generation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Li, Weibin, Mingxi Deng, and Younho Cho. "Cumulative Second Harmonic Generation of Ultrasonic Guided Waves Propagation in Tube-Like Structure." Journal of Computational Acoustics 24, no. 03 (August 30, 2016): 1650011. http://dx.doi.org/10.1142/s0218396x16500119.

Full text
Abstract:
Second harmonic generation of ultrasonic waves propagating in unbounded media and plate-like structure has been vigorously studied for tracking material nonlinearity, however, second harmonic guided wave propagation in tube-like structures is rarely studied. Considering that second harmonics can provide sensitive information for structural health condition, this paper aims to study the second harmonic generation of guided waves in metallic tube-like structures with weakly nonlinearity. Perturbation method and modal analysis approach are used to analyze the acoustic field of second harmonic solutions. The conditions for generating second harmonics with cumulative effect are provided in present investigation. Flexible polyvinylidene fluoride comb transducers are used to measure fundamental wave modes and second harmonic ones. The work experimentally verifies that the second harmonics of guided waves in pipe have a cumulative effect with propagation distance. The proposed procedure of this work can be applied to detect material nonlinearity due to damage mechanism in tube-like structure.
APA, Harvard, Vancouver, ISO, and other styles
2

Leshem, Anat, Guilia Meshulam, Gil Porat, and Ady Arie. "Adiabatic second-harmonic generation." Optics Letters 41, no. 6 (March 11, 2016): 1229. http://dx.doi.org/10.1364/ol.41.001229.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

de Vegvar, P. G. N. "Mesoscopic second harmonic generation." Physical Review Letters 70, no. 6 (February 8, 1993): 837–40. http://dx.doi.org/10.1103/physrevlett.70.837.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Frey, Jeremy. "Surface second harmonic generation." Journal of Electroanalytical Chemistry 433, no. 1-2 (August 1997): 228. http://dx.doi.org/10.1016/s0022-0728(97)00245-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hoshi, Hajime, Takaaki Manaka, Ken Ishikawa, and Hideo Takezoe. "Second-Harmonic Generation inC70Film." Japanese Journal of Applied Physics 36, Part 1, No. 10 (October 15, 1997): 6403–4. http://dx.doi.org/10.1143/jjap.36.6403.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bavli, R., and Y. B. Band. "Relationship between second-harmonic generation and electric-field-induced second-harmonic generation." Physical Review A 43, no. 1 (January 1, 1991): 507–14. http://dx.doi.org/10.1103/physreva.43.507.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Steel, M. J., and C. Martijn de Sterke. "Second-harmonic generation in second-harmonic fiber Bragg gratings." Applied Optics 35, no. 18 (June 20, 1996): 3211. http://dx.doi.org/10.1364/ao.35.003211.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Haozhi Yin, Haozhi Yin, Yumin Liu Yumin Liu, Zhongyuan Yu Zhongyuan Yu, Qiang Shi Qiang Shi, Hui Gong Hui Gong, Xiu Wu Xiu Wu, and Xin Song Xin Song. "Nonlinear hybrid plasmonic slot waveguide for second-harmonic generation." Chinese Optics Letters 11, no. 10 (2013): 101901–5. http://dx.doi.org/10.3788/col201311.101901.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Tao, Yudong, Wentao Zhu, Yanfang Zhang, Jingui Ma, Jing Wang, Yuan Peng, Hao Zhang, Heyuan Zhu, and Liejia Qian. "Ultrabroadband second-harmonic generation via spatiotemporal-coupled phase matching." Chinese Optics Letters 22, no. 1 (2024): 011901. http://dx.doi.org/10.3788/col202422.011901.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Baitao Zhang, Baitao Zhang, Jian Ning Jian Ning, Zhaowei Wang Zhaowei Wang, Kezhen Han Kezhen Han, and Jingliang He Jingliang He. "High power red laser generation by second harmonic generation with GTR-KTP crystal." Chinese Optics Letters 13, no. 5 (2015): 051402–51405. http://dx.doi.org/10.3788/col201513.051402.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Linnenbank, Heiko, and Stefan Linden. "Second harmonic generation spectroscopy on second harmonic resonant plasmonic metamaterials." Optica 2, no. 8 (August 4, 2015): 698. http://dx.doi.org/10.1364/optica.2.000698.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Fang, Bin, Shenglun Gao, Zhizhang Wang, Shining Zhu, and Tao Li. "Efficient second harmonic generation in silicon covered lithium niobate waveguides." Chinese Optics Letters 19, no. 6 (2021): 060004. http://dx.doi.org/10.3788/col202119.060004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

CINI, MICHELE. "SECOND-HARMONIC GENERATION AT SURFACES." Surface Review and Letters 01, no. 04 (December 1994): 443–48. http://dx.doi.org/10.1142/s0218625x94000412.

Full text
Abstract:
A method for computing the intensity of electric dipole second-harmonic generation from semiconductor surfaces and interfaces is presented. It uses third-order perturbation theory and a Green's function technique to embody Fresnel's formulas. Calculations for As/Si(111) are compared to experimental data, and show fair agreement for the spectral and angular dependence of the second-harmonic signal; the calculated absolute intensity, however, is too high. To investigate the origin of the discrepancy, we generalize the theory to all orders in the electron-photon coupling. The new scheme, based on the method of excitation amplitudes, is outlined. It allows to set up a theory of the second-harmonic generation response and other inelastic light scattering phenomena, like the dynamical Stark effect. Many-photon effects can modify the response in a qualitative way, and the maximum intensity of the second-harmonic fields does not generally correspond exactly to twice the incident frequency. This formalism also leads to new exact sum rules for nonlinear optics, that complement those obtained recently by Bassani and Scandolo.
APA, Harvard, Vancouver, ISO, and other styles
14

Foucaud, Yann, Bertrand Siboulet, Magali Duvail, Alban Jonchere, Olivier Diat, Rodolphe Vuilleumier, and Jean-François Dufrêche. "Deciphering second harmonic generation signals." Chemical Science 12, no. 45 (2021): 15134–42. http://dx.doi.org/10.1039/d1sc03960a.

Full text
Abstract:
Second harmonic generation is one of the most powerful techniques used to selectively probe interfaces of all types. The direct ab initio method developed here allows predicting the signal and highlights the importance of local and non-local effects.
APA, Harvard, Vancouver, ISO, and other styles
15

