Academic literature on the topic 'Science / Crystallography'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Science / Crystallography.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Science / Crystallography"
Kurisu, Genji, Yoko Sugawara, Atsushi Nakagawa, and Masaki Takata. "Japanese Science & Technology with Crystallography." Acta Crystallographica Section A Foundations and Advances 70, a1 (August 5, 2014): C1309. http://dx.doi.org/10.1107/s2053273314086902.
Full textNazarenko, Alexander. "Crystallography Education for Non-Science College Students." Acta Crystallographica Section A Foundations and Advances 70, a1 (August 5, 2014): C1268. http://dx.doi.org/10.1107/s2053273314087312.
Full textOhsato, Hitoshi. "Crystallography and R&D for Material Science from Our Research: Electroceramics." Advanced Materials Research 11-12 (February 2006): 95–100. http://dx.doi.org/10.4028/www.scientific.net/amr.11-12.95.
Full textOtálora, Fermín, Juan Manuel García-Ruiz, Alfonso García-Caballero, and Martha Santana-Ibañez. "The Krystalla Project for the dissemination of crystallography." Acta Crystallographica Section A Foundations and Advances 70, a1 (August 5, 2014): C1034. http://dx.doi.org/10.1107/s2053273314089657.
Full textChen, Yu-Sheng, Harold Brewer, Mati Meron, and Jim Viccaro. "Advanced Crystallographic Program at ChemMatCARS at Advanced Photon Source." Acta Crystallographica Section A Foundations and Advances 70, a1 (August 5, 2014): C1727. http://dx.doi.org/10.1107/s2053273314082722.
Full textTERAUCHI, Masami, Yoshito GOTOH, Shigeo MORI, Hiroyuki KIMURA, and Koh SAITOH. "Crystallography in Materials Science;." Nihon Kessho Gakkaishi 56, no. 2 (2014): 77. http://dx.doi.org/10.5940/jcrsj.56.77.
Full textFantini, Marcia Carvalho De Abreu, and Iris Linares de Torriani. "Crystallography science in Brazil." Acta Crystallographica Section A Foundations and Advances 73, a2 (December 1, 2017): C1168. http://dx.doi.org/10.1107/s2053273317084066.
Full textFennick, Jacob R., J. Brandon Keith, Robert H. Leonard, Thanh N. Truong, and James P. Lewis. "A cyberenvironment for crystallography and materials science and an integrated user interface to the Crystallography Open Database and Predicted Crystallography Open Database." Journal of Applied Crystallography 41, no. 2 (March 8, 2008): 471–75. http://dx.doi.org/10.1107/s0021889808000381.
Full textBassett, W. "Crystallography Explained." Science 260, no. 5116 (June 25, 1993): 1985–86. http://dx.doi.org/10.1126/science.260.5116.1985-a.
Full textGrocholski, Brent. "Speedy crystallography." Science 367, no. 6477 (January 30, 2020): 522.9–523. http://dx.doi.org/10.1126/science.367.6477.522-i.
Full textDissertations / Theses on the topic "Science / Crystallography"
Barnard, Edward S. "AtomicControl : a crystallography simulator." Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/32853.
Full textIncludes bibliographical references (p. 51).
AtomicControl is a software package designed to aid in the teaching of crystallography and x-ray diffraction concepts to materials science students. It has the capability to create an arbitrary crystal structure based on the user's specification of a space group and atomic coordinates. It also can generate a simulated powder diffractogram based on the user's generated crystal. The program is fully interactive and allows the user to view the effects of changes to lattice and atoms in a 3D visualization of the crystal. AtomicControl's x-ray diffraction patterns have been shown to match well with experimental data, proving the validity of the algorithm. AtomicControl is available online.
by Edward S. Barnard.
S.B.
Jones, Adrian Howard. "The acquisition, analysis and correlation of low energy electron diffraction and scanning tunnelling microscopy data from silicon surfaces." Thesis, University of York, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.283430.
Full textMoro, Marjan. "Nano-Characterization of Ceramic-Metallic Interpenetrating Phase Composite Material using Electron Crystallography." Youngstown State University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1340223324.
Full textHobday, Denise Marie. "LEED analysis of Ge(111)(#sq root#3X#sq root#3)R30deg-Ag and Kikuchi electron diffraction." Thesis, University of York, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.259880.
Full textGopal, Kreshna. "Efficient case-based reasoning through feature weighting, and its application in protein crystallography." [College Station, Tex. : Texas A&M University, 2007. http://hdl.handle.net/1969.1/ETD-TAMU-1906.
Full textShi, Rongpei. "Variant Selection during Alpha Precipitation in Titanium Alloys- A Simulation Study." The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1397655766.
Full textGao, Yipeng. "Transformation Pathway Network Analysis for Martensitic Transformations." The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1385978073.
Full textVenter, Gerhard. "The effect of the crystalline state on the properties of the dative bond." Thesis, Stellenbosch : Stellenbosch University, 2005. http://hdl.handle.net/10019.1/20944.
Full textENGLISH ABSTRACT: Density functional theory (DFT) has been used to investigate the effect of the surrounding molecules on the structure of selected boron-nitrogen compounds. It was found that a very limited number of molecules, orientated according to the experimental crystal structure, are needed to successfully reproduce the large changes in structure witnessed when HCN–BF3 and CH3CN–BF3 crystallises. Specifically, the addition of seven molecules shortens the B–N distance by 0.735 °A in (HCN–BF3)8 and 0.654A° in (CH3CN– BF3)8. Accompanying the large changes in B–N bond length are equally large changes in the N–B–F angle. Investigation of the structure of these complexes in terms of localised electron pairs shows that the availability of lone pairs, in close proximity to the B–N bond axis, plays an important role in the bond change. Through delocalisation of the fluorine lone pairs the antibonding σ ∗(B–N) orbital becomes increasingly occupied as the N–B–F angle lessens and vice versa. Further, an investigation of the specific effects of dipole-dipole interactions was performed by applying uniform electric fields of varying strength along the donor-acceptor bond axis of a series of compounds of the form X–Y; X=H3N, HCN, CH3CN; Y = BF3, BH3, SO3. All complexes investigated show sensitivity to the external electric field, however, only the compounds having nitrile donors and acceptors with fluorine atoms produce large changes, which in turn are dominated by a very sudden large change in B–N bond length occurring in a very narrow range of changing field strength. Analysis of the changes in bond character reveals that HCN–BF3 and CH3CN–BF3 have long bonds in the gas phase, formed primarily through electrostatic interaction between the donor and acceptor. In the short bond in the condensed phase the bond character changes considerably through the introduction of strong electron sharing interactions, i.e. covalent or orbital interactions. Fundamental changes in the nature of the bond, catalysed by surrounding molecules, thus lie at the heart of the large phase-dependent changes in these species.
AFRIKAANSE OPSOMMING: ’n Kohn-Sham elektrondigtheidsteorie (DFT) studie is gedoen op die effek van die omliggende molekules in die kristalstruktuur van sekere molekules wat boor-stikstof bindings bevat. Daar is gevind dat ’n klein aantal molekules, georienteer soos in die eksperimentele kristalstruktuur, benodig word om die groot veranderinge in stuktuur te veroorsaak wat eksperimenteel waargeneem word wanneer HCN–BF3 en CH3CN–BF3 kristaliseer. Spesifiek, die byvoeging van sewe molekules verminder die B–N bindingslengte met 0.735 °A in (HCN–BF3)8 en 0.654 A° in (CH3CN–BF3)8. Die groot veranderinge in B–N bindingslengte gaan saam met ewe groot veranderinge in die N–B–F hoek. ’n Ondersoek van die struktuur van die molekules in terme van gelokaliseerde elektronpare wys dat die beskikbaarheid van alleenpare, wat naby die B–N bindingsas lˆe, ’n belangrike rol speel in the verandering in bindingslengte. Deur delokalisasie van die fluoor alleenpare word die antibindende σ ∗(B–N) orbitaal toenemend beset soos die N–B–F hoek afneem en omgekeerd. Verder is die spesifieke effek van dipool-dipool interaksies ondersoek deur uniforme elektriese velde aan te lˆe langs the donor-akseptor bindingsas van ’n reeks komplekse van die vorm X–Y; X = H3N, HCN, CH3CN; Y = BF3, BH3, SO3. Al die komplekse toon sensitiwiteit teenoor die eksterne elektriese veld, maar net die verbindings wat nitriel akseptore en fluoor atome aan the donor fragmente het, toon groot veranderinge, wat op hulle beurt weer oorskadu word deur ’n skielike verandering in the B–N bindingslengte in ’n nou band van veranderende veldsterkte. Analise van die veranderinge in bindingskarakter toon dat HCN–BF3 en CH3CN–BF3 lang bindings in die gasfase het, wat hoofsaaklik gevorm word deur elektrostatiese interaksies tussen die donor en akseptor fragmente. In die kort binding in die kristalfase is daar ’n aansienlike verandering in the karakter as gevolg van die intrede van sterk elektrondelingsinteraksies, m.a.w. kovalente of orbitaalinteraksies. Fundamentele veranderinge in the manier wat die binding saamgestel word, wat gekataliseer word deur omliggende molekules, is dus die oorsaak van die groot faseafhanklike veranderinge.
Blocher, Richard Paul. "Predictive Tools for the Improvement of Shape Memory Alloy Performance." The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1556022653899471.
Full textBryant, Mathew James. "Platinum pincer complexes : in pursuit of switchable materials." Thesis, University of Bath, 2016. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.678854.
Full textBooks on the topic "Science / Crystallography"
Prince, Edward. Mathematical techniques in crystallography andmaterial science. 2nd ed. Berlin: Springer-Verlag, 1994.
Find full textPrince, Edward. Mathematical techniques in crystallography and materials science. 3rd ed. Berlin: Springer, 2004.
Find full textPrince, Edward. Mathematical techniques in crystallography and materials science. 2nd ed. Berlin: Springer-Verlag, 1994.
Find full textPrince, Edward. Mathematical Techniques in Crystallography and Materials Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994.
Find full textPrince, Edward. Mathematical Techniques in Crystallography and Materials Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-97576-9.
Full textPrince, Edward. Mathematical Techniques in Crystallography and Materials Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-642-18711-7.
Full textB, McMahon, ed. International Tables for Crystallography Volume G: Definition and exchange of crystallographic data. Dordrecht: International Union of Crystallography, 2005.
Find full textGottstein, Günter. Physical Foundations of Materials Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004.
Find full textHašek, J. X-Ray and Neutron Structure Analysis in Materials Science. Boston, MA: Springer US, 1989.
Find full textBook chapters on the topic "Science / Crystallography"
Mittemeijer, Eric J. "Crystallography." In Fundamentals of Materials Science, 103–200. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-10500-5_4.
Full textMackay, Alan L. "Generalised Crystallography." In Science on Form, 615–20. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-3757-4_72.
Full textMackay, Alan L. "Generalized Crystallography." In Science of Crystal Structures, 37–42. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19827-9_4.
Full textTse, J. S. "Computational High Pressure Science." In High-Pressure Crystallography, 179–98. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2102-2_12.
Full textLorente, Miguel, and Peter Kramer. "Non-Euclidean Crystallography." In Symmetries in Science VIII, 315–29. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-1915-7_23.
Full textJenkins, Stephen J. "Crystallography of Surfaces." In Springer Handbook of Surface Science, 99–118. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-46906-1_4.
Full textFinney, John L. "Crystallography Without a Lattice." In Science of Crystal Structures, 53–68. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19827-9_6.
Full textHauptman, Herbert A. "History of X-Ray Crystallography." In Science of Crystal Structures, 19–22. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19827-9_2.
Full textCarey, Paul. "Raman Crystallography, the Missing Link Between Biochemical Reactions and Crystallography." In NATO Science for Peace and Security Series A: Chemistry and Biology, 13–24. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-017-8550-1_2.
Full textPechkova, Eugenia, and Claudio Nicolini. "From Art to Science in Protein Crystallography." In Proteomics and Nanocrystallography, 99–136. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4615-0041-4_4.
Full textConference papers on the topic "Science / Crystallography"
Gibson, Walter M., Arthur J. Schultz, James W. Richardson, John M. Carpenter, David F. R. Mildner, Heather H. Chen-Mayer, M. E. Miller, et al. "Convergent beam neutron crystallography." In Optical Science and Technology, SPIE's 48th Annual Meeting, edited by F. Patrick Doty, H. Bradford Barber, and Hans Roehrig. SPIE, 2004. http://dx.doi.org/10.1117/12.510736.
Full textDuff, Anthony P. "Protein Perdeuteration for Neutron Crystallography." In Proceedings of the 3rd International Symposium of Quantum Beam Science at Ibaraki University "Quantum Beam Science in Biology and Soft Materials (ISQBSS2018)". Journal of the Physical Society of Japan, 2019. http://dx.doi.org/10.7566/jpscp.25.011003.
Full textvan der Plas, J. L., and Rick P. Millane. "Ab-initio phasing in protein crystallography." In International Symposium on Optical Science and Technology, edited by Michael A. Fiddy and Rick P. Millane. SPIE, 2000. http://dx.doi.org/10.1117/12.409276.
Full textPatel, Manjula, Simon Coles, David Giaretta, Stephen Rankin, and Brian McIlwrath. "The Role of OAIS Representation Information in the Digital Curation of Crystallography Data." In 2009 5th IEEE International Conference on e-Science (e-Science). IEEE, 2009. http://dx.doi.org/10.1109/e-science.2009.27.
Full textScheidig, Axel J. "Time-resolved crystallography on p21H-ras." In SPIE's 1995 International Symposium on Optical Science, Engineering, and Instrumentation, edited by Peter M. Rentzepis. SPIE, 1995. http://dx.doi.org/10.1117/12.218361.
Full textHuang, Huapeng, Carolyn A. MacDonald, Walter M. Gibson, D. C. Carter, J. X. Ho, J. R. Ruble, and Igor Y. Ponomarev. "Low-power protein crystallography using polycapillary optics." In International Symposium on Optical Science and Technology, edited by Carolyn A. MacDonald and Ali M. Khounsary. SPIE, 2000. http://dx.doi.org/10.1117/12.405885.
Full textBrooking, Charles, Stephen R. Shouldice, Gautier Robin, Bostjan Kobe, Jennifer L. Martin, and Jane Hunter. "Comparing METS and OAI-ORE for Encapsulating Scientific Data Products: A Protein Crystallography Case Study." In 2009 5th IEEE International Conference on e-Science (e-Science). IEEE, 2009. http://dx.doi.org/10.1109/e-science.2009.29.
Full textRoss, Stephan W., Istvan Naday, Miklos Kanyo, Mary L. Westbrook, Edwin M. Westbrook, Walter C. Phillips, Martin J. Stanton, and Robert A. Street. "Amorphous silicon area detectors for protein crystallography." In IS&T/SPIE's Symposium on Electronic Imaging: Science & Technology, edited by Morley M. Blouke. SPIE, 1995. http://dx.doi.org/10.1117/12.206516.
Full textHeunen, G. W. J. C., A. Puig-Molina, S. Scheres, Clemens Schulze-Briese, Dominique Bourgeois, and Heinz Graafsma. "Broad energy band techniques for perturbation crystallography." In SPIE's International Symposium on Optical Science, Engineering, and Instrumentation, edited by Albert T. Macrander, Andreas K. Freund, Tetsuya Ishikawa, and Dennis M. Mills. SPIE, 1998. http://dx.doi.org/10.1117/12.332503.
Full textStorm, Arjen B., Carsten Michaelsen, Alexandra Oehr, and Christian Hoffmann. "Multilayer optics for Mo-radiation-based crystallography." In Optical Science and Technology, the SPIE 49th Annual Meeting, edited by Carolyn A. MacDonald, Albert T. Macrander, Tetsuya Ishikawa, Christian Morawe, and James L. Wood. SPIE, 2004. http://dx.doi.org/10.1117/12.557153.
Full textReports on the topic "Science / Crystallography"
Miller, Laniece E., and James E. Jr Powell. E-Science and Protein Crystallography. Office of Scientific and Technical Information (OSTI), August 2012. http://dx.doi.org/10.2172/1048386.
Full text