Academic literature on the topic 'Second generation biomass'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Second generation biomass.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Second generation biomass"

1

Burhani, Dian, Eka Triwahyuni, and Ruby Setiawan. "Second Generation Biobutanol: An Update." Reaktor 19, no. 3 (October 16, 2019): 101–10. http://dx.doi.org/10.14710/reaktor.19.3.101-110.

Full text
Abstract:
Butanol, a rising star in biofuel, can be produced by two approaches, petrochemically and biologically. Currently, the most promising route for butanol production is by fermentation using Clostridium species through an anaerobic condition. However, similar to other biofuels, feedstock has greatly influenced the production of biobutanol and the search for inexpensive and abundant raw material is an absolute requirement for a cost-effective process. Second-generation biobutanol which is produced from lignocellulosic biomass of agricultural and forestry waste not only meets the requirement but also alleviates competition with food crops and thereby solves the problems of food scarcity from the first generation biobutanol. This paper delivered the latest and update information regarding biobutanol production specifically second-generation biobutanol in terms of production method, recovery, purification, status, and technoeconomic. Keyword: biobutanol, lignocellulose, purification, recovery, technoeconomic
APA, Harvard, Vancouver, ISO, and other styles
2

Mahapatra, Manoj Kumar, and Arvind Kumar. "A Short Review on Biobutanol, a Second Generation Biofuel Production from Lignocellulosic Biomass." Journal of Clean Energy Technologies 5, no. 1 (2017): 27–30. http://dx.doi.org/10.18178/jocet.2017.5.1.338.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Requejo, Ana, Susana Peleteiro, Alejandro Rodríguez, Gil Garrote, and Juan Carlos Parajó. "Second-Generation Bioethanol from Residual Woody Biomass." Energy & Fuels 25, no. 10 (October 20, 2011): 4803–10. http://dx.doi.org/10.1021/ef201189q.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yazan, Devrim Murat, Iris van Duren, Martijn Mes, Sascha Kersten, Joy Clancy, and Henk Zijm. "Design of sustainable second-generation biomass supply chains." Biomass and Bioenergy 94 (November 2016): 173–86. http://dx.doi.org/10.1016/j.biombioe.2016.08.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Fagernäs, L., J. Brammer, C. Wilén, M. Lauer, and F. Verhoeff. "Drying of biomass for second generation synfuel production." Biomass and Bioenergy 34, no. 9 (September 2010): 1267–77. http://dx.doi.org/10.1016/j.biombioe.2010.04.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Soni, Sanjeev Kumar, Apurav Sharma, and Raman Soni. "Microbial Enzyme Systems in the Production of Second Generation Bioethanol." Sustainability 15, no. 4 (February 15, 2023): 3590. http://dx.doi.org/10.3390/su15043590.

Full text
Abstract:
The primary contributor to global warming has been the careless usage of fossil fuels. Urbanization’s threat to the depletion of these resources has made it necessary to find alternatives due to the rising demand. Four different forms of biofuels are now available and constitute a possible replacement for fossil fuels. The first generation of biofuels is generated from the edible portion of biomass, the second generation is made from the non-edible portion of biomass, the third generation is made from algal biomass, and the fourth generation is made using molecular biology to improve the algal strain. Second-generation biofuels are extremely important because they are derived from non-edible biomass, such as agricultural and agro-industrial wastes rich in cellulose, hemicellulose, pectin, and starch impregnated with lignin, and are hydrolyzed after delignification by physio-chemical or biological pretreatments using ligninases. The enzymes involved in the hydrolysis of feedstocks for the production of second-generation bioethanol, a highly acceptable biofuel, are discussed in this article. Furthermore, the article discusses various fermentation technologies as well as significant developments in second-generation biofuel production by combining various microbial enzyme systems.
APA, Harvard, Vancouver, ISO, and other styles
7

Wright, Mark Mba. "Second Generation of Biofuels and Biomass. Roland A. Jansen." Energy Technology 1, no. 4 (April 2013): 287. http://dx.doi.org/10.1002/ente.201305003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

De Bari, Isabella, Federico Liuzzi, Alfredo Ambrico, and Mario Trupo. "Arundo donax Refining to Second Generation Bioethanol and Furfural." Processes 8, no. 12 (December 3, 2020): 1591. http://dx.doi.org/10.3390/pr8121591.

Full text
Abstract:
Biomass-derived sugars are platform molecules that can be converted into a variety of final products. Non-food, lignocellulosic feedstocks, such as agroforest residues and low inputs, high yield crops, are attractive bioresources for the production of second-generation sugars. Biorefining schemes based on the use of versatile technologies that operate at mild conditions contribute to the sustainability of the bio-based products. The present work describes the conversion of giant reed (Arundo donax), a non-food crop, to ethanol and furfural (FA). A sulphuric-acid-catalyzed steam explosion was used for the biomass pretreatment and fractionation. A hybrid process was optimized for the hydrolysis and fermentation (HSSF) of C6 sugars at high gravity conditions consisting of a biomass pre-liquefaction followed by simultaneous saccharification and fermentation with a step-wise temperature program and multiple inoculations. Hemicellulose derived xylose was dehydrated to furfural on the solid acid catalyst in biphasic media irradiated by microwave energy. The results indicate that the optimized HSSF process produced ethanol titers in the range 43–51 g/L depending on the enzymatic dosage, about 13–21 g/L higher than unoptimized conditions. An optimal liquefaction time before saccharification and fermentation tests (SSF) was 10 h by using 34 filter paper unit (FPU)/g glucan of Cellic® CTec3. C5 streams yielded 33.5% FA of the theoretical value after 10 min of microwave heating at 157 °C and a catalyst concentration of 14 meq per g of xylose.
APA, Harvard, Vancouver, ISO, and other styles
9

Chandrasiri, Yasindra Sandamini, W. M. Lakshika Iroshani Weerasinghe, D. A. Tharindu Madusanka, and Pathmalal M. Manage. "Waste-Based Second-Generation Bioethanol: A Solution for Future Energy Crisis." International Journal of Renewable Energy Development 11, no. 1 (November 18, 2021): 275–85. http://dx.doi.org/10.14710/ijred.2022.41774.

Full text
Abstract:
The demand for more environmentally friendly alternative renewable fuels is growing as fossil fuel resources are depleting significantly. Consequently, bioethanol has attracted interest as a potentially viable fuel. The key steps in second-generation bioethanol production include pretreatment, saccharification, and fermentation. The present study employed simultaneous saccharification and fermentation (SSF) of cellulose through bacterial pathways to generate second-generation bioethanol utilizing corncobs and paper waste as lignocellulosic biomass. Mechanical and chemical pretreatments were applied to both biomasses. Then, two bacterial strains, Bacillus sp. and Norcadiopsis sp., hydrolysed the pretreated biomass and fermented it along with Achromobacter sp., which was isolated and characterized from a previous study. Bioethanol production followed by 72 h of biomass hydrolysis employing Bacillus sp. and Norcadiopsis sp., and then 72 h of fermentation using Achromobacter sp. Using solid phase micro extraction combined with GCMS the ethanol content was quantified. SSF of alkaline pretreated paper waste hydrolysed by Bacillus sp. following the fermentation by Achromobacter sp. showed the maximum ethanol percentage of 0.734±0.154. Alkaline pretreated corncobs hydrolyzed by Norcadiopsis sp. yielded the lowest ethanol percentage of 0.155±0.154. The results of the study revealed that paper waste is the preferred feedstock for generating second-generation bioethanol. To study the possible use of ethanol-diesel blends as an alternative biofuel E2, E5, E7, and E10 blend emulsions were prepared mixing commercially available diesel with ethanol. The evaluated physico-chemical characteristics of the ethanol-diesel emulsions fulfilled the Ceypetco requirements except for the flashpoint revealing that the lower ethanol-diesel blends are a promising alternative to transport fuels. As a result, the current study suggests that second generation bioethanol could be used as a renewable energy source to help alleviate the energy crisis..
APA, Harvard, Vancouver, ISO, and other styles
10

Xia, Jiangbao, Shuyong Zhang, Tian Li, Xia Liu, Ronghua Zhang, and Guangcan Zhang. "Effect of Continuous Cropping Generations on Each Component Biomass of Poplar Seedlings during Different Growth Periods." Scientific World Journal 2014 (2014): 1–9. http://dx.doi.org/10.1155/2014/618421.

Full text
Abstract:
In order to investigate the change rules and response characteristics of growth status on each component of poplar seedling followed by continuous cropping generations and growth period, we clear the biomass distribution pattern of poplar seedling, adapt continuous cropping, and provide theoretical foundation and technical reference on cultivation management of poplar seedling, the first generation, second generation, and third generation continuous cropping poplar seedlings were taken as study objects, and the whole poplar seedling was harvested to measure and analyze the change of each component biomass on different growth period poplar leaves, newly emerging branches, trunks and root system, and so forth. The results showed that the whole biomass of poplar seedling decreased significantly with the leaf area and its ratio increased, and the growth was inhibited obviously. The biomass aboveground was more than that underground. The ratios of leaf biomass and newly emerging branches biomass of first continuous cropping poplar seedling were relatively high. With the continuous cropping generations and growth cycle increasing, poplar seedling had a growth strategy to improve the ratio of root-shoot and root-leaf to adapt the limited soil nutrient of continuous cropping.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Second generation biomass"

1

Maitan-alfenas, Gabriela Piccolo. "Enzymatic hydrolysis of lignocellulosic biomass for second generation ethanol production." Universidade Federal de Viçosa, 2014. http://www.locus.ufv.br/handle/123456789/6684.

