Academic literature on the topic 'Science des données chirurgicales'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Science des données chirurgicales.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Science des données chirurgicales"
Fau, Victor, Dany Diep, Gérard Bader, Damien Brézulier, and Olivier Sorel. "Efficacité des techniques de décortication alvéolaire sélective dans l’accélération du traitement orthodontique : une revue systématique de la littérature." L'Orthodontie Française 88, no. 2 (June 2017): 165–78. http://dx.doi.org/10.1051/orthodfr/2017005.
Full textDiedhiou, Yancouba Cheikh. "Pédagogie et formation dans les spécialités : talon d’Achille des Enseignants de l’ENDSS et de l’ENTSS face aux exigences de l’APC et du système LMD." Liens, revue internationale des sciences et technologies de l'éducation 1, no. 5 (December 5, 2023): 151–68. http://dx.doi.org/10.61585/pud-liens-v1n501.
Full textLorenzetti, Loredano Matteo, and Emanuele Russo. "L’art en tant que multiplicité et unité. Réflexions dans un cadre thérapeutique et relevés d’une enquête." Bulletin de psychologie 56, no. 468 (2003): 813–18. http://dx.doi.org/10.3406/bupsy.2003.15281.
Full textContandriopoulos, A. P., G. Dionne, and G. Tessier. "La mobilité des patients et les modèles de création de demande : le cas du Québec." Articles 59, no. 4 (January 19, 2009): 729–52. http://dx.doi.org/10.7202/601075ar.
Full textDE L’ESCALOPIER, N., H.-L. DUPRÉ, T. MCBRID WINDSOR, L. MALAN, M. BUSIN, S. RIGAL, and L. MATHIEU. "Activité chirurgicale au Centre médico-chirurgical interarmées de Djibouti." Médecine et Armées Volume 48 No. 1, Volume 48, Numéro 1 (October 5, 2022): 89–100. http://dx.doi.org/10.17184/eac.6448.
Full textAkiseku, A. K., O. E. Jagun, H. O. A. Kuku, A. B. Akinpelu, A. O. Olatunji, and A. O. Sule-Odu. "Antibiotic prophylaxis in obstetric and gynaecological procedures: Acomparative study between two regimens of antibiotics." Research Journal of Health Sciences 12, no. 1 (February 12, 2024): 34–41. http://dx.doi.org/10.4314/rejhs.v12i1.5.
Full textKlainguti, G., J. Chamero, and C. Presset. "Un nouveau logiciel de gestion des données chirurgicales en strabologie." Klinische Monatsblätter für Augenheilkunde 206, no. 05 (May 1995): 397–400. http://dx.doi.org/10.1055/s-2008-1035474.
Full textGuiga, Nebiha. "Production, diffusion et usages des données chirurgicales pendant les guerres napoléoniennes." Histoire, médecine et santé, no. 22 (December 15, 2022): 69–86. http://dx.doi.org/10.4000/hms.6117.
Full textBouras, Samir. "Oncological outcomes of partial nephrectomy." Batna Journal of Medical Sciences (BJMS) 8, no. 1 (June 4, 2021): 9–12. http://dx.doi.org/10.48087/bjmsoa.2021.8102.
Full textSellier, E., and J. Fauconnier. "E1-4 - Étude des réinterventions chirurgicales à partir des données issues du PMSI." Revue d'Épidémiologie et de Santé Publique 54 (August 2006): 47. http://dx.doi.org/10.1016/s0398-7620(06)76855-9.
Full textDissertations / Theses on the topic "Science des données chirurgicales"
Derathé, Arthur. "Modélisation de la qualité de gestes chirurgicaux laparoscopiques." Thesis, Université Grenoble Alpes, 2020. https://thares.univ-grenoble-alpes.fr/2020GRALS021.pdf.
Full textSous cœlioscopie, le traitement chirurgical permet une meilleure prise en charge du patient, et sa pratique est de plus en plus fréquente en routine clinique. Cette pratique présente néanmoins ses difficultés propres pour le chirurgien, et nécessite une formation prolongée pendant l’internat et en post-internat. Pour faciliter cette formation, il est notamment possible de développer des outils d’évaluation et d’analyse de la pratique chirurgicale.Dans cette optique, l’objectif de ce travail de thèse est d’étudier la faisabilité d’une méthodologie proposant, à partir d’un traitement algorithmique, des analyses à portée clinique pertinente pour le chirurgien. J’ai donc traité les problèmes suivants : Il m’a fallu recueillir et annoter un jeu de données, implémenter un environnement d’apprentissage dédié à la prédiction d’un aspect spécifique de la pratique chirurgicale, et proposer une approche permettant de traduire mes résultats algorithmiques sous une forme pertinente pour le chirurgien. Dès que cela était possible, nous avons cherché à valider ces différentes étapes de la méthodologie
Feghoul, Kevin. "Deep learning for simulation in healthcare : Application to affective computing and surgical data science." Electronic Thesis or Diss., Université de Lille (2022-....), 2024. http://www.theses.fr/2024ULILS033.
Full textIn this thesis, we address various tasks within the fields of affective computing and surgicaldata science that have the potential to enhance medical simulation. Specifically, we focuson four key challenges: stress detection, emotion recognition, surgical skill assessment, andsurgical gesture recognition. Simulation has become a crucial component of medical training,offering students the opportunity to gain experience and refine their skills in a safe, controlledenvironment. However, despite significant advancements, simulation-based trainingstill faces important challenges that limit its full potential. Some of these challengesinclude ensuring realistic scenarios, addressing individual variations in learners’ emotionalresponses, and, for certain types of simulations, such as surgical simulation, providing objectiveassessments. Integrating the monitoring of medical students’ cognitive states, stresslevels and emotional states, along with incorporating tools that provide objective and personalizedfeedback, especially for surgical simulations, could help address these limitations.In recent years, deep learning has revolutionized the waywe solve complex problems acrossvarious disciplines, leading to significant advancements in affective computing and surgicaldata science. However, several domain-specific challenges remain. In affective computing,automatically recognizing stress and emotions is challenging due to difficulties in definingthese states and the variability in their expression across individuals. Furthermore, themultimodal nature of stress and emotion expression introduces another layer of complexity,as effectively integrating diverse data sources remains a significant challenge. In surgicaldata science, the variability in surgical techniques across practitioners, the dynamic natureof surgical environments, and the challenge of effectively integrating multiple modalitieshighlight ongoing challenges in surgical skill assessment and gesture recognition. The firstpart of this thesis introduces a novel Transformer-based multimodal framework for stressdetection that leverages multiple fusion techniques. This framework integrates physiologicalsignals from two sensors, with each sensor’s data treated as a distinct modality. Foremotion recognition, we propose a novel multimodal approach that employs a Graph ConvolutionalNetwork (GCN) to effectively fuse intermediate representations from multiplemodalities, extracted using unimodal Transformer encoders. In the second part of this thesis,we introduce a new deep learning framework that combines a GCN with a Transformerencoder for surgical skill assessment, leveraging sequences of hand skeleton data. We evaluateour approach using two surgical simulation tasks that we have collected. Additionally,we propose a novel Transformer-based multimodal framework for surgical gesture recognitionthat incorporates an iterative multimodal refinement module to enhance the fusionof complementary information from different modalities. To address existing dataset limitationsin surgical gesture recognition, we collected two new datasets specifically designedfor this task, on which we conducted unimodal and multimodal benchmarks for the firstdataset and unimodal benchmarks for the second
Dorval, Valérie. "Planification des activités chirurgicales sous contrainte de capacité." Thesis, Valenciennes, Université Polytechnique Hauts-de-France, 2019. http://www.theses.fr/2019UPHF0004.
Full textSurgical services face difficulties in meeting demand and patients face long waiting lists for treatment. In order to improve services, maximum deadlines have been set for certain types of surgery, but this adds a constraint to the already overloaded system. Finally, the cancellation of surgeries due to a lack of beds in intensive care and on care units is considered quite frequent, causing a bottleneck in the patient flow. In this context, the objective of this thesis is to propose and validate a surgical activity planning procedure that takes into account capacity in post-operative care units, with the aim of improving the use of hospital beds and thus increasing patient flow in the system. This thesis proposes a decision support tool to formalize the surgical activity planning process at the tactical/operational level and to take into account the availability of hospital beds and the variability in patients' length of stay according to different factors. This tool takes into account the current functioning of the system and the context surrounding it in order to ensure the feasibility of implementation. First, a model for predicting the length of patients' stay is designed by combining a data classification method, classification and regression tree theory, with a method for estimating the data distribution, phase-type distributions. A validation step will compare the model results with empirical data. Second, a surgical activity planning tool is being developed using integer linear programming and incorporating the "length of stay" component to control hospital bed occupancy in addition to surgical room occupancy. Finally, a simulator is developed and used to evaluate different strategies and criteria for scheduling activities and to take into account the inherent variability of the problem. At this point, it is possible to integrate the model for predicting the length of stay developed at the beginning of the project
Picinbono, Guillaume. "Modèles géométriques et physiques pour la simulation d'interventions chirurgicales." Phd thesis, Université de Nice Sophia-Antipolis, 2001. http://tel.archives-ouvertes.fr/tel-00633965.
Full textGomes, Da Silva Alzennyr. "Analyse des données évolutives : application aux données d'usage du Web." Phd thesis, Université Paris Dauphine - Paris IX, 2009. http://tel.archives-ouvertes.fr/tel-00445501.
Full textPadoy, Nicolas. "Modélisation des Activités Chirurgicales et de leur Déroulement pour la Reconnaissance des Etapes Opératoires." Phd thesis, Université Henri Poincaré - Nancy I, 2010. http://tel.archives-ouvertes.fr/tel-00487069.
Full textCuré, Olivier. "Relations entre bases de données et ontologies dans le cadre du web des données." Habilitation à diriger des recherches, Université Paris-Est, 2010. http://tel.archives-ouvertes.fr/tel-00843284.
Full textWatrin, Lucie. "Les données scientifiques saisies par le droit." Thesis, Aix-Marseille, 2016. http://www.theses.fr/2016AIXM1072.
Full textScientific data is produced by experiment, and consists in a raw description of reality, upon which basis scientific theories are developped or confirmed. Upon assesment, interactions between this basic element of knowledge and the legal order can be observed in three stages. First, at the stage of data production. Although the control of this phase falls largely under the control of the scientific community, some legal rules are added to this control, in order to influence on the direction or on the conduct of the research. Second, at the stage of the use of scientific data, because once discovered, data is sometimes directly apprehended by the judge, the legislator or by some professionals, and is then used to unveil reality. In this regard, even when uncertain, scientific data does not lose its utility, because in spite of failling to display reality, it offers the possibility to approach it and therefore to build decisions on a scientifically based likelihood. Finally, the law intervenes at the stage of data protection, in order to arbitrate conflicting interests between those who produce scientific data, and society. The terms of the arbitration between the private reservation data and their collective value was deeply renewed in recent years, under the influence of the combined development of Big data and Open data
Malarme, Pierre. "Conception d'un système d'aide à la chirurgie sur base de la modélisation d'opérations, d'un recalage temporel des données et d'un recalage sémantique de métadonnées." Doctoral thesis, Universite Libre de Bruxelles, 2011. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209844.
Full textThe main goal of this PhD thesis is to design a computer assisted surgery system based on surgical workflow (SWf) modeling, and intra-operative data and metadata acquired during the operation. For the SWf modeling, workflow-mining techniques will be developed based on dynamic learning and incremental inference. An ontology will be used to describe the various steps of the surgery and their attributes.
Doctorat en Sciences de l'ingénieur
info:eu-repo/semantics/nonPublished
Allab, Kais. "Matrix factorization framework for simultaneous data (co-)clustering and embedding." Thesis, Sorbonne Paris Cité, 2016. http://www.theses.fr/2016USPCB083/document.
Full textAdvances in computer technology and recent advances in sensing and storage technology have created many high-volume, high-dimensional data sets. This increase in both the volume and the variety of data calls for advances in methodology to understand, process, summarize and extract information from such kind of data. From a more technical point of view, understanding the structure of large data sets arising from the data explosion is of fundamental importance in data mining and machine learning. Unlike supervised learning, unsupervised learning can provide generic tools for analyzing and summarizing these data sets when there is no welldefined notion of classes. In this thesis, we focus on three important techniques of unsupervised learning for data analysis, namely data dimensionality reduction, data clustering and data co-clustering. Our major contribution proposes a novel way to consider the clustering (resp. coclustering) and the reduction of the dimension simultaneously. The main idea presented is to consider an objective function that can be decomposed into two terms where one of them performs the dimensionality reduction while the other one returns the clustering (resp. co-clustering) of data in the projected space simultaneously. We have further introduced the regularized versions of our approaches with graph Laplacian embedding in order to better preserve the local geometry of the data. Experimental results on synthetic data as well as real data demonstrate that the proposed algorithms can provide good low-dimensional representations of the data while improving the clustering (resp. co-clustering) results. Motivated by the good results obtained by graph-regularized-based clustering (resp. co-clustering) methods, we developed a new algorithm based on the multi-manifold learning. We approximate the intrinsic manifold using a subset of candidate manifolds that can better reflect the local geometrical structure by making use of the graph Laplacian matrices. Finally, we have investigated the integration of some selected instance-level constraints in the graph Laplacians of both data samples and data features. By doing that, we show how the addition of priory knowledge can assist in data co-clustering and improves the quality of the obtained co-clusters
Books on the topic "Science des données chirurgicales"
Guyomard, Marc. Structures de données et méthodes formelles. Paris: Springer Paris, 2011.
Find full text1956-, Gauthier Benoît, and Solar Claudie 1947-, eds. Recherche sociale: De la problématique à la collecte des données. 4th ed. Sainte-Foy: Presses de l'Université du Québec, 2003.
Find full textAcadémie Hassan II des Sciences et Techniques. Conférences données dans le cadre des journées: Les jeunes et la science, 19-30 novembre 2007. Rabat: Académie Hassan II des Sciences et Techniques, 2008.
Find full textUNESCO. Inventaire du potentiel scientifique et technologique de la Communauté économique de l'Afrique de Ouest: Analyse des données. Paris: Unesco, 1985.
Find full textEllzey, Roy S. Data structures for computer information systems. 2nd ed. Chicago: Science Research Associates, 1989.
Find full textEllzey, Roy S. Data structures for computer information systems. 2nd ed. Chicago: Science Research Associates, 1988.
Find full textRumble, J. R. Database systems in science and engineering. Bristol [England]: A. Hilger, 1990.
Find full textWorkshop on Algorithms and Data Structures (4th 1995 Kingston,Canada). Algorithms and data structures: Proceedings : 4th International Workshop, WADS '95, Kingston, Canada, August 1995. Berlin: Springer, 1995.
Find full textNikuze, Pascasie. Les ressources humaines en science et technologie: Adaptation de la méthode élaborée par l'OCDE aux données canadiennes : document de travail. Québec: Direction des statistiques économiques et sociales, Institut de la statistique du Québec, 2002.
Find full textGiroux, Lise. Facteurs associés au rendement en mathématique, en sciences et en géographie des élèves québécois: Analyse de données d'une étude internationale. [Québec]: Direction de la recherche, Ministère de l'éducation, 1993.
Find full textBook chapters on the topic "Science des données chirurgicales"
Rivat, C., and P. Richebe. "Stratégies anti-hyperalgésiques dans la prévention des douleurs chroniques post-chirurgicales : données précliniques et application clinique." In La douleur chronique post-chirurgicale, 127–42. Paris: Springer Paris, 2013. http://dx.doi.org/10.1007/978-2-8178-0026-4_10.
Full textBellosta, Hélène. "Un complément arabe aux Données d'Euclide: Le Kitāb al-mafrūḍāt de Ṯābit Ibn Qurra." In Science and Technology in the Islamic World, 71–82. Turnhout: Brepols Publishers, 2002. http://dx.doi.org/10.1484/m.dda-eb.4.00501.
Full textBeaucé, Pauline, Jeffrey M. Leichman, Olivier Aubert, and Françoise Rubellin. "14. Entretien avec Olivier Aubert et Françoise Rubellin. « Comme de la pâte à modeler »." In St Andrews Studies in French History and Culture, 177–86. Cambridge, UK: Open Book Publishers, 2024. http://dx.doi.org/10.11647/obp.0400.14.
Full text"Les Données." In Mesurer la science, 35–66. Les Presses de l’Université de Montréal, 2018. http://dx.doi.org/10.1515/9782760639522-002.
Full text"Sources des données." In Science, technologie et industrie : Tableau de bord de l'OCDE 2013, 263–64. OECD, 2013. http://dx.doi.org/10.1787/sti_scoreboard-2013-69-fr.
Full textBoustany, Joumana. "Données massives, science et bibliothèques." In Bibliothèques, 191–200. Éditions du Cercle de la Librairie, 2017. http://dx.doi.org/10.3917/elec.netz.2017.01.0191.
Full textLe Béchec, Mariannig, Philippe Charrier, and Gabriel Gallezot. "Communication scientifique et science ouverte." In Communication scientifique et science ouverte, 173–82. De Boeck Supérieur, 2023. http://dx.doi.org/10.3917/dbu.annai.2023.01.0173.
Full text"Niakhar : zone sentinelle depuis 1962." In Science et développement durable, 72–73. Marseille: IRD Éditions, 2019. http://dx.doi.org/10.4000/1226e.
Full textSchöpfel, Joachim, Eric Kergosien, Stéphane Chaudiron, Bernard Jacquemin, and Hélène Prost. "Communication scientifique et science ouverte." In Communication scientifique et science ouverte, 231–44. De Boeck Supérieur, 2023. http://dx.doi.org/10.3917/dbu.annai.2023.01.0231.
Full textApel, Karl Otto. "1. Les données paradoxales du problème." In L’éthique à l’âge de la science, 43–65. Presses universitaires du Septentrion, 1987. http://dx.doi.org/10.4000/books.septentrion.123405.
Full textConference papers on the topic "Science des données chirurgicales"
Lan, R., F. Campana, J. H. Catherine, U. Ordioni, and D. Tardivo. "Nouvelles techniques d’aide au diagnostic des lésions pré-cancéreuses et cancéreuses de la cavité orale : revue systématique et résultats préliminaires." In 66ème Congrès de la SFCO. Les Ulis, France: EDP Sciences, 2020. http://dx.doi.org/10.1051/sfco/20206602018.
Full textRomanet, I., J. H. Catherine, P. Laurent, R. Lan, and E. Dubois. "Efficacité de l’ostéotomie interalvéolaire par piezocision : revue de la littérature." In 66ème Congrès de la SFCO. Les Ulis, France: EDP Sciences, 2020. http://dx.doi.org/10.1051/sfco/20206603010.
Full textTkachenko, Elena, Valentyna Sokolenko, Ahmed Khalafallah, Natalia Sharlay, and Natalia Fedotenkova. "À LA QUESTION SUR LES DONNÉES THÉORIQUES ET LES ASPECTS PRATIQUES DE L'ÉTUDE DE L'ASYMÉTRIE." In PARADIGMATIC VIEW ON THE CONCEPT OF WORLD SCIENCE. European Scientific Platform, 2020. http://dx.doi.org/10.36074/21.08.2020.v1.51.
Full textReports on the topic "Science des données chirurgicales"
Chambefort, Hélène, Juliette Hueber, Claire Lemercier, Kenneth Maussang, and Anne Vanet. Usage et gouvernance des données. Ministère de l'enseignement supérieur et de la recherche, October 2019. http://dx.doi.org/10.52949/1.
Full textLanglais, Pierre-Carl. Monitoring de la science ouverte. Comité pour la science ouverte, 2024. https://doi.org/10.52949/66.
Full textWarin, Thierry. Chaînes logistiques sous pression : Comment la science des données peut-elle aider ? CIRANO, August 2022. http://dx.doi.org/10.54932/ovls2389.
Full textWarin, Thierry, Nathalie de Marcellis-Warin, Sarah Elimam, Molivann Panot, and Jéremy Schneider. La diplomatie à l’heure de la science des données : réflexions stratégiques et perspectives. CIRANO, June 2023. http://dx.doi.org/10.54932/jrbv7364.
Full textLanglais, Pierre-Carl. Données de recherche ouvertes. Comité pour la science ouverte, 2024. https://doi.org/10.52949/70.
Full textAncion, Zoé, Francis Andre, Sarah Cadorel, Romain Feret, Odile Hologne, Kenneth Maussang, Marine Moguen-Toursel, and Véronique Stoll. Plan de gestion de données – Recommandations à l’ANR. Ministère de l'enseignement supérieur et de la recherche, June 2019. http://dx.doi.org/10.52949/7.
Full textLe Béchec, Mariannig, Aline Bouchard, Philippe Charrier, Claire Denecker, Gabriel Gallezot, and Stéphanie Rennes. State of open science practices in france (SOSP-FR). Ministère de l'enseignement supérieur et de la recherche, January 2022. http://dx.doi.org/10.52949/5.
Full textArènes, Cécile, Cécile Sebban, Thomas Jouneau, Joanna Janik, David Chopard-Lallier, Nadine Couedel, Camille Espiau, et al. Pour une politique des données de la recherche : guide stratégique à l'usage des établissements. Ministère de l'enseignement supérieur et de la recherche, December 2019. http://dx.doi.org/10.52949/9.
Full textLanglais, Pierre-Carl. Intégrité de la recherche. Comité pour la science ouverte, 2024. https://doi.org/10.52949/60.
Full textNédellec, Claire, Adeline Nazarenko, Francis André, Catherine Balivo, Béatrice Daille, Anastasia Drouot, Jorge Flores, et al. Recommandations sur l’analyse automatique de documents : acquisition, gestion, exploration. Ministère de l'enseignement supérieur et de la recherche, September 2019. http://dx.doi.org/10.52949/10.
Full text