Dissertations / Theses on the topic 'Search engine'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Search engine.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Blaauw, Pieter. "Search engine poisoning and its prevalence in modern search engines." Thesis, Rhodes University, 2013. http://hdl.handle.net/10962/d1002037.
Full textFahlström, Kamilla, and Caroline Jensen. "Search Engine Marketing in SMEs : The motivations behind using search engine marketing." Thesis, Högskolan i Gävle, Avdelningen för ekonomi, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-21116.
Full textHurlock, Jonathan. "Twitter search : building a useful search engine." Thesis, Swansea University, 2015. https://cronfa.swan.ac.uk/Record/cronfa43037.
Full textNarayan, Nitesh. "Advanced Intranet Search Engine." Thesis, Mälardalen University, School of Innovation, Design and Engineering, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-9408.
Full textInformation retrieval has been a prevasive part of human society since its existence.With the advent of internet and World wide Web it became an extensive area of researchand major foucs, which lead to development of various search engines to locate the de-sired information, mostly for globally connected computer networks viz. internet.Butthere is another major part of computer network viz. intranet, which has not seen muchof advancement in information retrieval approaches, in spite of being a major source ofinformation within a large number of organizations.Most common technique for intranet based search engines is still mere database-centric. Thus practically intranets are unable to avail the benefits of sophisticated tech-niques that have been developed for internet based search engines without exposing thedata to commercial search engines.In this Master level thesis we propose a ”state of the art architecture” for an advancedsearch engine for intranet which is capable of dealing with continuously growing sizeof intranets knowledge base. This search engine employs lexical processing of doc-umetns,where documents are indexed and searched based on standalone terms or key-words, along with the semantic processing of the documents where the context of thewords and the relationship among them is given more importance.Combining lexical and semantic processing of the documents give an effective ap-proach to handle navigational queries along with research queries, opposite to the modernsearch engines which either uses lexical processing or semantic processing (or one as themajor) of the documents. We give equal importance to both the approaches in our design,considering best of the both world.This work also takes into account various widely acclaimed concepts like inferencerules, ontologies and active feedback from the user community to continuously enhanceand improve the quality of search results along with the possibility to infer and deducenew knowledge from the existing one, while preparing for the advent of semantic web.
King, John D. "Search engine content analysis." Queensland University of Technology, 2008. http://eprints.qut.edu.au/26241/.
Full textEdlund, Joakim. "Cognitive Search Engine Optimization." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-281882.
Full textAnvändandet av sökmotorer är idag en vanlig metod för att navigera genom information. Det akademiska området informationssökning studerar metoder för att hitta dokument inom stora ostrukturerade samlingar av dokument. Det finns flera standardlösningar inom området som ämnas att lösa problemet. Det finns även ett flertal mer avancerade tekniker, ofta baserade på maskininlärning, vars mål är att öka relevansen hos resultaten ytterligare. Att välja rätt algoritm är dock inte trivialt och att avgöra vilken som ger bäst resultat kan tyckas vara svårt. I det här projektet används en ofta använd sökmotor, elasticsearch, i dess standarduppsättning och utvärderas mot vanligen använda mätvärden inom informationssökning (precision, täckning och f-värde). Efter att standaruppsättningens resultat har etablerats så implementeras en frågeutvidgningsalgoritm (query expansion), baserad på Word2Vec, och en rekommendationsalgoritm baserad på collaborative filtering. Alla tre modellerna jämförs senare mot varandra efter de tre mätvärdena. Slutligen implementeras även en kombinerad modell av både Word2Vec och collaborative filtering för att se om det går att nyttja båda modellernas styrkor för en ännu bättre modell. Resultaten visar att både Word2Vec och collaborative filtering ger bättre resultat för alla mätvärden. Resultatförbättringarna kunde verifieras som signifikant bättre efter en statistisk analys. Collaborative filtering verkar prestera bäst när man endast tillåter ett få- tal dokument i resultatmängden medan word2vec blir bättre desto större resultatmängden är. Den kombinerade modellen visade en signifikant förbättring för resultatmängder i storlekarna 3 och 5. Större resultatmängder visade dock ingen förbättring eller till och med en försämring gentemot word2vec och collaborative filtering.
King, John Douglas. "Search engine content analysis." Thesis, Queensland University of Technology, 2008. https://eprints.qut.edu.au/26241/1/John_King_Thesis.pdf.
Full textKhan, Saiful. "Visualization assisted enterprise search engine." Thesis, University of Oxford, 2015. https://ora.ox.ac.uk/objects/uuid:d1790b99-c30e-487b-b87e-98d4e3a8b2bb.
Full textSlavík, Michal. "Search Engine Marketing neziskových organizací." Master's thesis, Vysoká škola ekonomická v Praze, 2010. http://www.nusl.cz/ntk/nusl-124602.
Full textFISTER, JUSTIN M. "CORRELATION ANALYSIS OF ON-PAGE ATTRIBUTES AND SEARCH ENGINE RANKINGS." University of Cincinnati / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1178730597.
Full textHenriksson, Adam. "Alternative Search : From efficiency to experience." Thesis, Umeå universitet, Institutionen Designhögskolan, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-97836.
Full textSearch Engines, Interaction Design
Aghajani, Nooshin. "Semoogle - An Ontology Based Search Engine." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for datateknikk og informasjonsvitenskap, 2012. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-19086.
Full textGarcia, Steven, and steven garcia@student rmit edu au. "Search Engine Optimisation Using Past Queries." RMIT University. Computer Science and Information Technology, 2008. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20080501.093229.
Full textChen, Xue. "An Internet multiple-encoding search engine." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape3/PQDD_0033/MQ65479.pdf.
Full textWang, Edward M. 1976. "Supreme Court audio file search engine." Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/17997.
Full textIncludes bibliographical references (leaves 73-74).
Search engines have evolved from simple text indexing to indexing other forms of media, such as audio and video. I have designed and implemented a web-based system that permits people to search the transcripts of selected Supreme Court cases, and retrieve audio file clips relevant to the search terms. The system development compared two implementation approaches, one based on transcript aligning technologies developed by Hewlett-Packard, the other is a servlet-based search system designed to return pre-parsed audio file clips. While the first approach has the potential to revolutionize audio content search, it could not consistently deliver successively parsed audio file clips with the same user friendly content and speed as the simpler second approach. This web service, implemented with the second approach, is currently deployed and publicly available at www.supremecourtaudio.net .
by Edward M. Wang.
M.Eng.
Chung, Jack V. (Jack Vinh) 1978. "Search engine for online physiologic databases." Thesis, Massachusetts Institute of Technology, 2000. http://hdl.handle.net/1721.1/86654.
Full textIncludes bibliographical references (leaf 40).
by Jack V. Chung.
M.Eng.and S.B.
Wong, Brian Wai Fung. "Deep-web search engine ranking algorithms." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/61246.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 79-80).
The deep web refers to content that is hidden behind HTML forms. The deep web contains a large collection of data that are unreachable by link-based search engines. A study conducted at University of California, Berkeley estimated that the deep web consists of around 91,000 terabytes of data, whereas the surface web is only about 167 terabytes. To access this content, one must submit valid input values to the HTML form. Several researchers have studied methods for crawling deep web content. One of the most promising methods uses unique wrappers for HTML forms. User inputs are first filtered through the wrappers before being submitted to the forms. However, this method requires a new algorithm for ranking search results generated by the wrappers. In this paper, I explore methods for ranking search results returned from a wrapped-based deep web search engine.
by Brian Wai Fung Wong.
M.Eng.
Malladi, Rajavardhan. "Recipe search engine using Yummly API." Kansas State University, 2016. http://hdl.handle.net/2097/32661.
Full textDepartment of Computing and Information Sciences
Daniel A. Andresen
In this project I have built a web application "Recipe Search Engine Using Yummly API". This application is central information hub for the kitchen--connecting consumers with recipe ideas, ingredient lists, and cooking instructions. It will serve best for the people who uses digital tools to plan their cooking, these days almost everyone does. The various features available for users in this application are as following. Users can search for their favorite dishes. The search results contain information about ingredients list, total time needed for cooking, user's rating and cooking directions. Basic search filters are provided to filter out the search results like Breakfast, Lunch and Dinner recipes. The order of displayed results can be sorted according to ratings, total time required to prepare the dish. User can create an account and build their own favorite recipe collection by liking the recipes displayed. The liked recipes are stored into user’s account and user can view, add and delete those recipes anytime from his recipe collection. Users can use their social networking platform Facebook account credentials to log into this application or create a new account in this application. The application will communicate with the Yummly API to consume data from it. The Yummly API is largest recipe information aggregator with over one million recipes data.
Watson, Veronica. "Basic system configuration in search engine." Xavier University / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=xavier1545566567119888.
Full textNa, Jin-Cheon, Christopher S. G. Khoo, and Syin Chan. "A sentiment-based meta search engine." School of Communication & Information, Nanyang Technological University, 2006. http://hdl.handle.net/10150/106241.
Full textDennis, Johansson. "Search Engine Optimization and the Long Tail of Web Search." Thesis, Uppsala universitet, Institutionen för lingvistik och filologi, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-296388.
Full textNilsson, Rebecca, and Christa Alanko. "STREAMLINE THE SEARCH ENGINE MARKETING STRATEGY : Generational Driven Search Behavior on Google." Thesis, Luleå tekniska universitet, Institutionen för ekonomi, teknik och samhälle, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-70149.
Full textOgbonna, Antoine I. "The Psychology of a Web Search Engine." Youngstown State University / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1328897147.
Full textHøyum, Øystein. "Redistribution of Documents across Search Engine Clusters." Thesis, Norwegian University of Science and Technology, Department of Computer and Information Science, 2009. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-8967.
Full textThe goal of this master thesis has been to evaluate methods for redistribution of data on search engine clusters. For all of the methods the redistribution is done when the cluster changes size. Redistribution methods that are specifically designed for search engines are not common, so the methods compared in this thesis are based on other distributed settings. This is from among other things distributed database systems, distributed files and continuous media systems. The evaluation of the methods consists of two parts, a theoretical analysis and an implementation and testing of the methods. In the theoretical analysis the methods are compared by deduction of expressions of performance. In the practical approach the algorithms are implemented on a simplified search engine cluster of 6 computers. The methods have been evaluated using three criteria. The first criteria of evaluation are how well the methods distribute documents across the cluster. In the theoretical analysis this also includes worst case scenarios. The practical evaluation compares the distribution at the end of the tests. The second criterion of evaluation is efficiency of document access. The theoretical approach focuses on the number of operations required while the practical approach calculates indexing throughput. The last area of focus examined is the document volume transported during redistribution. For the final part of the comparison of the methods, some relevant scenarios are introduced. These scenarios focus on dynamic data sets with high frequency of updates, often new documents and much searching. Using the scenarios and results from the method testing, we found some methods that performed be better than others. It is worth noting that the conclusions are for a given the type of workload from the scenarios and the setting for the test. Given other situations, other methods might be more suitable. When concluding our results we found, for the give scenarios, the best distribution method was the distributed version of linear hashing (LH*). The results from the method using hashing/range-partitioning also showed to be the least suitable as a consequence of high transport volume.
Deolikar, Piyush P. "Lecture Video Search Engine Using Hadoop MapReduce." Thesis, California State University, Long Beach, 2017. http://pqdtopen.proquest.com/#viewpdf?dispub=10638908.
Full textWith the advent of the Internet and ease of uploading video content over video libraries and social networking sites, the video data availability was increased very rapidly during this decade. Universities are uploading video tutorials in the online courses. Companies like Udemy, coursera, Lynda, etc. made video tutorials available over the Internet. We propose and implement a scalable solution, which helps to find relevant videos with respect to a query provided by the user. Our solution maintains an updated list of the available videos on the web and assigns a rank according to their relevance. The proposed solution consists of three main components that can mutually interact. The first component, called the crawler, continuously visits and locally stores the relevant information of all the webpages with videos available on the Internet. The crawler has several threads, concurrently parsing webpages. The second component obtains the inverted index of the web pages stored by the crawler. Given a query, the inverted index is used to obtain the videos that contain the words in the query. The third component computes the rank of the video. This rank is then used to display the results in the order of relevance. We implement a scalable solution in the Apache Hadoop Framework. Hadoop is a distributed operating system that provides a distributed file system able to handle large files as well as distributed computation among the participants.
Aly, Mazen. "Automated Bid Adjustments in Search Engine Advertising." Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-210651.
Full textI digital marknadsföring tillåter de dominerande sökmotorerna en annonsör att ändra sina bud med hjälp av så kallade budjusteringar baserat på olika dimensioner i sökförfrågan, i syfte att kompensera för olika värden de dimensionerna medför. I det här arbetet tas en modell fram för att sätta budjusteringar i syfte att öka mängden konverteringar och samtidigt minska kostnaden per konvertering. En statistisk modell används för att välja kampanjer och dimensioner som behöver justeringar och flera olika tekniker för att bestämma justeringens storlek, som kan spänna från -90% till 900%, undersöks. Utöver detta tas en evalueringsmetod fram som använder en kampanjs historiska data för att utvärdera de olika metoderna och validera olika tillvägagångssätt. Vi studerar interaktionsproblemet mellan olika dimensioners budjusteringar och en lösning formuleras. Realtidsexperiment visar att vår modell för budjusteringar förbättrade prestandan i marknadsföringskampanjerna med statistisk signifikans. Konverteringarna ökade med 9% och kostnaden per konvertering minskade med 10%.
Robisch, Katherine A. "Search Engine Optimization: A New Literacy Practice." University of Dayton / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1394533925.
Full textTurchyn, Sergiy. "A Visual Search Engine for Gesture Annotation." Case Western Reserve University School of Graduate Studies / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=case1499424165650622.
Full textTångring, Anton. "Analysing Search Engine Trends related to Antibiotics." Thesis, Uppsala universitet, Institutionen för informatik och media, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-329105.
Full textMätäsaho, T. (Timo). "Text search engine for digitized historical book." Master's thesis, University of Oulu, 2015. http://jultika.oulu.fi/Record/nbnfioulu-201505061448.
Full textChiravirakul, Pawitra. "Search satisfaction : choice overload, variety seeking and serendipity in search engine use." Thesis, University of Bath, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.665389.
Full textKalinov, Pavel. "Intelligent Web Exploration." Thesis, Griffith University, 2012. http://hdl.handle.net/10072/365635.
Full textThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Information and Communication Technology
Science, Environment, Engineering and Technology
Full Text
Koval, Mariia <1989>. "Search Engine Dominance and Quality of Organic Search: Consequences for Online Advertising." Master's Degree Thesis, Università Ca' Foscari Venezia, 2013. http://hdl.handle.net/10579/3192.
Full textMarshall, Oliver. "Search Engine Optimization and the connection with Knowledge Graphs." Thesis, Högskolan i Gävle, Företagsekonomi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-35165.
Full textLi, Zhongmiao. "A Domain Specific Search Engine WithExplicit Document Relations." Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-141654.
Full textAboulkhasam, Salaheldin Ali. "An intelligent voice-driven intranet search engine (AIVDISE)." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape3/PQDD_0028/MQ52023.pdf.
Full textPoignant, Pierre 1975. "Peer-to-peer search engine : the Araignee Project." Thesis, Massachusetts Institute of Technology, 2003. http://hdl.handle.net/1721.1/85752.
Full textLakshmi, Shriram. "Web-based search engine for Radiology Teaching File." [Gainesville, Fla.] : University of Florida, 2002. http://purl.fcla.edu/fcla/etd/UFE0000559.
Full textLallali, Saliha. "A scalable search engine for the Personal Cloud." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLV009.
Full textA new embedded search engine designed for smart objects. Such devices are generally equipped with extremely low RAM and large Flash storage capacity. To tackle these conflicting hardware constraints, conventional search engines privilege either insertion or query scalability but cannot meet both requirements at the same time. Moreover, very few solutions support document deletions and updates in this context. we introduce three design principles, namely Write-Once Partitioning, Linear Pipelining and Background Linear Merging, and show how they can be combined to produce an embedded search engine reconciling high insert/delete/update rate and query scalability. We have implemented our search engine on a development board having a hardware configuration representative for smart objects and have conducted extensive experiments using two representative datasets. The experimental results demonstrate the scalability of the approach and its superiority compared to state of the art methods
Vaziri, Farzad <1986>. "Discovering Single-Query Tasks from Search Engine Logs." Master's Degree Thesis, Università Ca' Foscari Venezia, 2014. http://hdl.handle.net/10579/5389.
Full textWhite, Stephanie. "SEARCH ENGINE UTILIZATION ANALYSIS EXPLORING LINKS BETWEEN PERSONALITY TRAITS AND INTERNET SEARCH BEHAVIOR." Thesis, The University of Arizona, 2009. http://hdl.handle.net/10150/193530.
Full textXian, Yikun, and Liu Zhang. "Semantic Search with Information Integration." Thesis, Linnéuniversitetet, Institutionen för datavetenskap, fysik och matematik, DFM, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-13832.
Full textNeethling, Riaan. "Search engine optimisation or paid placement systems-user preference /." Thesis, [S.l. : s.n.], 2007. http://dk.cput.ac.za/cgi/viewcontent.cgi?article=1076&context=td_cput.
Full textAl-Kamha, Reema. "Grouping Search-Engine Returned Citations for Person-Name Queries." Diss., CLICK HERE for online access, 2004. http://contentdm.lib.byu.edu/ETD/image/etd472.pdf.
Full textMovin, Maria. "Spelling Correction in a Music Entity Search Engine by Learning from Historical Search Queries." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-229716.
Full textStavningskorrigering av söksträngar är en viktig komponent i moderna sökmotorer. Stavningskorrigering kan hjälpa användarna att uttrycka sig och därmed förbättra kvaliteten i sökningen. I det här arbetet undersökte vi med vilken noggrannhet en Recurrent neural network (RNN) modell kan lära sig att korrigera felstavningar i söksträngar från en sökmotor för musik. RNN modellen tränades med söksträngar från historiska sökningar från sökmotorn. Anledningen till att RNN valdes som modell i den här studien var för att den har uppnått hittills bästa möjliga resultat på liknande uppgifter, såsom maskinöversättning och taligenkänning. Resultaten från vår studie visar att modellen lär sig att korrigera och komplettera söksträngar med högre noggrannhet än en basmodell som enbart returnerar indatasträngen. För att utveckla en modell som är tillräckligt bra för produktion föreslår vi emellertid att mer arbete måste utföras. Framför allt är vi övertygade om att ett renare, mindre systematiskt avvikande träningsdataset skulle förbättra modellen. På det hela taget stärker dock vårt arbete hypothesen att RNN modeller kan användas som stavningskorrigeringssystem i sökmotorer.
Li, Chaoyang, and Ke Liu. "Smart Search Engine : A Design and Test of Intelligent Search of News with Classification." Thesis, Högskolan Dalarna, Institutionen för information och teknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:du-37601.
Full textNardei, Stephanie A. "Search Engine Optimization." 2004. http://hdl.handle.net/10150/106179.
Full textHung, Chia-Lien, and 洪佳蓮. "A Study Of The Search Engine Optimization On Search Engine Ranking." Thesis, 2011. http://ndltd.ncl.edu.tw/handle/41853781632152770378.
Full text逢甲大學
經營管理碩士在職專班
99
According to a survey conducted in 2008 by iProspect, an American search engine company, 68% of search engine users click on the top 10 search results, 85% users click on the top 20 search results and 92% users click on the top 30 search results. Therefore, how to make your websites appear in the first three pages of search results becomes the crucial issue. The purpose of this paper is to develop a system of search engine optimization by researching and analyzing the biggest search engine of the world, Google, hoping it can become the influential references to improve the website rankings in the search results. For example, tweaking the structure and design of the websites, one of the major SEO factors, can get a better position in the search results, and then increase exposures and traffics without pouring a large amount of money on advertisement. It also creates more marketing opportunities to establish company identities and brand awareness. The research will elaborate the process of search engine optimization and analyze the performance of optimized websites on the search results. We will present the website examples implemented with some SEO factors, such as keyword targeting, construction of search engine friendly sites (no-barrier websites) and link strategy, etc. Through measures of analysis and examination on the website examples, we will learn what works effectively in increasing the ranking, and further clarify the goals and objectives.
Lin, Yel-Ku, and 林彥谷. "WWW Image Search Engine." Thesis, 2003. http://ndltd.ncl.edu.tw/handle/89357424017909984168.
Full text國立中正大學
資訊工程研究所
91
There are large number of web pages and images in the WWW because of the rapid growth of Internet. In some sense, the WWW is like a database which contains a huge number of images. Therefore, the main purpose of the image search engine is to help users quickly find the images which they want with convenience. In the thesis, we will focus on keyword-based image search methods, find the words related to images according to the analysis of web pages, and develop a search engine that let users search the images by query words. In addition, before output the results, we propose some technique which can improve the accuracy of query results.
Fang, Chuang-Hsiung, and 方壯雄. "Using Public Search Engine to Search Private Document." Thesis, 2006. http://ndltd.ncl.edu.tw/handle/96685557489768725432.
Full text國立臺灣大學
資訊工程學研究所
94
We believed, the best encryption is lets others not think this document has already encrypted. Using Chinese words characteristic, grammar, we hope to discover a methods that is still readable after encryption. But the meaning has already entirely different. Then we can achieves the goal of encryption. The paper will design and implement a system for Chinese information hiding. Let those encrypted document can search by the public search engine. But others cannot understand the original meaning of these documents. And also we can use public space to store these documents.