Dissertations / Theses on the topic 'Search for the nearest neighbour'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Search for the nearest neighbour.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Kibriya, Ashraf Masood. "Fast Algorithms for Nearest Neighbour Search." The University of Waikato, 2007. http://hdl.handle.net/10289/2463.
Full textShehu, Usman Gulumbe. "Cube technique for Nearest Neighbour(s) search." Thesis, University of Strathclyde, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.248365.
Full textCasselryd, Oskar, and Filip Jansson. "Troll detection with sentiment analysis and nearest neighbour search." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-209474.
Full textInternet-troll har de senaste åren fått ökat inflytande i och med ökat användande av sociala medier. En trollfarm är en grupp troll som får betalt för att sprida specifika åsikter eller information online. Det kan vara svårt att urskilja användarna i en trollfarm från vanliga användare då de ständigt försöker undvika upptäckt. I denna studie undersöks hurvida man kan finna en trollfarm på Twitter genom att utföra en sentimentanalys på användares tweets och sedan modelera det som ett nearest neighbor problem. Experimentet utfördes med 4 simulerade troll och 150 vanliga twitteranvändare. Användarna modelerades efter tid, frekvens och sentiment på deras tweets. Resultatet från modeleringen kunde inte påvisa ett samband mellan trollen då deras beteendemönster skiljde sig åt allt för mycket.
KUMAR, SUSMIT. "NEAREST NEIGHBOR SEARCH IN DISTRIBUTED DATABASES." University of Cincinnati / OhioLINK, 2002. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1022879916.
Full textRam, Parikshit. "New paradigms for approximate nearest-neighbor search." Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/49112.
Full textChanzy, Philippe. "Range search and nearest neighbor search in k-d trees." Thesis, McGill University, 1993. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=68164.
Full textMESEJO-LEON, DANIEL ALEJANDRO. "APPROXIMATE NEAREST NEIGHBOR SEARCH FOR THE KULLBACK-LEIBLER DIVERGENCE." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2018. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=33305@1.
Full textCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
PROGRAMA DE EXCELENCIA ACADEMICA
Em uma série de aplicações, os pontos de dados podem ser representados como distribuições de probabilidade. Por exemplo, os documentos podem ser representados como modelos de tópicos, as imagens podem ser representadas como histogramas e também a música pode ser representada como uma distribuição de probabilidade. Neste trabalho, abordamos o problema do Vizinho Próximo Aproximado onde os pontos são distribuições de probabilidade e a função de distância é a divergência de Kullback-Leibler (KL). Mostramos como acelerar as estruturas de dados existentes, como a Bregman Ball Tree, em teoria, colocando a divergência KL como um produto interno. No lado prático, investigamos o uso de duas técnicas de indexação muito populares: Índice Invertido e Locality Sensitive Hashing. Os experimentos realizados em 6 conjuntos de dados do mundo real mostraram que o Índice Invertido é melhor do que LSH e Bregman Ball Tree, em termos de consultas por segundo e precisão.
In a number of applications, data points can be represented as probability distributions. For instance, documents can be represented as topic models, images can be represented as histograms and also music can be represented as a probability distribution. In this work, we address the problem of the Approximate Nearest Neighbor where the points are probability distributions and the distance function is the Kullback-Leibler (KL) divergence. We show how to accelerate existing data structures such as the Bregman Ball Tree, by posing the KL divergence as an inner product embedding. On the practical side we investigated the use of two, very popular, indexing techniques: Inverted Index and Locality Sensitive Hashing. Experiments performed on 6 real world data-sets showed the Inverted Index performs better than LSH and Bregman Ball Tree, in terms of queries per second and precision.
Varricchio, Valerio. "Efficient nearest-neighbor search algorithms for sub-Riemannian geometries." Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/122500.
Full textCataloged from PDF version of thesis.
Includes bibliographical references.
The Motion Planning problem has been at the core of a significant amount of research in the past decades and it has recently gained traction outside academia with the rise of commercial interest in self-driving cars and autonomous aerial vehicles. Among the leading algorithms to tackle the problem are sampling-based planners, such as Probabilistic Road Maps (PRMs), Rapidly-exploring Random Trees (RRTs) and a large number of variants thereof. In this thesis, we focus on a crucial building block shared by these algorithms: nearest-neighbor search. While nearest-neighbor search is known as the asymptotically dominant bottleneck of sampling-based planners, popular algorithms to efficiently identify neighbors are limited to robots capable of unconstrained motions, commonly referred to as holonomic.
Nevertheless, this is rarely the case in the vast majority of practical applications, where the dynamical system at hand is often subject to a class of differential constraints called nonholonomic. We tackle the problem with sub-Riemannian geometries, a mathematical tool to study manifolds that can be traversed under local constraints. After drawing the parallel with nonholonomic mechanical systems, we exploit peculiar properties of these geometries and their natural notion of distance to devise specialized, efficient nearest-neighbor search algorithms. Our contributions are two-fold: First, we generalize existing space-partitioning techniques (k-d trees) to sub-Riemannian metrics. This is achieved by introducing i) a criterion - the outer Box Bound - that discards halfspaces consistently with the metric and ii) a space-partitioning technique - the Lie splitting strategy - that organizes the dataset for optimal asymptotic performance.
Second, we propose pruning techniques to further improve the query runtime. This is achieved by reducing the number of distance evaluations required to discern the nearest neighbors and exploiting heuristics that provably approximate a sub-Riemannian metric up to a constant factor, asymptotically.
by Valerio Varricchio.
Ph. D.
Ph.D. Massachusetts Institute of Technology, Department of Aeronautics and Astronautics
Zhang, Peiwu, and 张培武. "Voronoi-based nearest neighbor search for multi-dimensional uncertain databases." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2012. http://hub.hku.hk/bib/B49618179.
Full textpublished_or_final_version
Computer Science
Master
Master of Philosophy
Andoni, Alexandr. "Nearest neighbor search : the old, the new, and the impossible." Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/55090.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 165-178).
Over the last decade, an immense amount of data has become available. From collections of photos, to genetic data, and to network traffic statistics, modern technologies and cheap storage have made it possible to accumulate huge datasets. But how can we effectively use all this data? The ever growing sizes of the datasets make it imperative to design new algorithms capable of sifting through this data with extreme efficiency. A fundamental computational primitive for dealing with massive dataset is the Nearest Neighbor (NN) problem. In the NN problem, the goal is to preprocess a set of objects, so that later, given a query object, one can find efficiently the data object most similar to the query. This problem has a broad set of applications in data processing and analysis. For instance, it forms the basis of a widely used classification method in machine learning: to give a label for a new object, find the most similar labeled object and copy its label. Other applications include information retrieval, searching image databases, finding duplicate files and web pages, vector quantization, and many others. To represent the objects and the similarity measures, one often uses geometric notions. For example, a black-and-white image may be modeled by a high-dimensional vector, with one coordinate per pixel, whereas the similarity measure may be the standard Euclidean distance between the resulting vectors. Many other, more elaborate ways of representing objects by high-dimensional feature vectors have been studied. In this thesis, we study the NN problem, as well as other related problems that occur frequently when dealing with the massive datasets.
(cont.) Our contribution is two-fold: we significantly improve the algorithms within the classical approaches to NN, as well as propose new approaches where the classical ones fail. We focus on several key distances and similarity measures, including the Euclidean distance, string edit distance and the Earth-Mover Distance (a popular method for comparing images). We also give a number of impossibility results, pointing out the limits of the NN algorithms. The high-level structure of our thesis is summarized as follows. New algorithms via the classical approaches. We give a new algorithm for the approximate NN problem in the d-dimensional Euclidean space. For an approximation factor c > 1, our algorithm achieves dnP query time and dnl+P space for p = 1/c 2+o(1). This greatly improves on the previous algorithms that achieved p that was only slightly smaller than 1/c. The same technique also yields an algorithm with dno(p) query time and space near-linear in n. Furthermore, our algorithm is near-optimal in the class of "hashing" algorithms. Failure of the classical approaches for some hard distances. We give an evidence that the classical approaches to NN under certain hard distances, such as the string edit distance, meet a concrete barrier at a nearly logarithmic approximation. Specifically, we show that for all classical approaches to NN under the edit distance, involving embeddings into a general class of spaces (such as l1, powers of l2, etc), the resulting approximation has to be at least near-logarithmic in the strings' length. A new approach to NN under hard distances.
(cont.) Motivated by the above impossibility results, we develop a new approach to the NN problem, where the classical approaches fail. Using this approach, we give a new efficient NN algorithm for a variant of the edit distance, the Ulam distance, which achieves a double-logarithmic approximation. This is an exponential improvement over the lower bound on the approximation achievable via the previous classical approaches to this problem. Data structure lower bounds. To complement our algorithms, we prove lower bounds on NN data structures for the Euclidean distance and for the mysterious but important case of the ... distance. In both cases, our lower bounds are the first ones to hold in the same computational model as the respective upper bounds. Furthermore, for both problems, our lower bounds are optimal in the considered models. External applications. Although our main focus is on the NN problem, our techniques naturally extend to related problems. We give such applications for each of our algorithmic tools. For example, we give an algorithm for computing the edit distance between two strings of length d in near-linear time. Our algorithm achieves approximation 20 ..., improving over the previous bound of ... . We note that this problem has a classical exact algorithm based on dynamic programming, running in quadratic time.
by Alexandr Andoni.
Ph.D.
Kuhlman, Caitlin Anne. "Pivot-based Data Partitioning for Distributed k Nearest Neighbor Mining." Digital WPI, 2017. https://digitalcommons.wpi.edu/etd-theses/1212.
Full textBergholm, Marcus, and Viktor Kronvall. "Disc : Approximative Nearest Neighbor Search using Ellipsoids for Photon Mapping on GPUs." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-186502.
Full textGrafikprocessorer (GPU-er) har på senare tid möjliggjort högprestandaberäkningar till låga kostnader för generella applikationer. K-Nearest Neighbors problemet har vida applikationsområden, från klassifikation inom maskininlärning till insamlande av fotoner i Photon Mapping för rendering av tredimensionella scener. Användning av euklidiska avstånd vid insamling av fotoner kan leda till en felaktig bladning av färger mellan ytor. Ellipsoidiska sökområden vid fotoninsamling har visats reducera artefakter oraskade av denna typ av felaktiga färgutblandning. Shifted Sorting har visats ge hög prestanda på GPU-er utan att förlora kvalitet av approximationsgrad. Denna rapport undersöker hur den approximativa varianten av K-Nearest Neighborsalgoritmen med Shifted Sorting presterar på GPU-er med avståndsmåttet modifierat sådant att ett ellipsoidiskt sökområde bildas. Algoritmen används för att reduceras problemet av felaktig blanding av färg i Photon Mapping. Algoritmen visas vara mycket parallelliserbar och presterar till en grad av 86% behandlade sökpunkter per millisekund i jämförelse med en referensimplementation som använder sfäriska sökområden. Kompressionsgraden längs sökpunktens ytnormal väljs fördelaktligen till ett värde i intervallet 3,0 till 7,0. Algoritmen visas skala väl med avseende på både ökningar i antal data punkter och antal sökpunkter.
Woerner, August Eric, and August Eric Woerner. "On the Neutralome of Great Apes and Nearest Neighbor Search in Metric Spaces." Diss., The University of Arizona, 2016. http://hdl.handle.net/10150/621578.
Full textThomas, Joseph Scott. "An Adaptive Data Structure for Nearest Neighbors Search in a General Metric Space." Thesis, The University of Arizona, 2010. http://hdl.handle.net/10150/146680.
Full textJosé, Silva Leite Pedro. "Massively parallel nearest neighbors searches in dynamic point clouds on GPU." Universidade Federal de Pernambuco, 2010. https://repositorio.ufpe.br/handle/123456789/2356.
Full textConselho Nacional de Desenvolvimento Científico e Tecnológico
Esta dissertação introduz uma estrutura de dados baseada em gride implementada em GPU. Ela foi desenvolvida para pesquisa dos vizinhos mais próximos em nuvens de pontos dinâmicas, de uma forma massivamente paralela. A implementação possui desempenho em tempo real e é executada em GPU, ambas construção do gride e pesquisas dos vizinhos mais próximos (exatos e aproximados). Dessa forma, a transferência de memória entre sistema e dispositivo é minimizada, aumentando o desempenho de uma forma geral. O algoritmo proposto pode ser usado em diferentes aplicações com cenários estáticos ou dinâmicos. Além disso, a estrutura de dados suporta nuvens de pontos tridimensionais e dada sua natureza dinâmica, o usuário pode mudar seus parâmetros em tempo de execução. O mesmo se aplica ao número de vizinhos pesquisados. Uma referência em CPU foi implementada e comparações de desempenho justificam o uso de GPUs como processadores massivamente paralelos. Em adição, o desempenho da estrutura de dados proposta é comparada com implementações em CPU e GPU de trabalhos anteriores. Finalmente, uma aplicação de renderização baseada em pontos foi desenvolvida de forma a verificar o potencial da estrutura de dados
Heinrich-Litan, Laura. "Exact L-nearest neighbor search in high dimensions Exakte L-nächster-Nachbar-Suche in hohen Dimensionen /." [S.l. : s.n.], 2002. http://www.diss.fu-berlin.de/2003/80/index.html.
Full textPfeifer, John. "Novel Data Structures for Advanced Computational Movement Analysis." Thesis, The University of Sydney, 2021. https://hdl.handle.net/2123/27296.
Full textMadrigali, Andrea. "Analysis of Local Search Methods for 3D Data." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2016.
Find full textGünther, Michael. "FREDDY." Association for Computing Machinery, 2018. https://tud.qucosa.de/id/qucosa%3A38451.
Full textCarraher, Lee A. "A Parallel Algorithm for Query Adaptive, Locality Sensitive Hash Search." University of Cincinnati / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1337886738.
Full textSammon, Ryan. "Data Collection, Analysis, and Classification for the Development of a Sailing Performance Evaluation System." Thèse, Université d'Ottawa / University of Ottawa, 2013. http://hdl.handle.net/10393/25481.
Full textSilva, Eliezer de Souza da 1988. "Metric space indexing for nearest neighbor search in multimedia context : Indexação de espaços métricos para busca de vizinho mais próximo em contexto multimídia." [s.n.], 2014. http://repositorio.unicamp.br/jspui/handle/REPOSIP/258942.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação
Made available in DSpace on 2018-08-26T08:10:33Z (GMT). No. of bitstreams: 1 Silva_EliezerdeSouzada_M.pdf: 2350845 bytes, checksum: dd31928bd19312563101a08caea74d63 (MD5) Previous issue date: 2014
Resumo: A crescente disponibilidade de conteúdo multimídia é um desafio para a pesquisa em Recuperação de Informação. Usuários querem não apenas ter acesso aos documentos multimídia, mas também obter semântica destes documentos, de modo que a capacidade de encontrar um conteúdo específico em grandes coleções de documentos textuais e não textuais é fundamental. Nessas grandes escalas, sistemas de informação multimídia de recuperação devem contar com a capacidade de executar a busca por semelhança de forma eficiente. No entanto, documentos multimídia são muitas vezes representados por descritores multimídia representados por vetores de alta dimensionalidade, ou por outras representações complexas em espaços métricos. Fornecer a possibilidade de uma busca por similaridade eficiente para esse tipo de dados é extremamente desafiador. Neste projeto, vamos explorar uma das famílias mais citado de soluções para a busca de similaridade, o Hashing Sensível à Localidade (LSH - Locality-sensitive Hashing em inglês), que se baseia na criação de funções de hash que atribuem, com maior probabilidade, a mesma chave para os dados que são semelhantes. O LSH está disponível apenas para um punhado funções de distância, mas, quando disponíveis, verificou-se ser extremamente eficiente para arquiteturas com custo de acesso uniforme aos dados. A maioria das funções LSH existentes são restritas a espaços vetoriais. Propomos dois métodos novos para o LSH, generalizando-o para espaços métricos quaisquer utilizando particionamento métrico (centróides aleatórios e k-medoids). Apresentamos uma comparação com os métodos LSH bem estabelecidos em espaços vetoriais e com os últimos concorrentes novos métodos para espaços métricos. Desenvolvemos uma modelagem teórica do comportamento probalístico dos algoritmos propostos e demonstramos algumas relações e limitantes para a probabilidade de colisão de hash. Dentre os algoritmos propostos para generelizar LSH para espaços métricos, esse desenvolvimento teórico é novo. Embora o problema seja muito desafiador, nossos resultados demonstram que ela pode ser atacado com sucesso. Esta dissertação apresentará os desenvolvimentos do método, a formulação teórica e a discussão experimental dos métodos propostos
Abstract: The increasing availability of multimedia content poses a challenge for information retrieval researchers. Users want not only have access to multimedia documents, but also make sense of them --- the ability of finding specific content in extremely large collections of textual and non-textual documents is paramount. At such large scales, Multimedia Information Retrieval systems must rely on the ability to perform search by similarity efficiently. However, Multimedia Documents are often represented by high-dimensional feature vectors, or by other complex representations in metric spaces. Providing efficient similarity search for that kind of data is extremely challenging. In this project, we explore one of the most cited family of solutions for similarity search, the Locality-Sensitive Hashing (LSH), which is based upon the creation of hashing functions which assign, with higher probability, the same key for data that are similar. LSH is available only for a handful distance functions, but, where available, it has been found to be extremely efficient for architectures with uniform access cost to the data. Most existing LSH functions are restricted to vector spaces. We propose two novel LSH methods (VoronoiLSH and VoronoiPlex LSH) for generic metric spaces based on metric hyperplane partitioning (random centroids and K-medoids). We present a comparison with well-established LSH methods in vector spaces and with recent competing new methods for metric spaces. We develop a theoretical probabilistic modeling of the behavior of the proposed algorithms and show some relations and bounds for the probability of hash collision. Among the algorithms proposed for generalizing LSH for metric spaces, this theoretical development is new. Although the problem is very challenging, our results demonstrate that it can be successfully tackled. This dissertation will present the developments of the method, theoretical and experimental discussion and reasoning of the methods performance
Mestrado
Engenharia de Computação
Mestre em Engenharia Elétrica
Giusti, Giulia. "Similarità tra stringhe, applicazione dell'algoritmo TLSH a testi di ingegneria." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/19129/.
Full textJain, Himalaya. "Learning compact representations for large scale image search." Thesis, Rennes 1, 2018. http://www.theses.fr/2018REN1S027/document.
Full textThis thesis addresses the problem of large-scale image search. To tackle image search at large scale, it is required to encode images with compact representations which can be efficiently employed to compare images meaningfully. Obtaining such compact representation can be done either by compressing effective high dimensional representations or by learning compact representations in an end-to-end manner. The work in this thesis explores and advances in both of these directions. In our first contribution, we extend structured vector quantization approaches such as Product Quantization by proposing a weighted codeword sum representation. We test and verify the benefits of our approach for approximate nearest neighbor search on local and global image features which is an important way to approach large scale image search. Learning compact representation for image search recently got a lot of attention with various deep hashing based approaches being proposed. In such approaches, deep convolutional neural networks are learned to encode images into compact binary codes. In this thesis we propose a deep supervised learning approach for structured binary representation which is a reminiscent of structured vector quantization approaches such as PQ. Our approach benefits from asymmetric search over deep hashing approaches and gives a clear improvement for search accuracy at the same bit-rate. Inverted index is another important part of large scale search system apart from the compact representation. To this end, we extend our ideas for supervised compact representation learning for building inverted indexes. In this work we approach inverted indexing with supervised deep learning and make an attempt to unify the learning of inverted index and compact representation. We thoroughly evaluate all the proposed methods on various publicly available datasets. Our methods either outperform, or are competitive with the state-of-the-art
Tagami, Yukihiro. "Practical Web-scale Recommender Systems." Kyoto University, 2018. http://hdl.handle.net/2433/235110.
Full textLloyd, Michael. "Nearest neighbour epidemic processes." Thesis, Heriot-Watt University, 1994. http://hdl.handle.net/10399/747.
Full textBermejo, Sánchez Sergio. "Learning with nearest neighbour classifiers." Doctoral thesis, Universitat Politècnica de Catalunya, 2000. http://hdl.handle.net/10803/6323.
Full textNearest Neighbour (NN) classifiers are one of the most celebrated algorithms in machine learning. In recent years, interest in these methods has flourished again in several fields (including statistics, machine learning and pattern recognition) since, in spite of their simplicity, they reveal as powerful non-parametric classification systems in real-world problems. The present work is mainly devoted to the development of new learning algorithms for these classifiers and is focused on the following topics:
- Development of learning algorithms for crisp and soft k-NN classifiers with large margin
- Extension and generalization of Kohonen's LVQ algorithms
- Local stabilization techniques for ensembles of NN classifiers
- Study of the finite-sample convergence of the on-line LVQ1 and k-means algorithms
Besides, a novel oriented principal component analysis (OPCA) addressed for feature
extraction in classification is introduced. The method integrates the feature extraction into the classifier and performs global training to extract those features useful for the classifier. The application of this general technique in the context of NN classifiers derives in a problem of learning their weight metric.
Kini, Ananth Ullal. "On the effect of INQUERY term-weighting scheme on query-sensitive similarity measures." Texas A&M University, 2005. http://hdl.handle.net/1969.1/3116.
Full textGundogdu, Erhan. "Feature Detection And Matching Towards Augmented Reality Applications On Mobile Devices." Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614618/index.pdf.
Full textin general, the main metrics are accepted as accuracy and computational complexity. The contributions in this thesis provide improving these metrics and can be divided into three parts, as local feature detection, local feature description and description matching in different views of the same scene. In this thesis an efficient feature detection algorithm with sufficient repeatability performance is proposed. This detection method is convenient for real-time applications. For local description, a novel local binary pattern outperforming state-of-the-art binary pattern is proposed. As a final task, a fuzzy decision tree method is presented for approximate nearest neighbor search. In all parts of the system, computational efficiency is considered and the algorithms are designed according to limited processing time. Finally, an overall system capable of matching different views of the same scene has been proposed and executed in a mobile platform. The results are quite promising such that the presented system can be used in real-time applications, such as augmented reality, object retrieval, object tracking and pose estimation.
Asyhari, Agustian Taufiq. "Nearest neighbour decoding for fading channels." Thesis, University of Cambridge, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.610448.
Full textCurtin, Ryan Ross. "Improving dual-tree algorithms." Diss., Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/54354.
Full textMittinty, Murthy N. "Nearest neighbour imputation and variance estimation methods." Thesis, University of Canterbury. Mathematics and Statistics, 2004. http://hdl.handle.net/10092/5643.
Full textKucuktunc, Onur. "Result Diversification on Spatial, Multidimensional, Opinion, and Bibliographic Data." The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1374148621.
Full textMuja, Marius. "Scalable nearest neighbour methods for high dimensional data." Thesis, University of British Columbia, 2013. http://hdl.handle.net/2429/44402.
Full textPayne, Terry R. "Dimensionality reduction and representation for nearest neighbour learning." Thesis, University of Aberdeen, 1999. https://eprints.soton.ac.uk/257788/.
Full textAndersson, Josefine. "Insurances against job loss and disability : Private and public interventions and their effects on job search and labor supply." Doctoral thesis, Uppsala universitet, Nationalekonomiska institutionen, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-327916.
Full textChandgotia, Nishant. "Markov random fields and measures with nearest neighbour Gibbs potential." Thesis, University of British Columbia, 2011. http://hdl.handle.net/2429/37000.
Full textGuo, Gongde. "A study on the nearest neighbour method and its applications." Thesis, University of Ulster, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.407756.
Full textHatko, Stan. "k-Nearest Neighbour Classification of Datasets with a Family of Distances." Thesis, Université d'Ottawa / University of Ottawa, 2015. http://hdl.handle.net/10393/33361.
Full textLazar, Iustin. "A multi-level nearest-neighbour algorithm for predicting protein secondary structure." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp01/MQ39987.pdf.
Full textLuk, Andrew. "Some new results in nearest neighbour classification and lung sound analysis." Thesis, University of Glasgow, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.280756.
Full textHalachkin, Aliaksei. "Klasifikace vozidel na základě odezvy indukčních senzorů." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2017. http://www.nusl.cz/ntk/nusl-316383.
Full textCarrier, Kevin. "Recherche de presque-collisions pour le décodage et la reconnaissance de codes correcteurs." Electronic Thesis or Diss., Sorbonne université, 2020. http://www.theses.fr/2020SORUS281.
Full textError correcting codes are tools whose initial function is to correct errors caused by imperfect communication channels. In a non-cooperative context, there is the problem of identifying unknown codes based solely on knowledge of noisy codewords. This problem can be difficult for certain code families, in particular LDPC codes which are very common in modern telecommunication systems. In this thesis, we propose new techniques to more easily recognize these codes. At the end of the 1970s, McEliece had the idea of redirecting the original function of codes to use in ciphers; thus initiating a family of cryptographic solutions which is an alternative to those based on number theory problems. One of the advantages of code-based cryptography is that it seems to withstand the quantum computing paradigm; notably thanks to the robustness of the generic decoding problem. The latter has been thoroughly studied for more than 60 years. The latest improvements all rely on using algorithms for finding pairs of points that are close to each other in a list. This is the so called near-collisions search problem. In this thesis, we improve the generic decoding by asking in particular for a new way to find close pairs. To do this, we use list decoding of Arikan's polar codes to build new fuzzy hashing functions. In this manuscript, we also deal with the search for pairs of far points. Our solution can be used to improve decoding over long distances. This new type of decoding finds very recent applications in certain signature models
Wasito, Ito. "Least squares algorithms with nearest neighbour techniques for imputing missing data values." Thesis, Birkbeck (University of London), 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.406224.
Full textBerrett, Thomas Benjamin. "Modern k-nearest neighbour methods in entropy estimation, independence testing and classification." Thesis, University of Cambridge, 2017. https://www.repository.cam.ac.uk/handle/1810/267832.
Full textStiff, Philip, and Carl Holmqvist. "Jämförelse av avståndsmått för K-nearest neighbour-klassificering av resmål hos nya användare." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-186354.
Full textUser behavior prediction is becoming increasingly important for companies that want to offer services tailored for their customers. In order to compete in the market, companies want to propose a service before customers know they want it. There are several known algorithms for achieving this. In this study we investigate the K-nearest neighbor algorithm and how it should be adapted to measure the similarity between instances of customers in a database. To do this we compare a new method based on the instances’ general relationships with some existing methods. The comparison is performed on a database containing user accounts from a travel agency and is made with several values for the K-nearest neighbor algorithms different parameters. To study the performance of the various methods their accuracy is compared. The results show a very slight difference between the methods which rather indicate a distortion in the database than how well the methods perform. Thus, not much can be said about the performance of the methods.
Faustino, Bruno Filipe Fernandes Simões Salgueiro. "Implementation for spatial data of the shared nearest neighbour with metric data structures." Master's thesis, Faculdade de Ciências e Tecnologia, 2012. http://hdl.handle.net/10362/8489.
Full textStiernborg, Sebastian, and Sara Ervik. "Evaluation of Machine Learning Classification Methods : Support Vector Machines, Nearest Neighbour and Decision Tree." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-209119.
Full textMed växande data och tillgänglighet ökar intresset och användning- en för maskininlärning, tillsammans med behovet för klassificering. Klassificering är en viktig metod inom maskininlärning för att förenk- la data och göra förutstägelser. Denna rapport utvärderar tre klassificeringsmetoder för övervakad in- lärning: Stödvektormaskiner (SVM) med olika kärnor, Närmaste Gran- ne (k-NN) och Beslutsträd (DT). Metoderna utvärderades baserat på nogrannhet, precision, återkallelse och tid. Experimenten utfördes på artificiell data skapad för att representera en variation av fördelningar med en begränsning av endast 2 egenskaper och 3 klasser. Resultaten visar att mätningarna för noggrannhet och tid varierar avsevärt för olika variationer av dataset. SVM med RBF-kärna gav generellt högre värden för noggrannhet i jämförelse med de and- ra klassificeringsmetoderna. k-NN visade något lägre noggrannhet än SVM med RBF-kärna i allmänhet, men presterade bättre på det mest utmanande datasetet. DT är den minst tidskrävande algoritmen och var signifikant snabbare än de andra klassificeringsmetoderna. Den enda metoden som kunde konkurrera med DT i tid var SVM med k- NN som var snabbare än DT för det dataset som hade liten spridning och sammanfallande klasser. Även om en tydlig trend kan ses i resultaten behöver området studeras ytterligare för att dra en omfattande slutsats på grund av begränsning av dataset i denna studie.
Borén, Mirjam. "Classification of discrete stress levels in users using eye tracker and K- Nearest Neighbour algorithm." Thesis, Umeå universitet, Institutionen för datavetenskap, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-176258.
Full textZandi, Zand Sajjad. "FPGA implementation of ROI extraction for visual-IR smart cameras." Thesis, Mittuniversitetet, Avdelningen för elektronikkonstruktion, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-26076.
Full text