Full text
Abstract:
Submitted by Amauri Alves (amauri.alves@ufv.br) on 2015-11-16T11:43:38Z No. of bitstreams: 1 texto completo.pdf: 3547883 bytes, checksum: d0ecea27278208d99b9477d7546e1251 (MD5)
Made available in DSpace on 2015-11-16T11:43:38Z (GMT). No. of bitstreams: 1 texto completo.pdf: 3547883 bytes, checksum: d0ecea27278208d99b9477d7546e1251 (MD5) Previous issue date: 2014-11-18
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
A produção de etanol de segunda geração apresenta grande potencial para ser uma realidade sustentável, especialmente no Brasil que prossui grandes quantidades de bagaço de cana-de-açúcar. Os maiores obstáculos deste processo são os pré- tratamentos e a hidrólise da biomassa, principalmente esta última etapa visto que as enzimas ainda apresentam custos muito elevados. Assim, esforços têm se concentrado em tornar o processo mais econômico com a descoberta de enzimas mais efetivas. Novas fontes de enzimas são continuamente encontradas e várias estratégias de prospecção e produção enzimática têm sido estudadas. Uma estratégia bastante utilizada na busca por novas enzimas e/ou enzimas mais eficientes é a análise de genômica comparativa de diferentes micro-organismos que permite a seleção de vários candidatos de interesse num curto período de tempo. Além disso, as enzimas podem ser produzidas por fungos quando estes são crescidos em biomassas que apresentam baixo custo e alta disponibilidade. Este trabalho foi dividido em cinco capítulos sendo que o primeiro consiste de uma revisão atual sobre a produção de etanol de segunda geração focada na etapa de sacarificação enzimática. Várias estratégias de prospecção e produção enzimáticas foram discutidas e detalhadas. No segundo capítulo, a sacarificação de bagaço de cana-de-açúcar após pré-tratamentos ácido e alcalino foi comparada usando o extrato enzimático do fungo fitopatógeno Chrysoporthe cubensis e três coquetéis comerciais. Para o bagaço de cana utilizado neste estudo, o pré-tratamento alcalino promoveu os melhores rendimentos de sacarificação sendo o extrato do fungo C. Cubensis o responsável pela maior liberação de glicose e xilose quando comparado às misturas enzimáticas comerciais. Além disso, o extrato de C. cubensis produziu maiores valores de atividade específica comparados aos dos coquetéis comerciais. No terceiro capítulo, o potencial genômico de fungos candidatos foi avaliado e as enzimas mais interessantes para a hidrólise de bagaço de cana-de-açúcar foram expressas em Aspergillus vadensis. Nove enzimas de três fungos diferentes, Aspergillus terreus, Nectria haematoccoca e Phaeosphaeria nodorum, foram viiclonadas e expressas por sistema heterólogo e representam uma nova possiblidade para a melhor degradação do bagaço de cana. Dentre estas enzimas, quatro - xilosidases foram bioquimicamente caracterizadas e apresentaram atividade máxima em valores de pH 4,5-5,0 e em temperaturas 55-60°C. No quarto capítulo, duas xilanases de Aspergillus nidulans previamente clonadas em Pichia pastoris, aqui denominadas Xyn1818 e Xyn3613, foram expressas, purificadas e caracterizadas. Xyn1818 apresentou ótima atividade em pH 7.5 e à 60°C enquanto Xyn3613 alcançou máxima atividade em pH 6.0 e à 50°C. Xyn1818 apresentou-se bastante termoestável à 50°C mantendo 50% de sua atividade original após 49 horas de incubação nesta temperatura. Xyn1818 apresentou maior atividade contra arabinoxilana de trigo enquanto o melhor substrato para Xyn3613 foi xilana beechwood. Testes de sacarificação mostraram que os coquetéis comerciais liberaram mais açúcares (glicose e xilose) quando suplementados com as xilanases Xyn1818 e Xyn3613 de A. nidulans. Finalmente, no quinto capítulo, os fungos Aspergillus niger e Trichoderma reesei foram avaliados quanto à produção de enzimas após crescimento em do e bagaço de cana-de-açúcar. Os fungos produziram diferentes tipos de enzimas (hemi)celulolíticas, o que foi refletido pelo forte efeito sinergístico na liberação de açúcares durante a sacarificação dos substratos utilizando o conjunto de enzimas dos dois microorganismos. Foi constatado que a remoção de monossacarídeos do meio de produção de enzimas é muito importante quando combinações de enzimas de T. reesei and A. niger são utilizadas para aprimorar a hidrólise de biomassas.
Second generation ethanol production has great potential to be a sustainable reality, especially in Brazil due to the large amount of available sugarcane bagasse. Pretreatment methods and biomass hydrolysis continue to be the bottlenecks of the overall process, mainly this second step since the enzymes present high costs. Therefore, efforts have been taken to make the process more cost-effective with regards to the discovery of more effective enzymes. New sources of enzymes are continuously encountered and several strategies of enzyme prospection and production have been studied. One strategy used in the search for new and/or more efficient enzymes is comparative genomic analysis of different microorganisms which allows for the screening of several candidates of interest in a short period of time. Moreover, plant-degrading enzymes can be produced by fungi grown on abundantly available low-cost plant biomass. This work was divided in five chapters being the first chapter a current review about second generation ethanol production focused mainly on the saccharification step. Several strategies of enzyme prospection and production were discussed and detailed. In the second chapter, saccharification of acid- and alkali-pretreated sugarcane bagasse was compared using the enzymatic extract from the pathogen fungus Chrysoporthe cubensis and three commercial enzymatic mixtures. For the sugarcane bagasse studied in this work, the alkaline pretreatment promoted the best saccharification yields, where the C. cubensis extract was responsible for the higher release of glucose and xylose when compared to the commercial enzymatic mixtures Furthermore, the C. cubensis extract was able to produce high specific enzyme activities when compared to the commercial cocktails. In the third chapter, the genomic potential of the candidate fungi was evaluated and the most interesting enzymes for sugarcane bagasse hydrolysis were expressed in Aspergillus vadensis. Nine enzymes from three different fungi, Aspergillus terreus, Nectria haematoccoca and Phaeosphaeria nodorum, were successfully cloned and expressed by heterologous system and these enzymes represent a possibility for a better degradation of sugarcane bagasse. -xylosidases were biochemicallycharacterized and showed maxima activity in the pH range 4.5-5.0 and at temperatures of 55-60°C. In the fourth chapter, two xylanases from Aspergillus nidulans previously cloned in Pichia pastoris, here nominated as Xyn1818 and Xyn3613, were expressed, purified and characterized. The optima pH and temperature for Xyn1818 were 7.5 and 60°C while Xyn3613 achieved maximal activity at pH 6.0 and 50°C. Xyn1818 showed to be very thermostable, maintaining 50% of its original activity after 49 hours when incubated at 50°C. Xyn1818 presented higher activity against wheat arabinoxylan while Xyn3613 had the best activity against xylan from beechwood. Saccharification results showed that the commercial enzymatic cocktails were able to release more sugars (glucose and xylose) after supplementation with the xylanases Xyn1818 and Xyn3613 from A. nidulans. Finally, in the fifth chapter, Aspergillus niger and Trichoderma reesei were substrates: wheat straw and sugarcane bagasse. The fungi produced different sets of (hemi-)cellulolytic enzymes which was reflected in an overall strong synergistic effect in releasing sugars during saccharification using the enzyme blends from both fungi. It was observed that removing monosaccharides from the enzyme production media is very important when T. reesei and A. niger enzyme blends are combined to improve plant biomass saccharification.
APA, Harvard, Vancouver, ISO, and other styles
2

Wetterlund, Elisabeth. "System studies of forest-based biomass gasification." Doctoral thesis, Linköpings universitet, Energisystem, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-74576.

Full text
Abstract:
Bioenergy will play an important role in reaching the EU targets for renewable energy. Sweden, with abundant forest resources and a well-established forest industry, has a key position regarding modern biomass use. Biomass gasification (BMG) offers several advantages compared to biomass combustion-based processes, the most prominent being the possibility for downstream conversion to motor fuels (biofuels), and the potential for higher electrical efficiency if used for electricity generation in a biomass integrated gasification combined cycle (BIGCC). BMG-based processes in general have a considerable surplus of heat, which facilitates integration with district heating or industrial processes. In this thesis integration of large-scale BMG, for biofuel or electricity production, with other parts of the energy system is analysed. Focus is on forest-based biomass, with the analysis including techno-economic aspects as well as considerations regarding effects on global fossil CO2 emissions. The analysis has been done using two approaches – bottom-up with detailed case studies of BMG integrated with local systems, and top-down with BMG studied on a European scale. The results show that BMG-based biofuel or electricity production can constitute economically interesting alternatives for integration with district heating or pulp and paper production. However, due to uncertainties concerning future energy market conditions and due to the large capital commitment of investment in BMG technology, forceful economic support policies will be needed if BMG is a desired route for the future energy system, unless oil and electricity prices are high enough to provide sufficient incentives for BMG-based biofuel or electricity production. While BMG-based biofuel production could make integration with either district heating or pulp and paper production economically attractive, BIGCC shows considerably more promise if integrated with pulp and paper production than with district heating. Bioenergy use is often considered CO2-neutral, because uptake in growing plants is assumed to fully balance the CO2 released when the biomass is combusted. As one of the alternatives in this thesis, biomass is viewed as limited. This means that increased use of bioenergy in one part of the energy system limits the amount of biomass available for other applications, thus increasing the CO2 emissions for those applications. The results show that when such marginal effects of increased biomass use are acknowledged, the CO2 mitigation potential for BMG-based biofuel production becomes highly uncertain. In fact, most of the BMG-based biofuel cases studied in this thesis would lead to an increase rather than the desired decrease of global CO2 emissions, when considering biomass as limited.
Bioenergi spelar en viktig roll för att nå EU:s mål för förnybar energi. Sverige har med sina goda skogstillgångar och sin väletablerade skogsindustri en nyckelposition vad gäller modern bioenergianvändning. Förgasning av biomassa har flera fördelar jämfört med förbränningsbaserade processer - i synnerhet möjligheten att konvertera lågvärdiga råvaror till exempelvis fordonsdrivmedel. Används gasen istället för elproduktion kan en högre verkningsgrad nås om gasen används i en kombicykel, jämfört med i en konventionell ångturbincykel. De förgasningsbaserade processerna har i allmänhet ett betydande överskott av värme, vilket möjliggör integrering med fjärrvärmesystem eller industriella processer. I denna avhandling analyseras integrering av storskalig biomassaförgasning för drivmedelseller elproduktion, med andra delar av energisystemet. Skogsbaserad biomassa är i fokus och analysen behandlar såväl teknoekonomiska aspekter, som effekter på globala fossila CO2-utsläpp. Forskningen har gjorts på två olika systemnivåer - dels i form av detaljerade fallstudier av biomassaförgasning integrerat med lokala svenska system, dels i form av systemstudier på europeisk nivå. Resultaten visar att förgasningsbaserad biodrivmedels- eller elproduktion kan komma att utgöra ekonomiskt intressanta alternativ för integrering med fjärrvärme eller massa- och papperstillverkning. På grund av osäkerheter i fråga om framtida energimarknadsförhållanden och på grund av de höga kapitalkostnaderna som investering i förgasningsanläggningar innebär, kommer kraftfulla ekonomiska styrmedel krävas om biomassaförgasning är en önskad utvecklingsväg för framtidens energisystem, såvida inte olje- och elpriserna är höga nog att i sig skapa tillräckliga incitament. Medan förgasningsbaserad drivmedelsproduktion kan vara ekonomiskt attraktivt att integrera med såväl fjärrvärme som med massa- och papperstillverkning, framstår förgasningsbaserad elproduktion som betydligt mer lovande vid integrering med massa- och papperstillverkning. Användning av bioenergi anses ofta vara CO2-neutralt, eftersom upptaget av CO2 i växande biomassa antas balansera den CO2 som frigörs när biomassan förbränns. Som ett av alternativen i denna avhandling ses biomassa som begränsad, vilket innebär att ökad användning av bioenergi i en del av energisystemet begränsar den tillgängliga mängden biomassa för andra användare, vilket leder till ökade CO2-utsläpp för dessa. Resultaten visar att när hänsyn tas till denna typ av marginella effekter av ökad biomassaanvändning, blir potentialen för minskade globala CO2-utsläpp med hjälp av förgasningsbaserade tillämpningar mycket osäker. I själva verket skulle de flesta av de förgasningsbaserade drivmedel som studerats i denna avhandling leda till en utsläppsökning, snarare än den önskade minskningen.
APA, Harvard, Vancouver, ISO, and other styles
3

Garbetti, Anna Laura. "Risk Assessment for the production of levulinic acid from second generation biomass and upgrading to γ-valerolactone." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018.

Find full text
Abstract:
La produzione di energia a partire da biomassa rappresenta una delle importanti alternative all’utilizzo di combustibili fossili, al fine di ridurne il consumo globale e di limitare le emissioni di gas a effetto serra. In questo contesto il processo Biofine si classifica come una delle emergenti tecnologie per la produzione di acido levulinico a partire da biomassa lignocellulosica di seconda generazione. L’acido levulinico può essere successivamente idrogenato a γ-valerolactone, a sua volta alla base di processi di produzione di biocombustibili. Tuttavia, recenti studi hanno rivelato un aumento del numero di incidenti rilevanti nella catena di produzione di bioenergia maggiore del trend di produzione di energia stessa. Ciò, quindi, rende necessarie procedure di valutazione del rischio anche per questo tipo di impianti. Al fine di effettuare la valutazione del rischio dei due processi oggetto di studio, è stata adottata la metodologia ARAMIS, la quale si basa principalmente sulla costruzione di diagrammi bow-tie per l’identificazione dei Major Accident Hazards, e matrici del rischio, per l’identificazione dei Relevant Accident Scenarios. L’innovazione portata da questo studio riguarda la quantificazione delle consequenze, resa possibile attraverso il calcolo di distanze di danno, che permette di identificare scenari incidentali più realistici di quelli altrimenti previsti dalla ARAMIS.
APA, Harvard, Vancouver, ISO, and other styles
4

Hilares, Ruly Terán. "Hydrodynamic cavitation as a new approach for sugarcane bagasse pretreatment aiming to second generation ethanol production." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/97/97131/tde-07082018-153234/.

Full text
Abstract:
Renewable energy sources have been proposed as a viable option to mitigate the consumption and the dependence of fossil fuels. Among the available alternatives, lignocellulosic biomass has shown great potential for bioenergy generation, and biofuels as ethanol can be obtained by fermentation from sugars present in cellulosic and hemicellulosic fractions of biomass. However, for the efficient release of fermentable sugars during the enzymatic hydrolysis step, a pretreatment process is required to modify the material in its structure and composition. In this context, hydrodynamic cavitation (HC) was proposed in this work as a new and promising alternative for pretreatment of sugarcane bagasse. Firstly, the variables NaOH concentration, solid/liquid (S/L) ratio and HC process time were optimized in HC assisted pretreatment. In optimized conditions (0.48 mol/L of NaOH, 4.27% of S/L ratio and 44.48 min), high lignin removal (60.4%) and enzymatic digestibility of cellulose fraction (97.2%) were obtained. Based in those results, new variables (inlet pressure, temperature, alkali concentration) were included for evaluation in a second stage of the study aiming to reduce the HC pretreatment time. In this case, temperature and álcali concentration showed more significance on lignin removal and hydrolysis yield of carbohydrate fraction in pretreated biomass. No significant difference in pretreatment efficiency was observed in 20 and 30 min of process time in the best conditions (70 °C, 3 bar of inlet pressure and 0.3 mol/L of NaOH). The dimensionless cavitation number influence also was evaluated in two levels (0.017 and 0.048), resulting higher efficiency using low cavitation number which was obtained using orifice plate with 16 holes (1 mm of diameter). Using the last optimized conditions and lower temperature (60 °C instead 70 °C) in order to avoid the foam formation when black liquor is reused, other alkalis (Ca(OH)2, Na2CO3, KOH) were evaluated in combination with HC and compared to the use of NaOH. High enzymatic conversions of carbohydrate fraction were observed in biomass pretreated using KOH-HC and NaOH-HC; additionally, NaOH black liquor was reused in 10 sequential batches. The pretreated biomass using fresh and reused black liquor were mixed and used for simultaneous saccharification and fermentation process (SSF) in interconnected column reactors, resulting in 62.33% of hydrolysis of total carbohydrate fractions and 17.26 g/L of ethanol production (0.48 g of ethanol/g of glucose and xylose consumed). Finally, the addition of oxidant agent (H2O2) in the alkali HC-process was optimized. In selected conditions (0.29 mol/L of NaOH, 0.78 % v/v of H2O2 and 9.8 min), 95,43% and 81.34% of enzymatic hydrolysis yield of cellulose and hemicellulose fraction were achieved respectively, using 5% of solid loading (S/L) in the hydrolysis process. When packed bed flow-through column reactor using 20% of S/L was used, 74.7% cellulose hydrolysis yield was reached. Sugars present in hydrolysate were also fermented into ethanol in bubble column reactor resulting in a yield value of 0.49 g/g and 0.68 g/L.h of productivity. By analyzing the results as a whole, HC was shown as a promising technology to accelerate the pretreatment time under mild conditions, showing advantages as simplicity of system and possibility to application in industrial scale.
O uso de fontes de energia renováveis tem sido proposto como uma alternativa viável para reduzir o consumo e a dependência de combustíveis fósseis. Entre as alternativas disponíveis, a biomassa lignocelulósica apresenta grande potencial para geração de bioenergia, sendo que biocombustíveis como o etanol podem ser obtidos por fermentação a partir de açúcares presentes em suas frações celulósicas e hemicelulósicas. No entanto, para a liberação eficiente de açúcares fermentáveis na etapa de hidrólise enzimática, é necessário um processo prévio de pré-tratamento para modificar a estrutura e composição do material. Neste contexto, no presente trabalho a cavitação hidrodinâmica (CH) foi proposta como uma nova e promissora alternativa para o pré-tratamento do bagaço de cana-de-açúcar. Em uma primeira etapa, as variáveis concentração de NaOH, relação sólido/líquido (S/L) e tempo de processo foram otimizadas no pré-tratamento assistido por CH. Em condições otimizadas (0,48 mol/L de NaOH, 4,27% de relação S/L e 44,48 min), elevados valores de remoção de lignina (60,4%) e digestibilidade enzimática da fração de celulose (97,2%) foram obtidos. Com base nesses resultados, novas variáveis (pressão à montante, temperatura e concentração de álcali) foram incluídas para avaliação em uma segunda etapa do estudo com o objetivo de reduzir o tempo de pré-tratamento com CH. Neste caso, a temperatura e a concentração de álcalis foram as mais importantes na remoção de lignina e influenciaram na hidrólise das frações carboidrato da biomassa pré-tratada. Não houve diferença significativa na eficiência do pré-tratamento em 20 e 30 minutos de tempo de processo nas melhores condições (70 ° C, 3 bar de pressão a montante e 0,3 mol/L de NaOH). A influência do adimensional -número de cavitação? também foi avaliada em dois níveis (0,017 e 0,048), resultando em maior eficiência usando o número de cavitação mais baixo, que foi obtido usando placa de orifício com 16 furos (1 mm de diâmetro). Usando estas condições otimizadas e menor temperatura (60 ° C ao invés de 70 ° C) para evitar a formação de espuma quando o licor negro é reutilizado, outros álcalis (Ca (OH)2, Na2CO3, KOH) foram avaliados em combinação com CH e comparados com o uso de NaOH. Conversões enzimáticas elevadas das frações carboidrato foram observadas em material pré-tratado utilizando KOH-CH e NaOH-CH; além disso, o licor negro de NaOH foi reutilizado em 10 bateladas sequenciais. As biomassas pré-tratadas com licor negro reutilizado e fresco foram misturadas e utilizadas em processo de sacarificação e fermentação simultâneas (SSF) em reatores de coluna interligados, resultando em 62,33% de hidrólise das frações carboidrato e 17,26 g/L de produção de etanol (0,48 g de etanol/g de glicose e xilose consumidos). Finalmente, a adição de agente oxidante (H2O2) no processo alcalino-CH foi otimizado. Nas condições selecionadas (0,29 mol/L de NaOH, 0,78% v/v de H2O2 e 9,8 min), 95,43% e 81,34% de rendimento de hidrólise enzimática das frações de celulose e hemicelulose, respectivamente, foram obtidos utilizando 5% de carregamento de sólidos (S/L) no processo de hidrólise. Quando foi utilizado reator de coluna de leito fixo com 20% de S/L, atingiu-se 74,7% de rendimento de hidrólise de celulose. Os açúcares presentes no hidrolisado também foram fermentados em etanol em um reator de coluna de bolhas, resultando em um valor de rendimento de 0,49 g/g e 0,68 g/L.h de produtividade. Analisando-se os resultados de uma forma global, demonstrou-se que a CH é uma tecnologia promissora para acelerar o tempo de pré-tratamento em condições amenas, mostrando vantagens como simplicidade do sistema e possibilidade de aplicação em escala industrial.
APA, Harvard, Vancouver, ISO, and other styles
5

Dlangamandla, Nkosikho. "Design of integrated processes for a second generation biorefinery using mixed agricultural waste." Thesis, Cape Peninsula University of Technology, 2018. http://hdl.handle.net/20.500.11838/2843.

Full text
Abstract:
Thesis (Doctor of Engineering in Chemical Engineering)--Cape Peninsula University of Technology, 2018.
Lignocellulosic biomass (agro-waste) has been recommended as the most promising feedstock for the production of bioalcohols, in the biofuel industry. Furthermore, agro-waste is well-known as the most abundant organic matter in the agricultural and forestry product processing industry. However, the challenge with utilizing agro-waste as a feedstock is its highly recalcitrant structure, which limits hydrolysis to convert the holocelluloses into fermentable sugars. Conventional pre-treatment methods such as dilute acid, alkaline, thermal, hot water and enzymatic, have been used in previous studies. The challenge with these conventional methods is the generation of residual toxicants during the pretreatment process, which inhibits a high bioalcohol yield, by reducing the microbial populations’ (fermenter) ability to be metabolically proficient during fermentation. Numerous studies have been developed to improve the engineered strains, which have shown to have an ability to reduce the inhibition and toxicity of the bioalcohols produced or by-products produced during pre-treatment, while enhancing the bioalcohol production. In the present study (chapter 5), evaluation of common conventional methods for the pretreatment of the mixed agro-waste, i.e. (˃45µm to <100µm) constituted by Citrus sinensis, Malus domestica peels, corn cobs from Zea mays and Quercus robur (oak) yard waste without a pre-rinsing step at a ratio of 1:1 at 25% (w/w) for each waste material, was undertaken, focusing on hot water pre treatment followed by dilute acid (H2SO4) pre-treatment. To further pretreat the mixed agro-waste residue, cellulases were used to further hydrolyse the pre-treated agro-waste in a single pot (batch) multi-reaction process. The TRS concentration of 0.12, 1.43 and 3.22 g/L was achieved with hot water, dilute acid and cellulases hydrolysis as sequential pretreatment steps, respectively, in a single pot multi-reaction system. Furthermore, a commercial strain was used to ascertain low (C1 to C3) and high carbon content (C4+) bioalcohol production under aerobic conditions. Multiple bioproducts were obtained within 48 to 72 h, including bioethanol and 1-Butanol, 3-methyl, which were major products for this study. However, undesirable bio-compounds such as phenolics, were detected post fermentation. Since multiple process units characterised by chemical usage and high energy intensivity have been utilized to overcome delignification and cellulolysis, a sustainable, environmental benign pretreatment process was proposed using N. mirabilis “monkey cup” fluids (extracts) to also reduce fermenter inhibitors from the delignification of mixed agrowaste; a process with minimal thermo physical chemical inputs for which a single pot multi-reaction system strategy was used. Nepenthes mirabilis extracts shown to have ligninolytic, cellulolytic and xylanolytic activities, were used as an enzyme cocktail to pretreat mixed agro-waste, subsequent to the furtherance of TRS production from the agro-waste, by further using cellulase for further hydrolysis. N. mirabilis pod extracts were determined to contained carboxylesterases (529.41±30.50 U/L), β-glucosidases (251.94±11.48 U/L) and xylanases (36.09±18.04 U/L), constituting an enzymatic cocktail with a significant potential for the reduction in total residual phenolic compounds (TRPCs). Furthermore, the results indicated that maximum concentration of TRS obtainable was 310±5.19 mg/L within 168 h, while the TRPCs were reduced from 6.25±0.18 to 4.26 ±0.09 mg/L, which was lower than that observed when conventional methods were used. Overall N. mirabilis extracts were demonstrated to have an ability to support biocatalytic processes for the conversion of agro-waste to produce fermentable TRS in a single unit facilitating multiple reactions with minimised interference with cellulase hydrolysis. Therefore, the digestive enzymes in N. mirabilis pods can be used in an integrated system for a second generation biorefinery.
APA, Harvard, Vancouver, ISO, and other styles
6

Duarte, Aires. "Dimensionamento de plantas Biomass-to-Liquids para produção de óleo diesel sintético no Brasil." Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/86/86131/tde-26022014-101501/.

Full text
Abstract:
Há uma demanda global pelo abastecimento de combustíveis veiculares menos poluentes, tanto por questões energéticas quanto sócio-ambientais. Uma potencial alternativa, que traduz a possibilidade de um biocombustível sem as limitações da Primeira Geração, é a rota tecnológica conhecida como Biomass-to-Liquids (BTL) que, através da gaseificação e da síntese Fischer-Tropsch, possibilita a obtenção de biocombustíveis líquidos, como o óleo diesel sintético, provenientes da biomassa moderna, nesse estudo, a biomassa lignocelulósica. Para a produção em escala comercial de um biocombustível da Segunda Geração, um complexo planejamento e altos investimentos são demandados dado seu pioneirismo e ausência de histórico de mercado ou modelos precisos. Uma metodologia desenvolvida em 2006 pelo pesquisador Harold Boerrigter propõe o dimensionamento ideal de uma planta BTL a partir de uma planta Gas-to-Liquids (GTL); são aqui propostas correções e atualizações para esta metodologia, sugerindo-se uma curva capaz de apontar a influência da economia de escala em plantas BTL e uma fórmula para o cálculo estimado do Total Capital Investment (TCI) destas plantas até o momento o Brasil não dispõe de nenhuma planta que opere pela rota BTL. Segue-se com considerações sobre a oferta de resíduos florestais no território brasileiro e a constatação de que a mesma seria insuficiente como matéria-prima para sustentar grandes plantas BTL, fazendo-se necessário o emprego de culturas planejadas na forma de florestas energéticas. Uma vez feita tal análise, apresenta-se o histórico, desde sua concepção até o seu fechamento, da primeira planta a operar pela rota BTL e a produzir o designer fuel batizado de SunDiesel®: construída na Alemanha, a CHOREN Industritechnik contribui com sua experiência de anos e também com a tecnologia de gaseificação Carbo-V® para as pesquisas com os biocombustíveis sintéticos. Seu exemplo pode sinalizar um alerta com relação ao dispêndio de esforços em projetos desta natureza dadas as incertezas econômicas que circundam as fronteiras tecnológicas dos combustíveis da Segunda Geração.
There is a global demand for the supply of less polluting vehicular fuels as much by energy issues as socio-environmental. A potential alternative meaning the possibility of a biofuel without the limitations from the First Generation is the technological route known as Biomass-to-Liquids (BTL) which via gasification and the Fischer-Tropsch synthesis turns possible to obtain liquid biofuels such synthetic diesel oil from modern biomass, in this study, the lignocellulosic biomass. For commercial-scale production of a Second Generation biofuel, a complex planning and high investments are required given its pioneering and absence of market history or precise models. A methodology developed in 2006 by researcher Harold Boerrigter proposes the ideal sizing for a BTL plant assuming a Gas-to-Liquids (GTL) plant; here are proposed corrections and updates for this methodology, suggesting a curve able to point the influence of economy of scale in BTL plants and a formula for the calculation of an estimated Total Capital Investment (TCI) of these plants by the present time Brazil has no plant operating by BTL route. The research follows up with issues regarding forest residues provision in the Brazilian territory and conlcuding that the same would be insufficient as a raw material to sustain large BTL plants, making necessary the use of planned crops in the form of energy forests. Once made such analysis, it is presented the history since its beginning until its closing for the first plant to operate by the BTL route and to produce the designer fuel called SunDiesel®: built in Germany, the CHOREN Industritechnik contributes with its experience of years and also with the gasification technology Carbo-V® for researches with synthetic biofuels. Such example may indicates an alert regarding the expenditure of efforts on projects of this nature, given the economic uncertainties that surround the Second Generation fuels technological frontiers.
APA, Harvard, Vancouver, ISO, and other styles
7

Van, Der Westhuizen Willem Andries. "A Techno-economic evaluation of integrating first and second generation bioethanol production from sugarcane in Sub-Saharan Africa." Thesis, Stellenbosch : Stellenbosch University, 2013. http://hdl.handle.net/10019.1/85611.