Bottomley, D. J., G. Lüpke, M. L. Ledgerwood, X. Q. Zhou, and H. M. van Driel. "Second harmonic generation from SimGensuperlattices." Applied Physics Letters 63, no. 17 (October 25, 1993): 2324–26. http://dx.doi.org/10.1063/1.110514.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Koganov, Gennady A., and Reuben Shuker. "Super/subradiant second harmonic generation." Laser Physics Letters 14, no. 4 (March 7, 2017): 045204. http://dx.doi.org/10.1088/1612-202x/aa6224.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Longhi, Stefano. "Quasipatterns in second-harmonic generation." Physical Review E 59, no. 1 (January 1, 1999): R24—R27. http://dx.doi.org/10.1103/physreve.59.r24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Dahan, Asaf, Assaf Levanon, Mordechai Katz, and Haim Suchowski. "Ultrafast adiabatic second harmonic generation." Journal of Physics: Condensed Matter 29, no. 8 (January 16, 2017): 084004. http://dx.doi.org/10.1088/1361-648x/29/8/084004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Zayats, Anatoly V., and Igor I. Smolyaninov. "Near-field second-harmonic generation." Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 362, no. 1817 (April 15, 2004): 843–60. http://dx.doi.org/10.1098/rsta.2003.1350.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Thiansathaporn, P., and R. Superfine. "Homodyne surface second-harmonic generation." Optics Letters 20, no. 6 (March 15, 1995): 545. http://dx.doi.org/10.1364/ol.20.000545.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Glazov, M. M. "Second harmonic generation in graphene." JETP Letters 93, no. 7 (June 2011): 366–71. http://dx.doi.org/10.1134/s0021364011070046.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Terhune, R. W., and D. A. Weinberger. "Second-harmonic generation in fibers." Journal of the Optical Society of America B 4, no. 5 (May 1, 1987): 661. http://dx.doi.org/10.1364/josab.4.000661.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Yazdanfar, Siavash, Lily H. Laiho, and Peter T. C. So. "Interferometric second harmonic generation microscopy." Optics Express 12, no. 12 (2004): 2739. http://dx.doi.org/10.1364/opex.12.002739.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Zagudailova, M. B., P. A. Plachinda, P. S. Berdonosov, S. Yu Stefanovich, and V. A. Dolgikh. "Second harmonic generation in boracites." Inorganic Materials 41, no. 4 (April 2005): 393–96. http://dx.doi.org/10.1007/s10789-005-0141-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Kielich, S., R. Tanaś, and R. Zawodny. "Squeezing in Second-harmonic Generation." Journal of Modern Optics 34, no. 6-7 (June 1987): 979–96. http://dx.doi.org/10.1080/09500348714550881.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Furusawa, Shin-ichi, Osamu Chikagawa, Shoji Tange, Takeo Ishidate, Hiroshi Orihara, Yoshihiro Ishibashi, and Kazuo Miwa. "Second Harmonic Generation in Li2B4O7." Journal of the Physical Society of Japan 60, no. 8 (August 15, 1991): 2691–93. http://dx.doi.org/10.1143/jpsj.60.2691.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Ashwell, Geoffrey J., Paul Leeson, Gurmit S. Bahra, and Christopher R. Brown. "Aggregation-induced second-harmonic generation." Journal of the Optical Society of America B 15, no. 1 (January 1, 1998): 484. http://dx.doi.org/10.1364/josab.15.000484.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Ruddock, I. S. "Nonlinear optical second harmonic generation." European Journal of Physics 15, no. 2 (March 1, 1994): 53–58. http://dx.doi.org/10.1088/0143-0807/15/2/002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Brownell, J. H., X. Lu, and S. R. Hartmann. "Time-Delayed Second Harmonic Generation." Physical Review Letters 75, no. 20 (November 13, 1995): 3657–60. http://dx.doi.org/10.1103/physrevlett.75.3657.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

SINGER, K. D., S. F. HUBBARD, A. SCHOBER, L. M. HAYDEN, and K. JOHNSON. "ChemInform Abstract: Second Harmonic Generation." ChemInform 29, no. 48 (June 18, 2010): no. http://dx.doi.org/10.1002/chin.199848336.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Kananizadeh, Rouzbeh, and Omeed Momeni. "Second-Harmonic Power Generation Limits in Harmonic Oscillators." IEEE Journal of Solid-State Circuits 53, no. 11 (November 2018): 3217–31. http://dx.doi.org/10.1109/jssc.2018.2868283.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Provencher, Pierre, Christian-Yves Côté, and Marguerite-Marie Denariez-Roberge. "Surface second-harmonic susceptibility determined by noncollinear reflected second-harmonic generation." Canadian Journal of Physics 71, no. 1-2 (January 1, 1993): 66–69. http://dx.doi.org/10.1139/p93-010.

Full text
Abstract:
We investigate the noncollinear reflected second-harmonic generation (SHG) for monolayers of Rhodamine 6G adsorbed on fused silica. We show that the ratios between the surface molecular χ(2) components can be related to the values of the polarization angles of the two incident beams when minima of the resulting SHG intensity are obtained.
APA, Harvard, Vancouver, ISO, and other styles
33

DAS, MALYAJ, SHIVANI RANA, and PRATIMA SEN. "SECOND HARMONIC GENERATION IN ZnO NANORODS." Journal of Nonlinear Optical Physics & Materials 19, no. 03 (September 2010): 445–58. http://dx.doi.org/10.1142/s0218863510005315.

Full text
Abstract:
A comparative study of the second harmonic generation in ZnO micro particles and nanorods has been experimentally studied by Kurtz technique using nanosecond pulsed Nd:YAG laser. The results have been theoretically explained by taking into account the quadrupole moment as well as surface nonlinearity. It was observed that the nanorods yield polarized second harmonic signal while the second harmonic signal obtained from the micro particles was unpolarized.
APA, Harvard, Vancouver, ISO, and other styles
34

Ghalandari, Mahboubeh. "Moving media: Second harmonic generation investigation." International Journal of Modern Physics B 30, no. 22 (September 6, 2016): 1650138. http://dx.doi.org/10.1142/s0217979216501381.

Full text
Abstract:
Because of the importance of second harmonic generation (SHG) in some nonlinear media, in this paper, we investigated induced SHG in diamond where there is no intrinsic second-order susceptibility, [Formula: see text]. The electric field is proposed to introduce moving susceptibility of the second-order and induce second harmonic generation. Then, spatiotemporal quasi-phase matching (QPM) is applied to optimize the induced SHG. Numerical results reveal that in this way, the induced second harmonic is found at the frequency of [Formula: see text] rather than [Formula: see text].
APA, Harvard, Vancouver, ISO, and other styles
35

Mu, Biao, Xianfang Wu, Yunfei Niu, Yan Chen, Xinlun Cai, Yanxiao Gong, Zhenda Xie, Xiaopeng Hu, and Shining Zhu. "Locally periodically poled LNOI ridge waveguide for second harmonic generation [Invited]." Chinese Optics Letters 19, no. 6 (2021): 060007. http://dx.doi.org/10.3788/col202119.060007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Zhang, Li, Fei Lin, Xiaodong Qiu, and Lixiang Chen. "Full vectorial feature of second-harmonic generation with full Poincaré beams." Chinese Optics Letters 17, no. 9 (2019): 091901. http://dx.doi.org/10.3788/col201917.091901.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Mu, J., F. Y. Li, Z. M. Sheng, and J. Zhang. "Effect of transverse magnetic fields on high-harmonic generation in intense laser–solid interaction." Laser and Particle Beams 34, no. 3 (August 31, 2016): 545–51. http://dx.doi.org/10.1017/s0263034616000446.

Full text
Abstract:
AbstractThe effect of transverse magnetic fields on surface high-harmonic generation in intense laser–solid interactions is investigated. It is shown that the longitudinal motion of electrons can be coupled with the transverse motion via the magnetic fields, which lead to even-order harmonics under normal laser incidence. The dependence of the coupling efficiency and hence even harmonic generation with preplasma scale length and magnetic field strength are presented based upon particle-in-cell simulations. When the magnetic field is parallel to the laser electric field, the spectral intensity of the second harmonic is proportional to the magnetic field strength in a wide range up to 160 MG, while the situation with the magnetic field perpendicular to the laser electric field is more complicated. The second harmonic generation due to the magnetic field also tends to increase with the plasma density scale lengths, which is different from the high-harmonic generation by the oscillating mirror mechanism. With the increase of the laser spot size from a laser wavelength λL, both the magnetic field-induced harmonics and oscillating mirror high harmonics tend to increase first and then become saturated after 3λL. The magnetic field-induced second harmonic may be used to evaluate large self-generated magnetic fields developed near the critical density region and the preplasma conditions.
APA, Harvard, Vancouver, ISO, and other styles
38

Bhar, G. C., U. Chatterjee, and S. Das. "Noncollinear third harmonic generation and tunable second harmonic generation in barium borate." Journal of Applied Physics 66, no. 10 (November 15, 1989): 5111–13. http://dx.doi.org/10.1063/1.343744.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Li, Yongmin, Sujing Zhang, Jianli Liu, and Kuanshou Zhang. "Quantum correlation between fundamental and second-harmonic fields via second-harmonic generation." Journal of the Optical Society of America B 24, no. 3 (February 15, 2007): 660. http://dx.doi.org/10.1364/josab.24.000660.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Poumellec, Bertrand, Jean-Michel Gabriagues, and Herve Fevrier. "Second harmonic generation in optical fibers." Annales Des Télécommunications 44, no. 3-4 (March 1989): 179–85. http://dx.doi.org/10.1007/bf02997813.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

YAMAMOTO, Kazuhisa. "Second Harmonic Generation in a Waveguide." Review of Laser Engineering 19, no. 4 (1991): 403–9. http://dx.doi.org/10.2184/lsj.19.4_403.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Almogy, Gilad, and Amnon Yariv. "Second-harmonic generation in absorptive media." Optics Letters 19, no. 22 (November 15, 1994): 1828. http://dx.doi.org/10.1364/ol.19.001828.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

WEI, JING, MIN-YI ZHANG, JIN-YUN WANG, GUO-LIANG CHAI, CHEN-SHENG LIN, and WEN-DAN CHENG. "SECOND-HARMONIC GENERATION OF FLUORESCENT PROTEINS." Journal of Theoretical and Computational Chemistry 12, no. 08 (December 2013): 1341007. http://dx.doi.org/10.1142/s0219633613410071.

Full text
Abstract:
We theoretically study the second-order nonlinear optical properties of six fluorescent proteins (FPs), such as green fluorescent protein (GFP), BFP, enhanced BFP (eBFP), CFP, YFP, and DsRed. To begin with, the geometries of all these FP chromophores are optimized at B3LYP/6-311++G** level in a water medium and the polarized continuum model (PCM in water) method is adopted. Using a time-dependent density functional theory (TDDFT) method, the electronic structures and excited-state properties of chromophores are determined. Here we employ TDDFT combining with the sum-over-states (SOS) method to calculate the first-order hyperpolarizability for second-harmonic generation (SHG) optical process. Moreover, we discuss the origin of the nonlinear optical response and determine what caused the variation of first-order hyperpolarizability. Our calculations show that the charge transfers of π → π* in the central conjugated structure and p → π* charge transfers from the side chain R1 to conjugated structure of chromophores markedly affect the first-order hyperpolarizability.
APA, Harvard, Vancouver, ISO, and other styles
44

Rutkowska, K. A., D. Duchesne, M. Volatier, R. Arès, V. Aimez, and R. Morandotti. "Second Harmonic Generation in AlGaAs Nanowaveguides." Acta Physica Polonica A 120, no. 4 (October 2011): 725–31. http://dx.doi.org/10.12693/aphyspola.120.725.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Brudny, Vera L., Bernardo S. Mendoza, and W. Luis Mochán. "Second-harmonic generation from spherical particles." Physical Review B 62, no. 16 (October 15, 2000): 11152–62. http://dx.doi.org/10.1103/physrevb.62.11152.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Shen, Y. R. "Optical Second Harmonic Generation at Interfaces." Annual Review of Physical Chemistry 40, no. 1 (October 1989): 327–50. http://dx.doi.org/10.1146/annurev.pc.40.100189.001551.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Freund, Isaac. "Second-harmonic generation of polarization singularities." Optics Letters 27, no. 18 (September 15, 2002): 1640. http://dx.doi.org/10.1364/ol.27.001640.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Biss, D. P., and T. G. Brown. "Polarization-vortex-driven second-harmonic generation." Optics Letters 28, no. 11 (June 1, 2003): 923. http://dx.doi.org/10.1364/ol.28.000923.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Schaich, W. L., and Bernardo S. Mendoza. "Simple model of second-harmonic generation." Physical Review B 45, no. 24 (June 15, 1992): 14279–92. http://dx.doi.org/10.1103/physrevb.45.14279.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Parry, W. E., and Richard R. A. Syms. "Diagrammatic representation of second harmonic generation." Applied Optics 27, no. 17 (September 1, 1988): 3588. http://dx.doi.org/10.1364/ao.27.003588.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography