Journal articles on the topic 'Schrödinger–Hardy systems'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 16 journal articles for your research on the topic 'Schrödinger–Hardy systems.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Pucci, Patrizia. "Critical Schrödinger-Hardy systems in the Heisenberg group." Discrete & Continuous Dynamical Systems - S 12, no. 2 (2019): 375–400. http://dx.doi.org/10.3934/dcdss.2019025.
Full textFiscella, Alessio, Patrizia Pucci, and Binlin Zhang. "p-fractional Hardy–Schrödinger–Kirchhoff systems with critical nonlinearities." Advances in Nonlinear Analysis 8, no. 1 (June 30, 2018): 1111–31. http://dx.doi.org/10.1515/anona-2018-0033.
Full textBordoni, Sara, and Patrizia Pucci. "Schrödinger–Hardy systems involving two Laplacian operators in the Heisenberg group." Bulletin des Sciences Mathématiques 146 (July 2018): 50–88. http://dx.doi.org/10.1016/j.bulsci.2018.03.001.
Full textFaraci, Francesca, Csaba Farkas, and Alexandru Kristály. "Multipolar Hardy inequalities on Riemannian manifolds." ESAIM: Control, Optimisation and Calculus of Variations 24, no. 2 (January 26, 2018): 551–67. http://dx.doi.org/10.1051/cocv/2017057.
Full textFiscella, Alessio, Patrizia Pucci, and Sara Saldi. "Existence of entire solutions for Schrödinger–Hardy systems involving two fractional operators." Nonlinear Analysis 158 (July 2017): 109–31. http://dx.doi.org/10.1016/j.na.2017.04.005.
Full textWang, Guotao, and Xueyan Ren. "Radial symmetry of standing waves for nonlinear fractional Laplacian Hardy–Schrödinger systems." Applied Mathematics Letters 110 (December 2020): 106560. http://dx.doi.org/10.1016/j.aml.2020.106560.
Full textZhang, Jian, and Wen Zhang. "Existence and asymptotic behavior of ground states for Schrödinger systems with Hardy potential." Nonlinear Analysis 189 (December 2019): 111586. http://dx.doi.org/10.1016/j.na.2019.111586.
Full textADIMURTHI. "BEST CONSTANTS AND POHOZAEV IDENTITY FOR HARDY–SOBOLEV-TYPE OPERATORS." Communications in Contemporary Mathematics 15, no. 03 (May 19, 2013): 1250050. http://dx.doi.org/10.1142/s0219199712500502.
Full textDE ANGELIS, GIAN FABRIZIO. "PATH INTEGRALS FOR QUBITS." International Journal of Modern Physics B 18, no. 04n05 (February 20, 2004): 617–22. http://dx.doi.org/10.1142/s0217979204024239.
Full textAnaya-Morales, A., and F. Delgado. "Enquiring Electronic Structure Using Quantum Computers: Hands on Qiskit." Journal of Physics: Conference Series 2448, no. 1 (February 1, 2023): 012014. http://dx.doi.org/10.1088/1742-6596/2448/1/012014.
Full textHandy, Carlos R. "Orthonormal polynomial projection quantization: an algebraic eigenenergy bounding method." Acta Polytechnica 62, no. 1 (February 28, 2022): 63–79. http://dx.doi.org/10.14311/ap.2022.62.0063.
Full textKatayama, Haruna, Noriyuki Hatakenaka, and Ken-ichi Matsuda. "Analogue Hawking Radiation in Nonlinear LC Transmission Lines." Universe 7, no. 9 (September 8, 2021): 334. http://dx.doi.org/10.3390/universe7090334.
Full textAl-Jamel, Ahmed. "Heavy quarkonia properties from a hard-wall confinement potential model with conformal symmetry perturbing effects." Modern Physics Letters A 34, no. 37 (December 6, 2019): 1950307. http://dx.doi.org/10.1142/s0217732319503073.
Full textZhong, Xuexiu, and Wenming Zou. "Critical Schrödinger systems in $\mathbb R^N$ with indefinite weight and Hardy potential." Differential and Integral Equations 28, no. 1/2 (January 1, 2015). http://dx.doi.org/10.57262/die/1418310424.
Full textChen, Xi, Ze Wu, Min Jiang, Xin-You Lü, Xinhua Peng, and Jiangfeng Du. "Experimental quantum simulation of superradiant phase transition beyond no-go theorem via antisqueezing." Nature Communications 12, no. 1 (November 1, 2021). http://dx.doi.org/10.1038/s41467-021-26573-5.
Full textLou, S. Y., Xia-zhi Hao, and Man Jia. "Deformation conjecture: deforming lower dimensional integrable systems to higher dimensional ones by using conservation laws." Journal of High Energy Physics 2023, no. 3 (March 2, 2023). http://dx.doi.org/10.1007/jhep03(2023)018.
Full text