Full text
Abstract:
Thesis (MScEng)-- Stellenbosch University, 2013.
ENGLISH ABSTRACT: Climate change that results from greenhouse gases (GHG’s) released from the burning of fossil fuels, together with the rising price of oil, have sparked interest in renewable biofuels. The production of biofuels also presents potential socio-economic benefits. There are two types of technologies for bioethanol production: · First generation bioethanol is produced from food feedstocks such as juice of sugarcane. · Second generation bioethanol is produced from non-food feedstocks (lignocellulosic materials). This project is concerned with 1st and 2nd generation bioethanol production from sugarcane juice and bagasse and the integration of these technologies. This project comprises a combination of experimental and process modelling work to assess energy efficiencies and the economic viability of integrated and stand-alone processes in the sub-Saharan African context. First generation fermentation experiments were conducted and high ethanol concentrations of up to 113.7 g/L were obtained. It was concluded that a recombinant yeast strain may be able to replace a natural hexose fermenting yeast for 1st generation fermentations to reduce costs. 2nd generation fermentation experiments were performed and ethanol concentrations of close to 40 g/L were obtained. Combinations of 1st and 2nd generation fermentation experiments were performed to improve the 2nd generation fermentation. In one of the experiments it was concluded that the combination of 1st and 2nd generation fermentations significantly improved the 2nd generation fermentation with an overall ethanol concentration of 57.6 g/L in a shorter time than for the pure 2nd generation experiments. It was determined from washing and pressing experiments that pressing the pre-hydrolysate liquor out of the pre-treated bagasse will sufficiently lower the levels of inhibitors in a 2nd generation fermentation when using a hardened yeast. Some of the data from the 1st generation experiments were used along with literature data to model a first generation process in Aspen Plus® which processes 493 tons of cane per hour (tc/hr). Pinch heat integration was used to reduce the utility requirements. The process used the bagasse that was generated to co-produce steam and electricity. The excess electricity was sold for additional revenue. In one scenario the excess bagasse was determined at 57.5%. This bagasse was sold to a stand-alone 2nd generation plant. The first generation process produced 85.5 litres of ethanol per ton of cane (L/tc), the integrated process produced 128 L/tc while the stand-alone 2nd generation process produced 185 litres of ethanol per ton of bagasse (50% moisture) or 25.5 L/tc. The amount of excess electricity that was produced ranged from 14.3 to 70.2 kWh/tc. Economic analyses were performed using South African economic parameters to resemble the sub- Saharan African context. Data from the 1st generation process model and literature data for integrated 1st and 2nd generation and stand-alone 2nd generation processes were used for the analyses. It was found that the integrated plant is the most economically viable (IRR = 11.66%) while the 1st generation process basically broke even (IRR = 1.62%) and the 2nd generation process is unviable. This was as a result of high sugarcane prices and too few incentives for 2nd generation ethanol.
AFRIKAANSE OPSOMMING: Klimaatsverandering wat veroorsaak word deur kweekhuisgasse wat vrygestel word deur die verbranding van fossielbrandstowwe en die stygenede olieprys het belangstelling in hernubare biobrandstowwe laat opvlam. Die produksie van biobrandstowwe hou ook potensiële sosioekonomiese voordele in. Daar is twee tegnologieë vir bioetanol produksie: · Eerste generasie bioetanol word vanaf voedsel bronne soos suikersap geproduseer. · Tweede generasie bioetanol word van nie-voedsel bronne (lignosellulose materiaal) geproduseer. Hierdie projek handel oor 1ste en 2de generasie bioetanol produksie van suikersap en suikerriet bagasse en die integrasie van hierdie tegnologieë. Hierdie projek bestaan uit ‘n kombinasie van eksperimentele- en prosesmodellering werk om die energiedoeltreffendheid en ekonomise vatbaarheid van geïntegreerde en alleenstaande prosesse in die sub-Sahara konteks te ondersoek. Eerste generasie fermentasie eksperimente is uitgevoer en hoë etanol konsentrasies van tot 113.7 g/L is gekry. Dit was bepaal dat ‘n rekombinante gisras ‘n natuurilke heksose fermenterende gisras kan vervang vir 1ste generasie fermentasies om kostes te bespaar. 2de generasie fermentasie eksperimente is gedoen en etanol konsentrasies van amper 40 g/L is behaal. Kombinasies van 1ste en 2de generasie fermentasie-eksperimente was uitgevoer om die 2de generasie fermentasie te verbeter. In een van die eksperimente is dit bepaal dat die kombinasie van 1ste en 2de generasie fermentasie die 2de generasie fermentasie beduidend verbeter het met ‘n etanol konsentrasie van 57.6 g/L en dít in ‘n korter tyd as vir die suiwer 2de generasie eksperimente. Dit was bepaal vanuit pers- en was eksperimente dat om die pre-hidrolisaat vloeistof uit die stoombehandelde bagasse te pers, die vlak van inhibitore in ‘n 2de generasie fermentasie voldoende verlaag vir die gebruik van ‘n verharde gis. Van die data van die 1ste generasie eksperimente was saam met literatuurdata gebruik om ‘n 1ste generasie proses in Aspen Plus® te modelleer wat 493 ton suikerriet per uur prosesseer (tc/hr). Pinch hitte integrasie was gebruik om die dienste vereistes te verminder. In die proses word die bagasse gebruik om stoom en elektrisiteit te genereer. In een geval was die oortillge bagasse bepaal as 57.5%. Hierdie bagasse was verkoop aan ‘n alleenstaande 2de generasie aanleg. Die eerste generasie proses het 85.5 liter etanol per ton suikerriet geproduseer (L/tc), die geïntegreerde proses het 128 L/tc geproduseer terwyl die 2de generasie proses 185 liter etanol etanol per ton bagasse (50% vog) of 25.5 L/tc geproduseer het. Die hoeveelhede oortillige elektrisiteit wat geproduseer is wissel van 14.3 tot 70.2 kWh/tc. Ekonomiese analieses is gedoen met Suid-Afrikaanse ekonomiese parameters om die sub-Sahara Afrika-konteks uit te beeld. Data van die 1ste generasie prosesmodel en literatuurdata van geïntegreerde 1ste en 2de generasie en alleenstaande 2de generasie prosesse was vir die analieses gebruik. Dit is bepaal dat die geïntegreerde model die mees ekonomies vatbare model is (IRR = 11.66%) terwyl die 1ste generasie proses basies gelyk gebreek het (IRR = 1.62%) en die 2de generasie proses is ekonomies onvatbaar. Hierdie bevindinge is as gevolg van hoë suikerrietpryse en te min aansporings vir 2de generasie etanol.
APA, Harvard, Vancouver, ISO, and other styles
8

Desiderato, Joana Gabriela [UNESP]. "Metagenômica e bioinformática aplicada à bioenergia: explorando um consórcio bacteriano degradador de biomassa." Universidade Estadual Paulista (UNESP), 2017. http://hdl.handle.net/11449/151237.

Full text
Abstract:
Submitted by Joana Gabriela Desiderato null (desideratojg@gmail.com) on 2017-07-27T15:07:00Z No. of bitstreams: 1 Dissertação_Joana_Gabriela_Desiderato.docx: 4912171 bytes, checksum: 639bcf495fee38479e4632b0ce8d12d8 (MD5)
Rejected by LUIZA DE MENEZES ROMANETTO (luizamenezes@reitoria.unesp.br), reason: Solicitamos que realize uma nova submissão seguindo as orientações abaixo: A versão final da dissertação/tese deve ser submetida no formato PDF (Portable Document Format). O arquivo PDF não deve estar protegido e a dissertação/tese deve estar em um único arquivo, inclusive os apêndices e anexos, se houver. Por favor, corrija o formato do arquivo e realize uma nova submissão. Agradecemos a compreensão. on 2017-07-28T13:12:00Z (GMT)
Submitted by Joana Gabriela Desiderato null (desideratojg@gmail.com) on 2017-07-28T13:22:09Z No. of bitstreams: 1 Dissertação_Joana_Gabriela_Desiderato.pdf: 2639616 bytes, checksum: a7f3656945cfe28767c4a7ff73745655 (MD5)
Approved for entry into archive by LUIZA DE MENEZES ROMANETTO (luizamenezes@reitoria.unesp.br) on 2017-08-01T16:56:02Z (GMT) No. of bitstreams: 1 desiderato_jg_me_jabo.pdf: 2639616 bytes, checksum: a7f3656945cfe28767c4a7ff73745655 (MD5)
Made available in DSpace on 2017-08-01T16:56:02Z (GMT). No. of bitstreams: 1 desiderato_jg_me_jabo.pdf: 2639616 bytes, checksum: a7f3656945cfe28767c4a7ff73745655 (MD5) Previous issue date: 2017-07-04
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
A indústria sucroalcooleira gera elevado número de resíduos de origem da biomassa lignocelulósica que apresentam grande potencial para produção de biocombustíveis, em particular o etanol de segunda geração. Uma das formas promissoras para a desconstrução da biomassa lignocelulósica é através da utilização de consórcios bacterianos que produzem enzimas altamente específicas com a capacidade de quebrar a estrutura da lignocelulose. Porém, para a otimização desse processo é importante entender as funções metabólicas presentes nesses consórcios degradadores de biomassa. Portanto, esse estudo objetivou identificar e classificar a composição de uma comunidade bacteriana proveniente de consórcio oriundo de solo contendo bagaço de cana-de-açúcar em decomposição e avaliar sua capacidade metabólica através de sequenciamento genômico de alto rendimento e análises de bioinformática. Esse consórcio foi cultivado durante vinte semanas, sendo que amostras de DNA foram extraídas para sequenciamento a cada sete dias. O sequenciamento da subunidade 16S do operon ribossomal (16S rRNA) foi realizado utilizando a plataforma Ion PGM™, enquanto que o sequenciamento do DNA total foi realizado na plataforma HiSeq 2500, Illumina®. Os resultados do sequenciamento do 16S rRNA indicam 5 diferentes famílias bacterianas ao longo das 20 semanas, sendo Burkholderiaceae (73%) e Rhodanobacteraceae (24%) as mais abundantes. Análises do potencial funcional do consórcio realizadas através dos programas PICRUSt e STAMP, indicam o enriquecimento da função de transportadores, incluindo transportadores do tipo ABC, principalmente na primeira semana, sugerindo um provável papel na metabolização do material lignocelulolítico presente no meio. Os dados gerados pelo sequenciamento total do metagenoma foram montados (“de novo” assembly) e permitiram recuperar a sequência genômica de um dos organismos mais abundantes presentes no consórcio (24%). Esse genoma foi finalizado e circularizado, apresentando 4.758.639 pb e GC% de 65,25, e similaridade de 99% da sequência do 16S rRNA e 90,77% de identidade de suas sequências codificadoras com o genoma da bactéria Dyella jiangningensis SBZ3-12 (Rhodanobacteraceae). A anotação realizada através da plataforma RAST, indicou 4.194 genes codificadores de proteínas, dentre os quais 36 Glicosil Hidrolases potencialmente envolvidas com a degradação da biomassa lignocelulósica. Portanto, esse estudo permitiu a elucidação da diversidade microbiana e perfil metabólico de um consórcio bacteriano, revelando um novo genoma pertencente ao gênero Dyella, potencialmente relacionado com o processo de degradação da biomassa lignocelulósica. Em linhas gerais, os resultados obtidos também corroboraram o potencial que ferramentas de sequenciamento de alto rendimento, metagenômica e bioinformática apresentam para o estudo de comunidades microbianas com potencial biotecnológico, mostrando-se como uma valiosa alternativa para a investigação de novos alvos para a pesquisa em bioenergia.
The sugarcane ethanol industry generates a number of residues related to the lignocellulosic biomass which exhibit potential for the production of biofuels, in particular second generation ethanol. One of the promising ways for the deconstruction of lignocellulosic biomass to valuable products is through the use of bacterial consortia. These consortia encode a specific set of enzymes capable to metabolize and decompose the lignocellulose structure. However, to optimize this process, the metabolic functions present in a biomass-degrading consortia must be well known. Therefore, this study aimed to unravel the taxonomic composition, and to evaluate the metabolic profile of a bacterial consortium from a sugar-cane derived soil containing decomposing straw, through high-throughput genomic sequencing and bioinformatics analyzes. The selected consortium was cultivated in laboratory for twenty weeks, and DNA samples were extracted for sequencing every seven days. The 16S subunit of the ribosomal operon (16S rRNA) and total DNA sequencing were performed through the Ion PGM™ (Thermo Fischer) and HiSeq 2500 (Illumina) platforms, respectively. The 16S rRNA sequencing indicate at least 5 different bacterial families during the 20 weeks of cultivation. The Burkholderiaceae (73%) and Rhodanobacteraceae (24%) are the most abundant. Functional analyses, indicate an enrichment of the transporter-related function, including ABC-transporters mainly in the first week of cultivation, suggesting a probable role related with the decomposing of the lignocellulolytic material. The whole metagenome sequencing uncover the genomic sequence of one of the most abundant organisms present in the consortium (abundance ~24% of the sequenced reads). This genome was finished and circularized, exhibiting 4,758,639 bp, GC% of 65.25, and 99% of similarity of the 16S rRNA and 90.77% identity of the coding sequences to the genome of the bacterium Dyella jiangningensis SBZ3- 12 (Rhodanobacteraceae). The annotation revealed 4,194 proteins coding genes, among which 36 Glycosyl Hydrolases potentially involved with the degradation of lignocellulosic biomass. Therefore, the microbial diversity and metabolic profile of the consortium was revealed. In addition a new genome belonging to the Dyella genus potentially involved with degradation of the lignocellulosic biomass were also uncovered. Overall, the results also corroborated the potential of high-throughput metagenomic sequencing and bioinformatic aproach for the elucidation of microbial communities with biotechnological potential, proving to be a valuable alternative for the bioenergy research.
CNPq: 132532/2015-8
APA, Harvard, Vancouver, ISO, and other styles
9

Magnusson, Mimmi. "Energy systems studied of biogas : Generation aspects of renewable vehicle fuels in the transport system." Doctoral thesis, KTH, Energiprocesser, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-105120.

Full text
Abstract:
The transport sector is seen as particularly problematic when concerns about climate change and dependency on fossil energy are discussed. Because of this, bioenergy is strongly promoted for use in the transport sector, both on a European level and nationally in Sweden. Even though bioenergy is considered one of the key solutions, it is generally agreed that both supply- and demand-side measures will be needed to achieve a change to a more sustainable transport system. One of the reasons for this is the limited availability of biomass, especially agricultural feedstocks competing with food or feed production. Woody biomass, however more abundant, is also exposed to tough competition from other sectors. In this thesis, the role of biogas as a vehicle fuel in a future sustainable transport system is discussed together with the prerequisites needed to realise such a transport system. Biogas is a biofuel that could be produced in several different ways: by anaerobic digestion, which is a first-generation production route, by gasification, which is a second-generation process, and by catalytic reduction of carbon dioxide, a third-generation technology. The main focus in this thesis is on biogas produced by anaerobic digestion and the results show that there is a significant potential for an increase compared to today’s production. Biogas from anaerobic digestion, however, will only be able to cover a minor part of the demand in the Swedish transport sector. Considering biogas of the second and third generations, the potential for production is more uncertain in a mid-term future, mainly due to competition for feedstock, the possibility to produce other fuels by these processes, and the present immaturity of the technology. The limited potential for replacing fossil vehicle fuels, either by biogas or other renewable fuels, clearly shows the need for demand-side measures in the transport system as well. This thesis shows the importance of technical and non-technical means to decrease the demand for transport and to make the transport as efficient as possible. The results show that both energy-efficient vehicles and behavioural and infrastructural changes will be required. Policies and economic incentives set by governments and decision-making bodies have a prominent role to play, in order to bring about a shift to a more sustainable transport system, however, measures taken on individual level will also have a great impact to contribute to a more sustainable transport system.

QC 20121116

APA, Harvard, Vancouver, ISO, and other styles
10

Song, Letian. "Study and Engineering of a GH11 endo-beta-xylanase, a biomass-degrading hemicellulase." Thesis, Toulouse, INSA, 2011. http://www.theses.fr/2011ISAT0039/document.

Full text
Abstract:
La création de nouvelles enzymes pour l’hydrolyse de la biomasse est une stratégie clé pour ledéveloppement du bioraffinage. Dans ce contexte, les xylanases de la famille GH11 sont déjàdéployées dans de nombreux procédés industriels et donc bien positionnées pour jouer un rôleimportant dans ces procédés. La cible de cette étude, la xylanase GH11 (Tx-Xyl) de la bactérieThermobacillus xylanilyticus, est une enzyme thermostable et donc une bonne candidate pour destravaux d’ingénierie visant l’amélioration de son activité sur des substrats ligno-cellulosiques.Dans cette étude, deux stratégies d’ingénierie des enzymes ont été employées afin d’obtenir denouvelles informations portants sur les relations structure-fonction au sein de Tx-Xyl. La premièrestratégie a consisté en l’utilisation d’une approche de mutagenèse aléatoire, couplée à l’emploi deméthodes de recombinaison in vitro. Ces travaux avaient pour objectif d’améliorer la capacitéhydrolytique de Tx-Xyl sur la paille de blé. La deuxième stratégie mise en oeuvre s’est appuyée surune approche semi-rationnelle visant la création d’une enzyme chimérique, qui bénéficierait d’uneamélioration des interactions enzyme-substrat au niveau du sous-site -3.Le premier résultat majeur de cette thèse concerne le développement d’une méthode de criblagequi permet l’analyse à haut débit de banques de mutants pour la détection de variants quiprésentent une activité hydrolytique accrue directement sur paille de blé. A l’aide de ce crible, nousavons pu analyser plusieurs banques de mutants, représentant un total de six générations demutants, et identifier une série de combinaisons de mutations différentes. D’un côté, un variant,comportant deux mutations silencieuses, permet une meilleure expression de Tx-Xyl, alors qued’autres enzymes mutées présentent des modifications intrinsèques de leurs aptitudes catalytiques.Comparés à l’enzyme parentale Tx-Xyl, certains mutants solubilisent davantage les arabinoxylanes dela paille et, lorsqu’ils sont déployés avec un cocktail de cellulases, participent à une réactionsynergique qui permet un accroissement du rendement des pentoses et du glucose libérés.A l’aide d’une approche semi-rationnelle, une séquence de 17 acides aminés en provenance d’unexylanase GH11 fongique a été ajoutée à l’extrémité N-terminale de Tx-Xyl, afin de créer de nouveauxbrins β. L’enzyme chimérique a pu être exprimée avec succès et caractérisée. Néanmoins, l’analysede ses propriétés catalytiques a révélé que celle-ci ne présente pas davantage d’interactions avec sonsubstrat dans le sous-site -3, mais les résultats obtenus fournissent de nombreux renseignements surles relations structure-fonction au sein de l’enzyme. De plus, ces travaux nous permettent depostuler que Tx-Xyl posséderait un site de fixation secondaire pour les xylanes, un élement jusqu’iciinsoupçonné dans cette enzyme. Par ailleurs, l’analyse de nos résultats nous permet de proposer uneexplication rationnelle pour l’échec de notre stratégie initiale
Engineering new and powerful enzymes for biomass hydrolysis is one area that will facilitate thefuture development of biorefining. In this respect, xylanases from family GH11 are already importantindustrial biocatalysts that can contribute to 2nd generation biorefining. The target of this study, theGH11 xylanase (Tx-Xyl) from Thermobacillus xylanilyticus is thermostable, and is thus an interestingtarget for enzyme engineering, aiming at increasing its specific activity on lignocellulosic biomass,such as wheat straw. Nevertheless, the action of xylanases on complex biomass is not yet wellunderstood, and thus the use of a rational engineering approach is not really feasible.In this doctoral study, to gain new insight into structure-function relationships, two enzymeengineering strategies have been deployed. The first concerns the development of a randommutagenesis and in vitro DNA shuffling approach, which was used in order to improve the hydrolyticpotency of Tx-Xyl on wheat straw, while the second strategy consisted in the creation of a chimericenzyme, with the aim of probing and improving -3 subsite binding, and ultimately improvinghydrolytic activity.The first key results that has been obtained is the development of a novel high-throughputscreening method, which was devised in order to reliably pinpoint mutants that can better hydrolyzewheat straw. Using this screening method, several generations of mutant libraries have beenanalyzed and a series of improved enzyme variants have been identified. One mutant, bearing silentmutations, actually leads to higher gene expression, while others have intrinsically altered catalyticproperties. Testing of mutants has shown that some of the enzyme variants can improve thesolubilization of wheat straw arabinoxylans and can work in synergy with cellulose cocktails torelease both pentose sugars and glucose.Using a semi-rational approach, 17 amino acids have been added to the N-terminal of Tx-Xyl, withthe aim of adding two extra β-strands coming from a GH11 fungal xylanase. A chimeric enzyme hasbeen successfully expressed and purified and its catalytic properties have been investigated.Although this approach has failed to create increased -3 subsite binding, the data presented revealsimportant information on structure-function relationships and suggest that Tx-Xyl may possess ahitherto unknown secondary substrate binding site. Moreover, a rational explanation for the failureof the original strategy is proposed
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Second generation biomass"

1

Jansen, Roland A. Second Generation Biofuels and Biomass. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527652976.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

1960-, Yoshida Kazuya, Ueda Mitsuyoshi 1955-, and Fukusaki Eiichirō 1960-, eds. Daini sedai baio nenryō no kaihatsu to ōyō tenkai =: Exploitation of second generation biofuels and its development. Tōkyō: Shīemushī Shuppan, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

1960-, Yoshida Kazuya, Ueda Mitsuyoshi 1955-, and Fukusaki Eiichirō 1960-, eds. Daini sedai baio nenryō no kaihatsu to ōyō tenkai =: Exploitation of second generation biofuels and its development. Tōkyō: Shīemushī Shuppan, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Subcommittee hearing on second generation biofuels: The new frontier for small businesses. Washington: U.S. G.P.O., 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Increasing the competitiveness of small and medium-sized enterprises through the use of environmentally sound technologies: Assessing the potential for the development of second-generation biofuels in the ESCWA region. New York: United Nations, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Jansen, Roland A. Second Generation Biofuels and Biomass: Essential Guide for Investors, Scientists and Decision Makers. Wiley & Sons, Incorporated, John, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jansen, Roland A. Second Generation Biofuels and Biomass: Essential Guide for Investors, Scientists and Decision Makers. Wiley & Sons, Incorporated, John, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Jansen, Roland A. Second Generation Biofuels and Biomass: Essential Guide for Investors, Scientists and Decision Makers. Wiley & Sons, Incorporated, John, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Jansen, Roland A. Second Generation Biofuels and Biomass: Essential Guide for Investors, Scientists and Decision Makers. Wiley & Sons, Limited, John, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Buckeridge, Marcos S., and Amanda P. De Souza. Advances of Basic Science for Second Generation Bioethanol from Sugarcane. Springer, 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Second generation biomass"

1

Sheldon, Roger A. "Enzymatic Conversion of First- and Second-Generation Sugars." In Biomass and Green Chemistry, 169–89. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-66736-2_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Martins, Luiza Helena Da Silva, João Moreira Neto, Paulo Weslem Portal Gomes, Johnatt Allan Rocha De Oliveira, Eduardo Dellosso Penteado, and Andrea Komesu. "Potential Feedstocks for Second-Generation Ethanol Production in Brazil." In Sustainable Biofuel and Biomass, 145–66. Includes bibliographical references and index: Apple Academic Press, 2019. http://dx.doi.org/10.1201/9780429265099-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cho, Hannah Hyunah, and Vladimir Strezov. "Environmental and Energy Potential Assessment of Integrated First and Second Generation Bioenergy Feedstocks." In Renewable Energy Systems from Biomass, 103–20. Boca Raton: Taylor & Francis, 2019.: CRC Press, 2018. http://dx.doi.org/10.1201/9781315153971-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Luft, Luciana, Juliana R. F. da Silva, Raquel C. Kuhn, and Marcio A. Mazutti. "Second Generation Bioethanol Production from Residual Biomass of the Rice Processing Industry." In Lignocellulosic Biomass Production and Industrial Applications, 111–33. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119323686.ch6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

de Lourdes T.M. Polizeli, Maria, Alexandre Favarin Somera, Rosymar Coutinho de Lucas, Monica Stropa Ferreira Nozawa, and Michele Michelin. "Enzymes Involved in the Biodegradation of Sugarcane Biomass: Challenges and Perspectives." In Advances of Basic Science for Second Generation Bioethanol from Sugarcane, 55–79. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-49826-3_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kaur, Manmeet, Mandeep Kaur Gill, Shivani Sharma, G. S. Kocher, and H. S. Sodhi. "Biological Pretreatment Strategies for Second-Generation Lignocellulosic Biomass to Enhance Ethanol Production." In Clean Energy Production Technologies, 169–203. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-6230-1_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Driemeier, Carlos. "Nanostructure of Lignocellulose and Its Importance for Biomass Conversion into Chemicals and Biofuels." In Advances of Basic Science for Second Generation Bioethanol from Sugarcane, 21–38. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-49826-3_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

"Biomass." In Second Generation Biofuels and Biomass, 113–25. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527652976.ch8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

"First- and Second-Generation Biofuels." In Second Generation Biofuels and Biomass, 21–29. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527652976.ch2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

"Biofuels and Biomass in Africa." In Second Generation Biofuels and Biomass, 169–72. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527652976.ch14.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Second generation biomass"

1

Gu¨ell, Berta Matas, Judit Sandquist, and Lars So̸rum. "Gasification of Biomass to Second Generation Biofuels: A Review." In ASME 2011 5th International Conference on Energy Sustainability. ASMEDC, 2011. http://dx.doi.org/10.1115/es2011-54140.

Full text
Abstract:
Biomass gasification has gained significant attention in the last couple of decades for the production of heat, power and second generation biofuels. Biomass gasification processes are highly complex due to the large number of reactions involved in the overall process as well as the high sensitivity of the process to changes in the operational conditions. This report reviews the state-of-the-art of biomass gasification by evaluating key process parameters such as gasifying agent, temperature, pressure, particle size, etc., for fluidized bed and entrained flow gasifiers. The pros and cons of each technology and the remaining bottlenecks are also addressed.
APA, Harvard, Vancouver, ISO, and other styles
2

Patel, Nikhil, and Darren D. Schmidt. "Biomass Boundary Layer Turbine Power System." In 2002 International Joint Power Generation Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/ijpgc2002-26035.

Full text
Abstract:
A “Boundary Layer Turbine” (BLT), with a specially designed multiple-disk rotor consisting of a number of closely packed parallel disks fixed to the shaft, was used to demonstrate direct conversion of biomass for small-scale distributed power generation. The turbine operates under the effect of skin friction drag exerted on the parallel plates, resulting from the flow of hot gases between the parallel plates. This concept is well known for its resistance to erosion when pumping viscous fluids, and the technology has been developed for commercial pump applications but not for a turbine. The turbine based on this concept is capable of encountering particle-laden gas and can accept ash-containing biomass fuels. In the present experiments, wood-derived sawdust (particle size ∼1 mm) and natural oats were fired separately as the test fuels. These fuels were injected directly into the stream of vitiated hot air downstream of the combustor. The location of injection was based on a 1- to 3-second residence time for complete combustion. This paper discusses a performance study and assessment of deposition, erosion, and corrosion (DEC) effects on the working components of the BLT. The potential for cost-effective electricity production from biomass in distributed-generation applications is also explored. The BLT was operated for 40 hours, consuming 68 kg of biomass fuel. The testing included initial firing of 10% biomass (by heating value), increasing to 100%. Documented performance shows isentropic turbine efficiencies of 11% at 3.2 kW and 6284 rpm. Turbine inlet conditions averaged 2.8 bar and 645 K. Over the course of testing, no significant component degradation was observed. The hot components were coated with a small amount of soot, but no deposits were formed that would lead to plugging or buildup in the turbine housing. The results of the study represent the first step toward development of a biomass BLT. It has been demonstrated that no significant barriers should hamper the use of biomass fuels in the rotor; however, isentropic efficiencies will have to be improved to at least 50% to achieve meaningful overall cycle efficiency.
APA, Harvard, Vancouver, ISO, and other styles
3

Gabrielle Silva, Thaís, GONCALO AMARANTE GUIMARAES PEREIRA, and Thamy L. R. Corrêa. "Bacterial Lytic Polysaccharide Monooxygenases (LPMOs) and their impact on deconstruction of lignocellulosic biomass for production of second generation ethanol." In XXV Congresso de Iniciação Cientifica da Unicamp. Campinas - SP, Brazil: Galoa, 2017. http://dx.doi.org/10.19146/pibic-2017-78831.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mo¨ller, Bjo¨rn Fredriksson, Mohsen Assadi, and Ulf Linder. "CO2-Free Power Generation: A Study of Three Conceptually Different Plant Layouts." In ASME Turbo Expo 2003, collocated with the 2003 International Joint Power Generation Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/gt2003-38413.

Full text
Abstract:
Ever since the release of the Kyoto protocol the demand for CO2-free processes have been increasing. In this paper three different concepts with no or a very small release of CO2 to the atmosphere are evaluated and compared concerning plant efficiency and investment cost. A novel approach to biomass gasification is proposed to provide fuel for a combined gas turbine cycle, where the biomass is considered to be a renewable fuel with zero impact regarding CO2 in the exhaust gases. The gasification concept used is a Dual Pressurised Fluidised Bed Gasifier (DPFBG) system, using steam and recycled product gas as fluidising agent in the gasification reactor. In the separate combustion reactor air is used as fluidising agent. The second cycle is a hybrid fuelled Humid Air Turbine (HAT) cycle with post-combustion CO2-separation. Steam used for regenerating the amines in the separation plant is produced using a biomass boiler, and natural gas is used as fuel for the humid air turbine. With this fuel mix the net release of CO2 can even be less than zero if the exhaust gas from the steam generator is mixed and cleaned together with the main exhaust gas flow. The third cycle proposed is a combined cycle with postcombustion CO2-separation and the steam generation for the CO2-separation integrated in the bottoming steam cycle. All power cycles have been modelled in IPSEpro™, a heat and mass balance software, using advanced component models developed by the authors. An equilibrium model is employed both for the gasification and the separation of CO2 from exhaust gases. All three power cycles show efficiencies around 45%, which is high for a biomass gasification cycle. The HAT and the combined cycle show efficiency drops of about 8 percentage points, due to the post-combustion treatment of exhaust gases.
APA, Harvard, Vancouver, ISO, and other styles
5

Sreenivasa, R., and K. Aung. "Numerical Simulations of Biomass Co-Firing in a Fluidized Bed Combustor." In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-59787.

Full text
Abstract:
Fluidized bed technology is an established technology for energy generation due to low operating temperatures, high system efficiency, fuel flexibility, and easier control of pollutants such as NOx and SO. Co-firing of biomass is an attractive option for power generation as it increases use of renewable and waste materials, thereby replacing the conventional coal. This paper investigated biomass co-firing in a fluidized bed using two models. The first model is based on the recent study on the high-volatile solid fuels in a fluidized bed. The first model considered the fluidized bed combustor as three distinct zones: bed zone, splashing zone, and freeboard zone, and took into account material balances in each zone. In addition, sub-models for estimating the pollutants such as NOx and SO were also included in the model. The second model was based on the coal combustion in a fluidized bed. The second model only considered bed and freeboard zones in a fluidized bed. The model for pollutant emissions was also included in the second model. The predictions of both models included char loading in the bed, combustion efficiency, and pollutant emissions. Predictions of both models were compared with the available experimental data to validate the models. The results of the study suggest that current coal models may be appropriate to apply for biomass co-firing in fluidized coal combustors as long as the biomass co-firing is limited to not more than 30% of the total fuel.
APA, Harvard, Vancouver, ISO, and other styles
6

Shamsuddin, Abd Halim. "Malaysian Biomass Resources: Green Renewable Contribution in the National Energy Mix." In ASME 2010 Power Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/power2010-27333.

Full text
Abstract:
Being a major agricultural commodity producer in the region Malaysia is well positioned amongst the ASEAN countries to promote the use of biomass as a renewable energy source in the national energy mix. The palm oil industry, the second largest in the world, has over 4 million hectares of plantation. The palm oil milling industry produces large amount of solid residues, the volumes of which for the year 2007 are: empty fruit bunches EFB (16.7 million tonnes), fruit fibres (12.2.million tonnes), and palm kernel shell (4.9 million tonnes). Besides the oil palm milling industry residues, other biomass contributors includes, the timber industry, rice industry and bagasse. These biomass residues, if fully utilized as fuel for power generation, would have the potential of annual generation of 31,900 GWh, with maximum generating capacity of 3,600 MW. Under the National Energy Policy set in 1979, three principal energy objectives, which are instrumental in guiding the future energy sector development, were established. These are Supply, Utilization and Environmental Objectives. In 2001, the beginning of the Eighth Malaysian Plan, Renewable Energy (RE) was regarded as the fifth fuel in the new Five Fuel Strategy in the energy supply mix. The target is that RE contributes 5% of the country’s electricity demand by the year 2005. Malaysia’s Five Fuel Diversification Policy provides the renewable energy policy guidance while the current grid-based small renewable energy programmes (SREP) and the renewable energy power purchase agreement (REPPA), embodies the national renewable energy strategy. To reinforce these policy instruments, the Malaysian Ministry of Energy, Green Technology and Water launched the National Green Technology Policy in the middle of 2009 that include Green Energy Technology. This paper presents the overall scenario of the Malaysia’s biomass resources, the status of biomass contribution to the nation’s energy mix, the challenges faced by the biomass promoters, and future research and development activities in developing optimized and efficient technologies at the Centre for Renewable Energy, Universiti Tenaga Nasional.
APA, Harvard, Vancouver, ISO, and other styles
7

Pina, Eduardo Antonio, and Marcelo Modesto. "Proposals to Maximize Electricity Generation From Sugar Cane in Brazil." In ASME 2014 12th Biennial Conference on Engineering Systems Design and Analysis. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/esda2014-20132.

Full text
Abstract:
Brazil’s sugarcane industry has been characterized by low efficiency in energy production as it consumes large amounts of bagasse as fuel in its cogeneration system, considering its low price and abundance. The possibility of selling surplus electricity to the grid has motivated investments in improvements, such as reduction of steam demand by means of process thermal integration and double distillation systems, and employment of condensing instead of back pressure steam turbines. Four different cogeneration systems were analyzed in this work: two traditional Rankine Cycles, the first presenting back pressure steam turbine and the second featuring condensing steam turbine configuration; a BIGCC (Biomass Gasification Combined Cycle) and an altered model of the BIGCC, comprised by an extra gas turbine set operating with ethanol. Thermoeconomic analyses determining exergy based costs of electricity and ethanol for all cases were carried out. The main objective of this work is to assess the proposal to maximize electricity production from the sugarcane industry in Brazil.
APA, Harvard, Vancouver, ISO, and other styles
8

Hawkes, G. L., J. E. O’Brien, and M. G. McKellar. "Liquid Bio-Fuel Production From Non-Food Biomass via High Temperature Steam Electrolysis." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-62588.

Full text
Abstract:
Two hybrid energy processes that enable production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure are presented. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), these two hybrid energy processes have the potential to provide a significant alternative petroleum source that could reduce US dependence on imported oil. The first process discusses a hydropyrolysis unit with hydrogen addition from HTSE. The second process discusses a process named Bio-Syntrolysis. The Bio-Syntrolysis process combines hydrogen from HTSE with CO from an oxygen-blown biomass gasifier that yields syngas to be used as a feedstock for synthesis of liquid transportation fuels via a Fischer-Tropsch process. Conversion of syngas to liquid hydrocarbon fuels, using a biomass-based carbon source, expands the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. INL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-blown biomass gasifier.
APA, Harvard, Vancouver, ISO, and other styles
9

Zampilli, Mauro, Gianni Bidini, Paolo Laranci, Michele D’Amico, Pietro Bartocci, and Francesco Fantozzi. "Biomass Microturbine Based EFGT and IPRP Cycles: Environmental Impact Analysis and Comparison." In ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/gt2017-64947.

Full text
Abstract:
The global microturbine market will grow at an interesting Compound Annual Growth Rate during the period 2016–2020 and a key driver will be distributed generation also with unconventional fuels. This paper compares the performances of two different microturbine based technologies for biomass micro CHP. One is the Integrated Pyrolysis Regenerated Plant (IPRP), technology developed by the authors by coupling a pyrolyzer to a mGT fuelled by biomass pyrolysis gas. Two IPRP versions are considered: one in which char is burned to provide pyrolysis energy and one in which it is used as a carbon sink. The second technology is the Externally Fired Gas Turbine (EFGT) based on biomass combustion in a dedicated burner and high temperature heat exchangers used to heat up compressed air which expands in the mGT. Hot air at the turbine exhaust is used as combustion air for biomass. The layout and operational conditions considered were optimized by the authors in previous works. The environmental performance of the two technologies when fuelled with the same biomass at the same power output, is assessed through a Life Cycle Assessment (LCA) analysis, calculating impacts on acidification, carbon footprint and Cumulative Energy Demand (CED). Two sensitivity analysis are also performed on different vegetal oils used for scrubbing and different methods of allocation, referred to CHP products. Results show that both technologies have negative carbon footprints, however the IPRP has the worst performance because of the sunflower oil, used for syngas scrubbing, which offsets the additional carbon sink benefit of biochar. If water it used as a scrubbing medium in the IPRP plant, this configuration obtains similar results in terms of environmental impact, compared to IPRP plant using vegetable oil as a scrubbing medium. However, when the effect of a different vegetal oil is considered, namely a waste frying oil, the former introduces extraordinary benefits resulting in the IPRP outperforming the EFmGT in terms of carbon negative technology.
APA, Harvard, Vancouver, ISO, and other styles
10

Minchener, A. J. "An Overview of Recent Clean Coal Gasification Technology R&D Activities Supported by the European Commission." In ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/98-gt-163.

Full text
Abstract:
Gasification combined cycle has the potential to provide a clean, high efficiency, low environmental impact power generation system. A prime fuel for such systems is coal but there is scope in part to utilise renewable energy sources including biomass and waste materials such as sewage sludge or even oil residues. There is considerable scope to improve the performance of the first generation systems of gasification combined cycle plant, both through design changes and through the continued development towards second generation plant. Such improvements offer the prospect of even better efficiency, coal/biomass/waste utilisation flexibility, lower emissions especially of CO2, and lower economic cost of power generation. There have been several major R&D initiatives, supported in part by the European Commission, which have been designed to meet these aims. The approach adopted has been to form multi-partner project teams comprising industry, industrial research organisations and selected universities. The main technical issues that have been considered include co-gasification, e.g. co-feeding, fuel conversion, gas quality, contaminants, component developments, and the integration of hot fuel gas cleaning systems for removal of solid particles, control of sulphur emissions, control of fuel bound nitrogenous species, removal of halides and control of alkali species. The technical R&D activities have been underpinned by several major techno-economic assessment studies. This paper provides an overview of these various activities which either form part of the European Commission JOULE Coal R&D Programme or were supported under an APAS special initiative.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography