Dissertations / Theses on the topic 'Sea-floor spreading'

To see the other types of publications on this topic, follow the link: Sea-floor spreading.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 23 dissertations / theses for your research on the topic 'Sea-floor spreading.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Bullock, Andrew David. "From continental thinning to sea-floor spreading :." Thesis, University of Southampton, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.403883.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Baines, A. Graham. "Geodynamic investigation of ultra-slow spreading oceanic lithosphere Atlantis Bank and vicinity, SW Indian Ridge /." Laramie, Wyo. : University of Wyoming, 2006. http://proquest.umi.com/pqdweb?did=1188873761&sid=1&Fmt=2&clientId=18949&RQT=309&VName=PQD.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Whittaker, Joanne. "Tectonic consequences of mid-ocean ridge evolution and subduction." Thesis, The University of Sydney, 2008. http://hdl.handle.net/2123/3971.

Full text
Abstract:
Mid-ocean ridges are a fundamental but insufficiently understood component of the global plate tectonic system. Mid-ocean ridges control the landscape of the Earth's ocean basins through seafloor spreading and influence the evolution of overriding plate margins during midocean ridge subduction. The majority of new crust created at the surface of the Earth is formed at mid-ocean ridges and the accretion process strongly influences the morphology of the seafloor, which interacts with ocean currents and mixing to influence ocean circulation and regional and global climate. Seafloor spreading rates are well known to influence oceanic basement topography. However, I show that parameters such as mantle conditions and spreading obliquity also play significant roles in modulating seafloor topography. I find that high mantle temperatures are associated with smooth oceanic basement, while cold and/or depleted mantle is associated with rough basement topography. In addition spreading obliquities greater than > 45° lead to extreme seafloor roughness. These results provide a predictive framework for reconstructing the seafloor of ancient oceans, a fundamental input required for modelling ocean-mixing in palaeoclimate studies. The importance of being able to accurately predict the morphology of vanished ocean floor is demonstrated by a regional analysis of the Adare Trough, which shows through an analysis of seismic stratigraphy how a relatively rough bathymetric feature can strongly influence the flow of ocean bottom currents. As well as seafloor, mid-ocean ridges influence the composition and morphology of overriding plate margins as they are consumed by subduction, with implications for landscape and natural resources development. Mid-ocean ridge subduction also effects the morphology and composition of the overriding plate margin by influencing the tectonic regime experienced by the overriding plate margin and impacting on the volume, composition and timing of arc-volcanism. Investigation of the Wharton Ridge slab window that formed beneath Sundaland between 70 Ma and 43 Ma reveals that although the relative motion of an overriding plate margin is the dominant force effecting tectonic regime on the overriding plate margin, this can be overridden by extension caused by the underlying slab window. Mid-ocean ridge subduction can also affect the balance of global plate motions. A longstanding controversy in global tectonics concerns the ultimate driving forces that cause periodic plate reorganisations. I find strong evidence supporting the hypothesis that the plates themselves drive instabilities in the plate-mantle system rather than major mantle overturns being the driving mechanism. I find that rapid sub-parallel subduction of the Izanagi mid-ocean ridge and subsequent catastrophic slab break o_ likely precipitated a global plate reorganisation event that formed the Emperor-Hawaii bend, and the change in relative plate motion between Australia and Antarctica at approximately 50 Ma
APA, Harvard, Vancouver, ISO, and other styles
4

Whittaker, Joanne. "Tectonic consequences of mid-ocean ridge evolution and subduction." University of Sydney, 2008. http://hdl.handle.net/2123/3971.

Full text
Abstract:
Doctor of Philosophy(PhD)
Mid-ocean ridges are a fundamental but insufficiently understood component of the global plate tectonic system. Mid-ocean ridges control the landscape of the Earth's ocean basins through seafloor spreading and influence the evolution of overriding plate margins during midocean ridge subduction. The majority of new crust created at the surface of the Earth is formed at mid-ocean ridges and the accretion process strongly influences the morphology of the seafloor, which interacts with ocean currents and mixing to influence ocean circulation and regional and global climate. Seafloor spreading rates are well known to influence oceanic basement topography. However, I show that parameters such as mantle conditions and spreading obliquity also play significant roles in modulating seafloor topography. I find that high mantle temperatures are associated with smooth oceanic basement, while cold and/or depleted mantle is associated with rough basement topography. In addition spreading obliquities greater than > 45° lead to extreme seafloor roughness. These results provide a predictive framework for reconstructing the seafloor of ancient oceans, a fundamental input required for modelling ocean-mixing in palaeoclimate studies. The importance of being able to accurately predict the morphology of vanished ocean floor is demonstrated by a regional analysis of the Adare Trough, which shows through an analysis of seismic stratigraphy how a relatively rough bathymetric feature can strongly influence the flow of ocean bottom currents. As well as seafloor, mid-ocean ridges influence the composition and morphology of overriding plate margins as they are consumed by subduction, with implications for landscape and natural resources development. Mid-ocean ridge subduction also effects the morphology and composition of the overriding plate margin by influencing the tectonic regime experienced by the overriding plate margin and impacting on the volume, composition and timing of arc-volcanism. Investigation of the Wharton Ridge slab window that formed beneath Sundaland between 70 Ma and 43 Ma reveals that although the relative motion of an overriding plate margin is the dominant force effecting tectonic regime on the overriding plate margin, this can be overridden by extension caused by the underlying slab window. Mid-ocean ridge subduction can also affect the balance of global plate motions. A longstanding controversy in global tectonics concerns the ultimate driving forces that cause periodic plate reorganisations. I find strong evidence supporting the hypothesis that the plates themselves drive instabilities in the plate-mantle system rather than major mantle overturns being the driving mechanism. I find that rapid sub-parallel subduction of the Izanagi mid-ocean ridge and subsequent catastrophic slab break o_ likely precipitated a global plate reorganisation event that formed the Emperor-Hawaii bend, and the change in relative plate motion between Australia and Antarctica at approximately 50 Ma
APA, Harvard, Vancouver, ISO, and other styles
5

Russell, Simon Mark. "A magnetic study of the west Iberia and conjugate rifted continental margins : constraints on rift-to-/drift processes." Thesis, Durham University, 1999. http://etheses.dur.ac.uk/4358/.

Full text
Abstract:
The analysis and modelling of magnetic anomalies at the conjugate rifted continental margins of the southern Iberia Abyssal Plain (TAP) and Newfoundland Basin have revealed that the sources of magnetic anomalies are distinctly different across both each margin and between the two margins. Analyses of synthetic anomalies and gridded sea surface magnetic anomaly charts west of Iberia and east of Newfoundland were accomplished by the methods of Euler deconvolution, forward and inverse modelling of the power spectrum, reduction-to-the-pole, and forward and inverse indirect methods. In addition, three near-bottom magnetometer profiles were analysed by the same methods in addition to the application of componental magnetometry. The results have revealed that oceanic crust, transitional basement and thinned continental crust are defined by magnetic sources with different characteristics. Over oceanic crust, magnetic sources are present as lava-flow-like bodies whose depths coincide with the top of acoustic basement seen on MCS profiles. Top-basement source depths are consistent with those determined in two other regions of oceanic crust. In the southern IAP, oceanic crust, ~4 km thick with magnetizations up to +1.5 A/m, generated by organized seafloor spreading was first accreted -126 Ma at the position of a N-S oriented segmented basement peridotite ridge. To the west, seafloor spreading anomalies can be modelled at spreading rates of 10 mm/yr or more. Immediately to the east, in a zone -10-20 km in width, I identify seafloor spreading anomahes which can only be modelled assuming variable spreading rates. In the OCT, sources of magnetic anomalies are present at the top of basement and up to -6 km beneath. I interpret the uppermost source as serpentinized peridotite, and the lowermost source as intruded gabbroic bodies which were impeded, whilst rising upwards, by the lower density serpentinized peridotites. Intrusion was accompanied by tectonism and a gradual change in conditions from rifting to seafloor spreading as the North Atlantic rift propagated northwards in Early Cretaceous times. Within thinned continental crust, sources are poorly lineated, and distributed in depth. Scaling relationships of susceptibility are consistent with the sources of magnetic anomalies within continental crust. OCT-type intrusions may be present in the mantle beneath continental crust. At the conjugate Newfoundland margin, seafloor spreading anomalies can be modelled at rates of 8 and 10 mm/yr suggesting an onset age consistent with that of the IAP. In the OCT there, I propose that magnetic anomalies are sourced in near top-basement serpentinized peridotites. An absence of magmatic material and the differences in basement character (with the IAP) suggest that conjugate margin evolution may have been asymmetric.
APA, Harvard, Vancouver, ISO, and other styles
6

Schwartz, Joshua J. "Growth and deformation of oceanic lithosphere Case studies from Atlantis Bank, Southwest Indian Ridge, and the Baker terrane, northeastern Oregon /." Laramie, Wyo. : University of Wyoming, 2007. http://proquest.umi.com/pqdweb?did=1400957191&sid=1&Fmt=2&clientId=18949&RQT=309&VName=PQD.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

König, Matthias. "Processing of shipborne magnetometer data and revision of the timing and geometry of the Mesozoic break-up of Gondwana = Auswertung schiffsfester Magnetometerdaten und die Neubestimmung des Zeitpunktes und der Geometrie des Mesozoischen Aufbruchs von Gondwana /." Bremerhaven : Alfred-Wegener-Inst. für Polar- und Meeresforschung, 2006. http://www.loc.gov/catdir/toc/fy0704/2006499118.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mihut, Dona. "Breakup and mesozoic seafloor spreading between the Australian and Indian plates." Phd thesis, Department of Geology and Geophysics, 1997. http://hdl.handle.net/2123/8940.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Van, Avendonk Hermanus Josephus Antonius. "An investigation of the crustal structure of the Clipperton transform fault area using 3D seismic tomography /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 1998. http://wwwlib.umi.com/cr/ucsd/fullcit?p9823314.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Grimes, Craig B. "Duration, rates, and patterns of crustal growth at slow-spreading mid-ocean ridges using zircon to investigate the evolution of in situ ocean crust /." Laramie, Wyo. : University of Wyoming, 2008. http://proquest.umi.com/pqdweb?did=1799840381&sid=1&Fmt=2&clientId=18949&RQT=309&VName=PQD.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Greenhalgh, Erica. "A geodynamic model for continental breakup and sea-floor spreading initiation : implications for post-breakup rifted margin hinterland uplift." Thesis, University of Liverpool, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.539517.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Drumm, Stephanie Michelle. "Geochemical Modeling of Primary MORB Magmas: Implications for Parental Melting Regimes in Melt Lenses Along-Axis of the Hess Deep Rift." Scholar Commons, 2018. http://scholarcommons.usf.edu/etd/7147.

Full text
Abstract:
The Hess Deep Rift in the East Pacific Rise is a mid-ocean ridge spreading center that produces melts which exhibit geochemical characteristics of evolved MORB. Using basaltic glass samples collected from multiple dive cruises that explored Hess Deep geology, volatile and chemical data were collected at USF using FTIR and EMPA, respectively. In addition, a data suite of samples of glass from Hess Deep were compiled from the EarthChem database. The intention was to use the data suite and models to compare the Hess Deep regime to analog models for mid-ocean ridge crystallization regimes and tectonic structures. The USF and EarthChem samples were then compared to various crystallization models generated in Petrolog3 (Danyushevsky and Plechov, 2011) and COMAGMAT (Ariskin and Barmina, 2004). The starting compositions using depleted, normal, and enriched MORB (Gale et al, 2013) were modeled at depths reflecting an upper and lower melt lens along the rift axis. The volatile components of the USF samples were compared to models for water and carbon dioxide behavior in basalt made using VolatileCalc (Newman and Lowenstern, 2002). Based on the comparison of the samples to the forward modeling in Petrolog3, it appears that the geochemical behavior of major and trace elements most closely resembles that of small amounts of fractional crystallization and re-assimilation of accessory minerals. The VolatileCalc models suggest that the USF samples most likely followed a degassing pathway at depths corresponding to the shallow melt lens. When considering the analog models for ophiolite sequences and melt flow beneath a fast-spreading ridge, it appears that the melt regime at Hess Deep deviates from both standing theories. Instead the most likely mechanisms are shallow crystallization, at depths equal to or less than an upper melt lens, and shallow dynamic degassing.
APA, Harvard, Vancouver, ISO, and other styles
13

Babcock, Jeffrey Matthew. "Magma chamber structure and Moho reflections along the East Pacific Rise /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 1997. http://wwwlib.umi.com/cr/ucsd/fullcit?p9737307.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

DeMartin, Brian J. 1976. "Experimental and seismological constraints on the rheology, evolution, and alteration of the lithosphere at oceanic spreading centers." Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/39010.

Full text
Abstract:
Thesis (Ph. D.)--Joint Program in Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2007.
Includes bibliographical references (p. 194-197).
Oceanic spreading centers are sites of magmatic, tectonic, and hydrothermal processes. In this thesis I present experimental and seismological constraints on the evolution of these complex regions of focused crustal accretion and extension. Experimental results from drained, triaxial deformation experiments on partially molten olivine reveal that melt extraction rates are linearly dependent on effective mean stress when the effective mean stress is low and non-linearly dependent on effective mean stress when it is high. Microearthquakes recorded above an inferred magma reservoir along the TAG segment of the Mid-Atlantic Ridge delineate for the first time the arcuate, subsurface structure of a long-lived, active detachment fault. This fault penetrates the entire oceanic crust and forms the high-permeability pathway necessary to sustain long-lived, high-temperature hydrothermal venting in this region. Long-lived detachment faulting exhumes lower crustal and mantle rocks. Residual stresses generated by thermal expansion anisotropy and mismatch in the uplifting, cooling rock trigger grain boundary microfractures if stress intensities at the tips of naturally occurring flaws exceed a critical stress intensity factor.
(cont.) Experimental results coupled with geomechanical models indicate that pervasive grain boundary cracking occurs in mantle peridotite when it is uplifted to within 4 km of the seafloor. Whereas faults provide the high-permeability pathways necessary to sustain high-temperature fluid circulation, grain boundary cracks form the interconnected network required for pervasive alteration of the oceanic lithosphere. This thesis provides fundamental constraints on the rheology, evolution, and alteration of the lithosphere at oceanic spreading centers.
by Brian J. deMartin.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
15

Phillips, Charity M. "Seafloor Spreading Processes in Protoarc-Forearc Settings: Eastern Albanian Ophiolite as a Case Study." Oxford, Ohio : Miami University, 2004. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=miami1083687853.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

McKnight, Amy R. (Amy Ruth) 1975. "Structure and evolution of an oceanic megamullion on the Mid-Atlantic ridge at 27N̊." Thesis, Massachusetts Institute of Technology, 2001. http://hdl.handle.net/1721.1/59090.

Full text
Abstract:
Thesis (S.M.)--Joint Program in Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences and the Woods Hole Oceanographic Institution), 2001.
Includes bibliographical references (leaves 44-48).
Megamullions in slow-spreading oceanic crust are characterized by smooth "turtle-back" morphology and are interpreted to be rotated footwalls of long-lived detachment faults. Megamullions have been analyzed in preliminary studies, but many questions remain about structural and tectonic details of their formation, in particular how the hanging wall develops in conjugate crust on the opposing side of the rift axis. This study compares the structure of an off-axis megamullion complex and its conjugate hanging wall crust on the Mid-Atlantic Ridge near 27 0N. Two megamullion complexes, an older (Ml) and younger (M2), formed successively on the west side of the rift axis in approximately the same location within one spreading segment. Megamullion M1 formed while the spreading segment had only one inside comer on the west flank, and megamullion M2 formed after the segment developed double inside corners west of the axis and double outside corners east of the axis. The older megamullion formed between -22.3 and -20.4 Ma, and the younger megamullion formed between -20.6 and -18.3 Ma; they are presently -200-300 km off-axis. Reconstruction poles of plate rotation were derived and plate reconstructions were made for periods prior to initiation of the megamullion complex (anomaly 6Ar, -22.6 Ma), after the termination of megamullion Ml and during the development of megamullion M2 (anomaly 5E, -19 9 Ma), and shortly following the termination of megamullion M2 (anomaly 5C, -17.6 Ma). These reconstructions were used to compare morphological and geophysical features of both flanks at each stage of the megamullions' development. Megamullion Ml's breakaway occurred at -22.3 Ma and slip along this detachment fault continued and propagated northward at -20.6 Ma to form the northern portion of M2. The exhumed footwall of megamullion M1 has weak spreading-parallel lineations interpreted as mullion structures on its surface, and it forms an elevated plateau between the enclosing segment boundaries (non-transform discontinuities). There was an expansion southward of the detachment fault forming megamullion M2 at -20.1 Ma. It either cut a new detachment fault through megamullion Ml, stranding a piece of megamullion Ml on the conjugate side (east flank), or it linked into the active detachment fault that was forming megamullion M1 or propagated into its hanging wall. The expanded detachment of megamullion M2 and the termination of megamullion M1 occurred during a time when the enclosing spreading segment roughly doubled in length and formed two inside corners. Megamullion M2 developed prominent, high-amplitude (-600 m) mullion structures that parallel the spreading direction for more than 20 km at each inside corner. Its detachment fault was abandoned - 18.6 Ma in the south and ~18.3 Ma in the north ...
by Amy R. McKnight.
S.M.
APA, Harvard, Vancouver, ISO, and other styles
17

Becker, Nathan C. "Recent volcanic and tectonic evolution of the Southern Mariana arc." Thesis, 2005. http://proquest.umi.com/pqdweb?index=1&did=982818821&SrchMode=2&sid=2&Fmt=2&VInst=PROD&VType=PQD&RQT=309&VName=PQD&TS=1234310098&clientId=23440.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Appelgate, Bruce. "Geophysical investigations of the Reykjanes Ridge and Kolbeinsey Ridge seafloor spreading centers." Thesis, 1995. http://hdl.handle.net/10125/9867.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Sheaffer, Steven D. "Oceanic transform boundaries rheology, dynamics, and the age offset limit /." 1995. http://catalog.hathitrust.org/api/volumes/oclc/40325520.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Mitchley, Michael. "An investigation into the detection of seafloor massive sulphides through sonar." Thesis, 2012. http://hdl.handle.net/10539/11337.

Full text
Abstract:
M.Sc., Faculty of Science, University of the Witwatersrand, 2011
Sea oor massive sulphides are deep sea mineral deposits currently being examined as a potential mining resource. Locating these deposits, which occur at depths in the order of 2km, is currently performed by expensive submersible sonar platforms as conventional sonar bathymetry products gathered by sea surface platforms do not achieve adequate spatial resolution. This document examines the use of so-called high resolution beamforming methods (such as MUSIC and ESPRIT) for sonar bathymetry, together with combinations of parameter estimation techniques, including techniques for full rank covariance matrix estimation and signal enumeration. These methods are tested for bathymetric pro le accuracy using simulated data, and compared to conventional bathymetric methods. It was found that high resolution methods achieved greater bathymetric accuracy and higher resolution than conventional beamforming. These methods were also robust in the presence of unwanted persistent signals and low signal to noise ratios.
APA, Harvard, Vancouver, ISO, and other styles
21

Russell, Joshua Berryman. "Structure and Evolution of the Oceanic Lithosphere-Asthenosphere System from High-Resolution Surface-Wave Imaging." Thesis, 2021. https://doi.org/10.7916/d8-33w6-f908.

Full text
Abstract:
In this thesis, I investigate the seismic structure of oceanic lithosphere and asthenosphere with a particular focus on seismic anisotropy, using high-resolution surface waves recorded on ocean-bottom seismometers (OBS) in the Pacific and Atlantic Oceans. The NoMelt (~70 Ma) and Young OBS Research into Convecting Asthenosphere (ORCA) (~43 Ma) OBS experiments located in the central and south Pacific, respectively, provide a detailed picture of ``typical'' oceanic lithosphere and asthenosphere and offer an unprecedented opportunity to investigate the age dependence of oceanic upper mantle structure. The Eastern North American Margin Community Seismic Experiment (ENAM-CSE) OBS array located just offshore the Eastern U.S. captures the transition from continental rifting during Pangea to normal seafloor spreading, representing significantly slower spreading rates. Collectively, this work represents a diverse set of observations that improve our understanding of seafloor spreading, present-day mantle dynamics, and ocean basin evolution. At NoMelt, which represents pristine relatively unaltered oceanic mantle, we observe strong azimuthal anisotropy in the lithosphere that correlates with corner-flow induced shear during seafloor spreading. We observe perhaps the first clear Love-wave azimuthal anisotropy that, in addition to co-located Rayleigh-wave and active source Pn constraints, provides a novel in-situ estimate of the complete elastic tensor of the oceanic lithosphere. Comparing this observed anisotropy to a database of laboratory and naturally deformed olivine samples from the literature leads us to infer an alternative ``D-type'' fabric associated with grain-size sensitive deformation, rather than the commonly assumed A-type fabric. This has vast implications for our understanding of grain-scale deformation active at mid-ocean ridges and subsequent thermo-rheological evolution of the lithosphere. At both NoMelt and YoungORCA we observe radial anisotropy in the lithosphere with Vsh > Vsv indicating subhorizontal fabric, in contrast to some recent global models. We also observe azimuthal anisotropy in the lithosphere that parallels the fossil-spreading direction. Estimates of radial anisotropy in the crust at both locations are the first of their kind and suggest horizontal layering and/or shearing associated with the crustal accretion process. Both experiments show asthenospheric anisotropy that is significantly rotated from current-day absolute plate motion as well as rotated from one another, at odds with the typical expectation of plate-induced shearing. This observation is consistent with small-scale density- or pressure-driven convection beneath the Pacific basin that varies in orientation over a length scale of at most ~2000 km and likely shorter. By directly comparing shear velocities at YoungORCA and NoMelt, we show that the half-space cooling model can account for most (~75%) of the sublithospheric velocity difference between the two location when anelastic effects are accounted for. The unaccounted for ~25% velocity reduction at YoungORCA is consistent with lithospheric reheating, perhaps related to upwelling of hot mantle from small-scale convection or its proximity to the Marquesas hotspot. While lithospheric anisotropy is parallel to the fossil-seafloor-spreading direction at both fast-spreading Pacific locations, it is perpendicular to spreading at the ENAM-CSE in the northwest Atlantic where spreading was ultra-slow to slow. Instead, anisotropy correlates with paleo absolute plate motion at the time of Pangea rifting ~180–195 Ma. We propose that ultra-slow-spreading environments, such as the early Atlantic, primarily record plate-motion modified fabric in the lithosphere rather than typical seafloor spreading fabric. Furthermore, slow shear velocities in the lithosphere may indicate that normal seafloor spreading did not initiate until ~170 Ma, 10–25 Myr after the initiation of continental rifting, revising previous estimates. Alternatively, it may shed new light on melt extraction at ultra-slow spreading environments.
APA, Harvard, Vancouver, ISO, and other styles
22

Moscardelli, Lorena Gina. "Mass transport processes and deposits in offshore Trinidad and Venezuela, and their role in continental margin development." Thesis, 2007. http://hdl.handle.net/2152/3080.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Moscardelli, Lorena Gina 1977. "Mass transport processes and deposits in offshore Trinidad and Venezuela, and their role in continental margin development." 2007. http://hdl.handle.net/2152/13267.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography