Dissertations / Theses on the topic 'Schémas numériques pour les EDS'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Schémas numériques pour les EDS.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Menozzi, Stéphane. "Discrétisations associées à un processus dans un domaine et Schémas numériques probabilistes pour les EDP paraboliques quasi-linéaires." Paris 6, 2004. https://tel.archives-ouvertes.fr/tel-00008769.
Full textTan, Xiaolu. "Méthodes de contrôle stochastique pour le problème de transport optimal et schémas numériques de type Monte-Carlo pour les EDP." Phd thesis, Ecole Polytechnique X, 2011. http://tel.archives-ouvertes.fr/tel-00661086.
Full textPham, Duc Toan. "Développement de schémas de découplage pour la résolution de systèmes dynamiques sur architecture de calcul distribuée." Phd thesis, Université Claude Bernard - Lyon I, 2010. http://tel.archives-ouvertes.fr/tel-00838596.
Full textZou, Yiyi. "Couverture d'options dans un marché avec impact et schémas numériques pour les EDSR basés sur des systèmes de particules." Thesis, Paris Sciences et Lettres (ComUE), 2017. http://www.theses.fr/2017PSLED074/document.
Full textClassical derivatives pricing theory assumes frictionless market and infinite liquidity. These assumptions are however easily violated in real market, especially for large trades and illiquid assets. In this imperfect market, one has to consider the super-replication price as perfect hedging becomes infeasible sometimes.The first part of this dissertation focuses on proposing a model incorporating both liquidity cost and price impact. We start by deriving continuous time trading dynamics as the limit of discrete rebalancing policies. Under the constraint of holding zero underlying stock at the inception and the maturity, we obtain a quasi-linear pricing equation in the viscosity sense. A perfect hedging strategy is provided as soons as the equation admits a smooth solution. When it comes to hedging a covered European option under gamma constraint, the dynamic programming principle employed previously is no longer valid. Using stochastic target and partial differential equation smoothing techniques, we prove the super-replication price now becomes the viscosity solution of a fully non-linear parabolic equation. We also show how ε-optimal strategies can be constructed, and propose a numerical resolution scheme.The second part is dedicated to the numerical resolution of the Backward Stochastic Differential Equation (BSDE). We propose a purely forward numerical scheme, which first approximates an arbitrary Lipschitz driver by local polynomials and then applies the Picard iteration to converge to the original solution. Each Picard iteration can be represented in terms of branching diffusion systems, thus avoiding the usual estimation of conditional expectation. We also prove the convergence on an unlimited time horizon. Numerical simulation is also provided to illustrate the performance of the algorithm
N'Diaye, Mamadou. "Étude et développement de méthodes numériques d’ordre élevé pour la résolution des équations différentielles ordinaires (EDO) : Applications à la résolution des équations d'ondes acoustiques et électromagnétiques." Thesis, Pau, 2017. http://www.theses.fr/2017PAUU3023/document.
Full textIn this thesis, we study and develop different families of time integration schemes for linear ODEs. After presenting the space discretisation methods and a review of classical Runge-Kutta schemes in the first part, we construct high-order A-stable time integration schemes for an arbitrary order with low-dissipation and low-dispersion effects in the second part. Then we develop explicit schemes with an optimal CFL number for a typical profile of spectrum. The obtained CFL number and the efficiency on the typical profile for each explicit scheme are given. Pursuing our aim, we propose a methodology to construct locally implicit methods of arbitrary order. We present the locally implicit methods obtained from the combination of the A-stable implicit schemes we have developed and explicit schemes with optimal CFL number. We use them to solve the acoustic wave equation and provide convergence curves demonstrating the performance of the obtained schemes. In addition of the different 1D and 2D validation tests performed while solving the acoustic wave equation, we present numerical simulation results for 3D acoustic wave and the Maxwell’s equations in the last part
Therme, Nicolas. "Schémas numériques pour la simulation de l'explosion." Thesis, Aix-Marseille, 2015. http://www.theses.fr/2015AIXM4775/document.
Full textIn nuclear facilities, internal or external explosions can cause confinement breaches and radioactive materials release in the environment. Hence, modeling such phenomena is crucial for safety matters. The purpose of this thesis is to contribute to the creation of efficient numerical schemes to solve these complex models. The work presented here focuses on two major aspects: first, the development of consistent schemes for the Euler equations which model the blast waves, then the buildup of reliable schemes for the front propagation, like the flame front during the deflagration phenomenon. Staggered discretization is used in space for all the schemes. It is based on the internal energy formulation of the Euler system, which insures its positivity and the positivity of the density. A discrete kinetic energy balance is derived from the scheme and a source term is added in the discrete internal energy balance equation to preserve the exact total energy balance. High order, MUSCL-like interpolators are used in the discrete momentum operators. The resulting scheme is consistent (in the sense of Lax) with the weak entropic solutions of the continuous problem. We use the properties of Hamilton-Jacobi equations to build a class of finite volume schemes compatible with a large number of meshes to model the flame front propagation. These schemes satisfy a maximum principle and have important consistency and monotonicity properties. These latters allows to derive a convergence result for the schemes based on Cartesian grids
Dardalhon, Fanny. "Schémas Numériques pour la Simulation des Grandes Echelles." Phd thesis, Aix-Marseille Université, 2012. http://tel.archives-ouvertes.fr/tel-00766722.
Full textDzonou, Nganjip Raoul. "Convergence de schémas numériques pour des problèmes d'impact." Saint-Etienne, 2007. http://www.theses.fr/2007STET4002.
Full textThe dynamics of systems with a finite number of degrees of freedom and non trivial inertia matrix which are submitted to a single perfect unilateral constraint is studied. The local impact law consists in the transmission of the tangential component of the velocity and the reflexion of the normal component which is multiplied by the restitution coefficient e Є [0,1]. By adopting the measure-differential formulation of J. J. Moreau, a velocity-based time-stepping method is developed, reminiscent of the catching-up algorithm for sweeping processes. It is shown that the numerical solutions converge to a solution of the problem
Campana, Lorenzo. "Modélisation stochastique de particules non sphériques en turbulence." Thesis, Université Côte d'Azur, 2022. http://www.theses.fr/2022COAZ4019.
Full textThe motion of small non- spherical particles suspended in a turbulent flow is relevant for a large variety of natural and industrial applications such as aerosol dynamics in respiration, red blood cells motion, plankton dynamics, ice in clouds, combustion, to name a few. Anisotropic particles react on turbulent flows in complex ways, which depend on a wide range of parameters (shape, inertia, fluid shear). Inertia-free particles, with size smaller than the Kolmogorov length, follow the fluid motion with an orientation generally defined by the local turbulent velocity gradient. Therefore, this thesis is focused on the dynamics of these objects in turbulence exploiting stochastic Lagrangian methods. The development of a model that can be used as predictive tool in industrial computational fluid dynamics (CFD) is highly valuable for practical applications in engineering. Models that reach an acceptable compromise between simplicity and accuracy are needed for progressing in the field of medical, environmental and industrial processes. The formulation of a stochastic orientation model is studied in two-dimensional turbulent flow with homogeneous shear, where results are compared with direct numerical simulations (DNS). Finding analytical results, scrutinising the effect of the anisotropies when they are included in the model, and extending the notion of rotational dynamics in the stochastic framework, are subjects addressed in our work. Analytical results give a reasonable qualitative response, even if the diffusion model is not designed to reproduce the non-Gaussian features of the DNS experiments. The extension to the three-dimensional case showed that the implementation of efficient numerical schemes in 3D models is far from straightforward. The introduction of a numerical scheme with the capability to preserve the dynamics at reasonable computational costs has been devised and the convergence analysed. A scheme of splitting decomposition of the stochastic differential equations (SDE) has been developed to overcome the typical instability problems of the Euler–Maruyama method, obtaining a mean-square convergence of order 1/2 and a weakly convergence of order 1, as expected. Finally, model and numerical scheme have been implemented in an industrial CFD code (Code_Saturne) and used to study the orientational and rotational behaviour of anisotropic inertia-free particles in an applicative prototype of inhomogeneous turbulence, i.e. a turbulent channel flow. This real application has faced two issues of the modelling: the numerical implementation in an industrial code, and whether and to which extent the model is able to reproduce the DNS experiments. The stochastic Lagrangian model for the orientation in the CFD code reproduces with some limits the orientation and rotation statistics of the DNS. The results of this study allows to predict the orientation and rotation of aspherical particles, giving new insight into the prediction of large scale motions both, in two-dimensional space, of interest for geophysical flows, and in three-dimensional industrial applications
Madaule, Éric. "Schémas numériques adaptatifs pour les équations de Vlasov-Poisson." Thesis, Université de Lorraine, 2016. http://www.theses.fr/2016LORR0112/document.
Full textMany numerical experiments are performed on the Vlasov-Poisson problem since it is a well known system from plasma physics and a major issue for future simulation of large scale plasmas. Our goal is to develop adaptive numerical schemes using discontinuous Galerkin discretisation combined with semi-Lagrangian description whose mesh refinement based on multi-wavelets. The discontinuous Galerkin formulation enables high-order accuracy with local data for computation. It has recently been widely studied by Ayuso de Dioset al., Rossmanith et Seal, etc. in an Eularian framework, while Guo, Nair and Qiu or Qiu and Shu or Bokanowski and Simarta performed semi-Lagrangian time resolution. We use multi-wavelets framework for the adaptive part. Those have been heavily studied by Alpert et al. during the nineties and the two thousands. Some works merging multi-scale resolution and discontinuous Galerkin methods have been described by Müller and his colleagues in 2014 for non-linear hyperbolic conservation laws in the finite volume framework. In the framework of relativistic Vlasov equation, Besse, Latu, Ghizzo, Sonnendrücker and Bertrand presented the advantage of using adaptive meshes. While they used wavelet decomposition, which requires large data stencil, multi-wavelet decomposition coupled to discontinuous Galerkin discretisation only requires local stencil. This favours the parallelisation but, at the moment, semi-Lagrangian remains an obstacle to highly efficient distributed memory parallelisation. Although most of our work is done in a 1d × 1v phase space, we were able to obtain a few results in a 2d × 2v phase space
Ciccoli, Marie Claude. "Schémas numériques efficaces pour le calcul d'écoulements hypersoniques réactifs." Nice, 1992. http://www.theses.fr/1992NICE4574.
Full textGougeon, Ludivine. "Comparaison de schémas numériques pour la simulation d'écoulements turbulents réactifs." Phd thesis, Université d'Orléans, 2007. http://tel.archives-ouvertes.fr/tel-00282242.
Full textLe premier code, basé sur des schémas aux différences finies compactes centrées d'ordre 6, très précis et non dissipatifs, permet la simulation numérique directe (DNS) d'écoulements 3D turbulents sans chocs, en géométrie cartésienne. Ce code n'introduit pas de dissipation numérique et sert de référence pour tester l'approche MILES.
Le second code s'appuie sur l'utilisation de méthodes récentes à capture de chocs : les schémas WENO. La formulation aux différences finies des schémas WENO d'ordre 3 à 11 est implémentée dans un code bidimensionnel. Le pouvoir de résolution des schémas WENO des différents ordres est évalué par analyse linéaire. Les problèmes spécifiques au cas multi-espèces sont mis en évidence et la positivité des fractions massiques est respectée grâce à la méthode de Larrouturou. Les différentes reconstructions ainsi que l'ordre du schéma sont évalués sur une série de cas test.
Les deux codes font l'objet d'une comparaison sur la simulation d'une flamme 1D laminaire de prémélange et d'un jet 2D turbulent réactif H2/air. Enfin, les potentialités du schéma WENO sont démontrées sur une onde de détonation puis sur une interaction réactive onde de choc/bulle d'hydrogène.
Mbinky, Estelle. "Adaptation de maillages pour des schémas numériques d'ordre très élevé." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2013. http://tel.archives-ouvertes.fr/tel-00923773.
Full textJung, Jonathan. "Schémas numériques adaptés aux accélérateurs multicoeurs pour les écoulements bifluides." Phd thesis, Université de Strasbourg, 2013. http://tel.archives-ouvertes.fr/tel-00876159.
Full textBlachère, Florian. "Schémas numériques d'ordre élevé et préservant l'asymptotique pour l'hydrodynamique radiative." Thesis, Nantes, 2016. http://www.theses.fr/2016NANT4020/document.
Full textThe aim of this work is to design a high-order and explicit finite volume scheme for specific systems of conservation laws with source terms. Those systems may degenerate into diffusion equations under some compatibility conditions. The degeneracy is observed with large source term and/or with late-time. For instance, this behaviour can be seen with the isentropic Euler model with friction or with the M1 model for radiative transfer, or with the radiation hydrodynamics model. We propose a general theory to design a first-order asymptotic preserving scheme (in the sense of Jin) to follow this degeneracy. The scheme is proved to be stable and consistent under a classical hyperbolic CFL condition in both hyperbolic and diffusive regimes, for any 2D unstructured mesh. Moreover, we justify that the developed scheme also preserves the set of admissible states in all regimes, which is mandatory to conserve physical solutions. This construction is achieved by using the non-linear scheme of Droniou and Le Potier as a target scheme for the diffusive equation, which gives the form of the global scheme for the complete system of conservation laws. Then, the high-order scheme is constructed with polynomial reconstructions and the MOOD paradigm as a limiter. The main difficulties are the preservation of the set of admissible states in both regimes on unstructured meshes and to deal with the high-order polynomial reconstruction in the diffusive limit without losing the asymptotic preserving property. Numerical results are provided to validate the scheme in all regimes, with the first and high-order versions
Gougeon, Ludivine. "Comparaison de schémas numériques pour la simulation d’écoulements turbulents réactifs." Orléans, 2007. http://www.theses.fr/2007ORLE2024.
Full textMbinky, Estelle Carine. "Adaptation de maillages pour des schémas numériques d'ordre très élevé." Paris 6, 2013. http://www.theses.fr/2013PA066696.
Full textMesh adaptation is an iterative process which consists in changing locally the size and orientation of the mesh according the behavior of the studied physical solution. It generates the best mesh for a given problem and a fix number of degrees of freedom. Mesh adaptation methods have proven to be extremely effective in reducing significantly the mesh size for a given precision and reaching quickly an second-order asymptotic convergence for problems containing singularities when they are coupled to high order numerical methods. In metric-based mesh adaptation, two approaches have been proposed: Multi-scale methods based on a control of the interpolation error in Lp-norm and Goal oriented methods that control the approximation error of a functional through the use of the adjoint state. However, with the emergence of very high order numerical methods such as the discontinuous Galerkin method, it becomes necessary to take into account the order of the numerical scheme in mesh adaptation process. Mesh adaptation is even more crucial for such schemes as they converge to first-order in flow singularities. Therefore, the mesh refinement at the singularities of the solution must be as important as the order of the method is high. This thesis deals with the extension of the theoretical and numerical results getting in the case of mesh adaptation for piecewise linear solutions to high order piecewise polynomial solutions. These solutions are represented using kth-order Lagrangian finite elements (k ≥ 2). This thesis will focus on modeling the local interpolation error of order k ≥ 3 on a continuous mesh. However, for metric-based mesh adaptation methods, the error model must be a quadratic form, which shows an intrinsic metric space. Therefore, to be able to produce such an area, it is necessary to decompose the homogeneous polynomial and to approximate it by a quadratic form taken at power k. This modeling allows us to define a metric field necessary to communicate with the mesh generator. The decomposition method will be an extension of the diagonalization method to high order homogeneous polynomials. Indeed, in 2D and 3D, symmetric tensor decomposition methods such as Sylvester decomposition and its extension to high dimensions will allow us to decompose locally the error function, then, to deduce the quadratic error model. Then, this local error model is used to control the overall error in Lp-norm and the optimal mesh is obtained by minimizing this error. In this thesis, we seek to demonstrate the kth-order convergence of high order mesh adaptation method for analytic functions and numerical simulations using kth-order solvers (k ≥ 3)
Larcher, Aurélien. "Schémas numériques pour les modèles de turbulence statistiques en un point." Phd thesis, Université de Provence - Aix-Marseille I, 2010. http://tel.archives-ouvertes.fr/tel-00553161.
Full textDorogan, Kateryna. "Schémas numériques pour la modélisation hybride des écoulements turbulents gaz-particules." Phd thesis, Aix-Marseille Université, 2012. http://tel.archives-ouvertes.fr/tel-00820978.
Full textLhebrard, Xavier. "Analyse de quelques schémas numériques pour des problèmes de shallow water." Thesis, Paris Est, 2015. http://www.theses.fr/2015PESC1019/document.
Full textWe build and analyze mathematically numerical approximations by finite volume methods of weak solutions to hyperbolic systems for geophysical flows. In a first part we approximate the solutions of the shallow water magneto hydrodynamics system with flat bottom. We develop a Godunov scheme using an approximate Riemann solver defined via a relaxation method. Explicit formulas are established for the relaxation speeds, that lead to a scheme satisfying good properties of consistency and stability. It preserves mass, positivity of the fluid height, satisfies a discrete entropy inequality, resolves contact discontinuities, and involves propagation speeds controlled by the initial data. Several numerical tests are performed, endorsing the theoretical results. In a second part we approximate the solutions of the shallow water magneto hydrodynamics system with non-flat bottom. We develop a well-balanced scheme for several steady states at rest. We use the hydrostatic reconstruction method, with reconstructed states for the fluid height and the magnetic field. We get some new corrective terms for the numerical fluxes with respect to the classical framework, and we prove that the obtained scheme preserves the positivity of height, satisfies a semi-discrete entropy inequality, and is consistent. Several numerical tests are presented, endorsing the theoretical results. In a third part we prove the convergence of a kinetic scheme with hydrostatic reconstruction for the Saint-Venant system with topography. Some new estimates on the gradient of approximate solutions are established, by the analysis of energy dissipation. The convergence is obtained by the compensated compactness method, under some hypotheses concerning the initial data and the regularity of the topography
Nguyen, Tan trung. "Schémas numériques explicites à mailles décalées pour le calcul d'écoulements compressibles." Thesis, Aix-Marseille, 2013. http://www.theses.fr/2013AIXM4705/document.
Full textWe develop and analyse explicit in time schemes for the computation of compressible flows, based on staggered in space. Upwinding is performed equation by equation only with respect to the velocity. The pressure gradient is built as the transpose of the natural divergence. For the barotropic Euler equations, the velocity convection is built to obtain a discrete kinetic energy balance, with residual terms which are non-negative under a CFL condition. We then show that, in 1D, if a sequence of discrete solutions converges to some limit, then this limit is the weak entropy solution. For the full Euler equations, we choose to solve the internal energy balance since a discretization of the total energy is rather unnatural on staggered meshes. Under CFL-like conditions, the density and internal energy are kept positive, and the total energy cannot grow. To obtain correct weak solutions with shocks satisfying the Rankine-Hugoniot conditions, we establish a kinetic energy identity at the discrete level, then choose the source term of the internal energy equation to recover the total energy balance at the limit. More precisely speaking, we prove that in 1D, if we assume the L∞ and BV-stability and the convergence of the scheme, passing to the limit in the discrete kinetic and internal energy equations, we show that the limit of the sequence of solutions is a weak solution. Finally, we consider the computation of radial flows, governed by Euler equations in axisymetrical (2D) or spherical (3D) coordinates, and obtain similar results to the previous sections. In all chapters, we show numerical tests to illustrate for theoretical results
Vazquez, gonzalez Thibaud. "Schémas numériques mimétiques et conservatifs pour la simulation d'écoulements multiphasiques compressibles." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLC051/document.
Full textIn some highly demanding fluid dynamics simulations, it appears necessary tosimulate multiphase flows involving numerous constraints at the same time : large numbers of fluids, both isentropic and strongly shocked compressible evolution, highly variable and contrasted equations of state, large deformations, and transport over large distances. Fulfilling such a challengein a robust and tractable way demands that thermodynamic consistency of the numerical scheme be carefully ensured.In the first chapter, a Lagrange plus remap scheme is proposed for the simulation of two-phase flows with a dissipation-free six-equation bakcbone model. The importance of the property of isentropic flow preservation is highlighted with a comparison with Ransom test results fromthe literature. This chapter also also point out certain limitations of the Lagrange plus remap approach for multiphase simulations.In order to overcome these limitations, a novel derivation procedure is proposed to construct a mimetic scheme for the simulation of unsteady and compressible flows in a direct ALE (ArbitraryLagrangian-Eulerian) formalism. The possibility to choose a priori the degrees of freedom allows to obtain a continuity with historical staggered scheme, while imposing conservativity at discretelevel. The discrete momentum evolution equation is obtained by application of a variational principle, thus natively ensuring the thermodynamic consistency of pressure efforts. This approach is applied to single-fluid flows as a proof of concept in Chapter 3, then it is extended to N-phasecompressible flows in Chapter 4. Single- and multi-phase tests show satisfactory behavior in terms on conservation, versatility to grid motions, and robustness
Decoene, Astrid. "Modèle hydrostatique pour les écoulements à surface libre tridimensionnels et schémas numériques." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2006. http://tel.archives-ouvertes.fr/tel-00180003.
Full textNous proposons d'une part une nouvelle formulation variationnelle du problème hydrostatique aboutissant à un problème semi-discretisé en temps bien posé. Nous en faisons l'analyse mathématique et nous montrons quelques résultats numériques obtenus après programmation de l'approximation de ce problème dans le logiciel Telemac-3D développé au Laboratoire National d'Hydraulique et Environnement (LNHE) d'edf.
D'autre part, nous étudions la réinterprétation dans le cadre ALE de la méthode de discrétisation verticale de domaines tridimensionnels appelée transformation sigma, et nous en proposons une généralisation permettant d'améliorer la représentation des stratifications dans un écoulement
Finalement, nous présentons un schéma ALE-MURD conservatif pour la résolution des équations de convection linéaires posées sur un domaine mobile. Une condition particulière doit être vérifiée afin que le schéma soit conservatif lorsque le domain bouge effectivement. Nous montrons comment assurer cette contrainte dans le cas particulier où le domaine est tridimensionnel et ne bouge que selon la verticale. Ce résultat est illustré dans le cadre des écoulements à surface libre en dimension trois.
Enchéry, Guillaume. "Modèles et schémas numériques pour la simulation de genèse de bassins sédimentaires." Phd thesis, Université de Marne la Vallée, 2004. http://tel.archives-ouvertes.fr/tel-00007371.
Full textet à la simulation de genèse de bassins sédimentaires.
Nous présentons tout d'abord les modèles mathématiques et
les schémas numériques mis en oeuvre à l'Institut Français
du Pétrole dans le cadre du projet Temis. Cette première partie
est illustrée à l'aide de tests numériques portant sur des bassins 1D/2D.
Nous étudions ensuite le schéma amont des pétroliers utilisé pour la résolution des équations de Darcy et nous établissons des résultats mathématiques nouveaux
dans le cas d'un écoulement de type Dead-Oil.
Nous montrons également comment construire un schéma à nombre
de Péclet variable en présence de pression capillaire.
Là encore, nous effectuons une étude mathématique
détaillée et nous montrons la convergence du schéma
dans un cas simplifié. Des tests numériques réalisés
sur un problème modèle montrent que l'utilisation d'un nombre
de Péclet variable améliore la précision des calculs.
Enfin nous considérons dans une dernière partie
un modèle d'écoulement où les changements de lithologie et
les changements de courbes de pression capillaire sont liés.
Nous précisons la condition physique que doivent vérifier
les solutions en saturation aux interfaces de changement de roche et
nous en déduisons une formulation faible originale.
L'existence d'une solution à ce problème est obtenue
par convergence d'un schéma volumes finis.
Des exemples numériques montrent l'influence de la condition
d'interface sur le passage ou la retenue des hydrocarbures.
Nadau, Lionel. "Schémas numériques instationnaires pour des écoulements multiphasiques multiconstituants dans des bassins sédimentaires." Phd thesis, Université de Pau et des Pays de l'Adour, 2003. http://tel.archives-ouvertes.fr/tel-00003624.
Full textChampier, Sylvie. "Convergence de schémas numériques type Volumes finis pour la résolution d'équations hyperboliques." Saint-Etienne, 1992. http://www.theses.fr/1992STET4007.
Full textFahim, Arash. "Une Méthode Numérique Probabiliste pour les Équations aux Dérivées Partielles Paraboliques et complètement non-linéaires." Phd thesis, Ecole Polytechnique X, 2010. http://tel.archives-ouvertes.fr/tel-00540175.
Full textMezine, Mohamed. "Conception de schémas distributifs pour l'aérodynamique stationnaire et instationnaire." Bordeaux 1, 2002. http://www.theses.fr/2002BOR12594.
Full textAgut, Cyril. "Schémas numériques d'ordre élevé en temps et en espace pour l'équation des ondes." Phd thesis, Université de Pau et des Pays de l'Adour, 2011. http://tel.archives-ouvertes.fr/tel-00688937.
Full textHettena, Elie. "Schémas numériques pour la résolution des équations des écoulements hypersoniques à l'équilibre chimique." Nice, 1989. http://www.theses.fr/1989NICE4307.
Full textHallo, Ludovic. "Etude de schémas numériques pour la simulation des écoulements tridimensionnels turbulents compressibles réactifs." Ecully, Ecole centrale de Lyon, 1995. http://www.theses.fr/1995ECDL0002.
Full textSei, Alain. "Etude de schémas numériques pour des modèles de propagation d'ondes en milieux hétérogènes." Paris 9, 1991. https://portail.bu.dauphine.fr/fileviewer/index.php?doc=1991PA090029.
Full textHoarau, Emma. "Mise en évidence de la brisure de symétrie des schémas numériques pour l'aérodynamique et développement de schémas préservant ces symétries." Paris 6, 2009. http://www.theses.fr/2009PA066650.
Full textBouzat, Nicolas. "Algorithmes à grain fin et schémas numériques pour des simulations exascales de plasmas turbulents." Thesis, Strasbourg, 2018. http://www.theses.fr/2018STRAD052/document.
Full textRecent high performance computing architectures come with more and more cores on a greater number of computational nodes. Memory buses and communication networks are facing critical levels of use. Programming parallel codes for those architectures requires to put the emphasize on those matters while writing tailored algorithms. In this thesis, a plasma turbulence simulation code is analyzed and its parallelization is overhauled. The gyroaverage operator benefits from a new algorithm that is better suited with regard to its data distribution and that uses a computation -- communication overlapping scheme. Those optimizations lead to an improvement by reducing both execution times and memory footprint. We also study new designs for the code by developing a prototype based on task programming model and an asynchronous communication scheme. It allows us to reach a better load balancing and thus to achieve better execution times by minimizing communication overheads. A new reduced mesh is introduced, shrinking the overall mesh size while keeping the same numerical accuracy but at the expense of more complex operators. This prototype also uses a new data distribution and twists the mesh to adapt to the complex geometries of modern tokamak reactors. Performance of the different optimizations is studied and compared to that of the current code. A case scaling on a large number of cores is given
Bergeret, Nicolas. "Contribution à l'étude des schémas numériques d'ordre élevé pour les équations de propagation d'ondes." Pau, 1987. http://www.theses.fr/1987PAUU3004.
Full textAuffray, Valérie. "Étude comparative de schémas numériques pour la modélisation de phénomènes diffusifs sur maillages multiéléments." Toulouse, INPT, 2007. http://ethesis.inp-toulouse.fr/archive/00000455/.
Full textInitially, the CFD code N3S-Natur used a Finite Volum/Finite Element approach that is only defined an triangular and tetrahedral cells. The objective of this work is to define a new numerical method that can handle hybrid meshes. First, we extend the metric to all kinds of elements. Then, six différent modellings for the diffusive operator, that constitute the main issue, are proposed and tested. These methods are studied in terms of consistency, accuracy and stability. The comparison is carried out both theoretically and numerically using grid convergence and Fourier analysis. Only one method satisfies all the industrial criteria and is therefore implemented in the code. The higher order schemes for the convective operator are modified consequently and the linerisation of the new diffusive flux, that is required for the implication, is treated. The code is successfully validated on a flat plate test case
Nabet, Flore. "Schémas volumes finis pour des problèmes multiphasiques." Thesis, Aix-Marseille, 2014. http://www.theses.fr/2014AIXM4359/document.
Full textThis manuscript is devoted to the numerical analysis of finite-volume schemes for the discretization of two particular equations. First, we study the Cahn-Hilliard equation with dynamic boundary conditions whose one of the main difficulties is that this boundary condition is a non-linear parabolic equation on the boundary coupled with the interior of the domain. We propose a spatial finite-volume discretization which is well adapted to the coupling of the dynamics in the domain and those on the boundary by the flux term. Moreover this kind of scheme accounts naturally for the non-flat geometry of the boundary. We prove the existence and the convergence of the discrete solutions towards a weak solution of the system. Second, we study the Inf-Sup stability of the discrete duality finite volume (DDFV) scheme for the Stokes problem. We give a complete analysis of the unconditional Inf-Sup stability in some cases and of codimension 1 Inf-Sup stability for Cartesian meshes. We also implement a numerical method which allows us to compute the Inf-Sup constant associated with this scheme for a given mesh. Thus, we can observe the stable or unstable behaviour that can occur depending on the geometry of the meshes. In a last part we propose a DDFV scheme for a Cahn-Hilliard/Stokes phase field model that required the introduction of new discrete operators. We prove the dissipation of the energy in the discrete case and the existence of a solution to the discrete problem. All these research results are validated by extensive numerical results
Peyrard, Pierre-François. "Méthodes numériques pour les équations de la magnétohydrodynamique multidimensionnelles : application aux plasmas spatiaux." Toulouse, ENSAE, 1998. http://www.theses.fr/1998ESAE0008.
Full textFaraj, Ali. "Méthodes asymptotiques et numériques pour le transport quantique résonnant." Phd thesis, Université Paul Sabatier - Toulouse III, 2008. http://tel.archives-ouvertes.fr/tel-00365647.
Full textDans une première partie, nous proposons des méthodes numériques pour la simulation de RTD. Pour résoudre le problème de Shrödinger-Poisson -- en une variable d'espace et en domaine non borné -- qui correspond, nous proposons une méthode de référence valide pour un maillage fin en fréquence autour des résonances. Le travail est motivé par l'écriture d'un algorithme permettant de retrouver les résultats de la méthode de référence en s'affranchissant de la contrainte de raffinement en fréquence qui rend les temps de calcul excessifs. Nous proposons une méthode consistant en la décomposition des fonctions d'onde en une partie non résonnante et une partie résonnante, la dernière nécessitant un calcul précis du mode résonnant et de la valeur de la résonance. En régime stationnaire, la totalité de l'information résonnante est captée sans avoir à raffiner le maillage en fréquence. La principale nouveauté a été d'adapter cette méthode en régime instationnaire.
Dans une deuxième partie, nous comparons notre algorithme de référence à l'algorithme de Bonnaillie-Noël, Nier et Patel basé sur un modèle réduit obtenu en réalisant la limite semi-classique h tend vers 0 et intéressant par son temps de calcul. En régime stationnaire, la comparaison a permis de vérifier l'existence de certaines branches de la courbe courant/tension de la RTD prévues par le modèle réduit. Dans le cas de deux puits, nous avons utilisé notre algorithme instationnaire dans une région de la différence de potentiel où un croisement des énergies résonnantes associées à chaque puits se produit donnant une évidence numérique de l'occurrence de phénomènes de battement de la charge d'un puits à l'autre.
En vue d'obtenir des modèles réduits similaires à celui étudié dans la deuxième partie, on réalise, dans une troisième partie, l'étude asymptotique d'un système de Schrödinger-Poisson stationnaire considéré sur un domaine borné inclus dans R^d, d<=3, avec un potentiel extérieur décrivant un puits quantique. L'Hamiltonien du système est composé de contributions -- le puits du potentiel extérieur plus un terme non linéaire répulsif -- qui s'étendent sur des échelles de longueurs différentes dont le rapport est donné en fonction du paramètre semi-classique h destiné à tendre vers 0. Avec une fonction de distribution en énergie qui force les particules à rester dans le puits quantique, la limite h tend vers 0 dans le système non linéaire conduit à différents comportements asymptotiques dont l'analyse nécessite une renormalisation spectrale et dépendant de la dimension d'espace d=1, 2 ou 3.
Michel, Anthony. "Convergence de schémas volumes finis pour des problèmes de convection diffusion non linéaires." Phd thesis, Université de Provence - Aix-Marseille I, 2001. http://tel.archives-ouvertes.fr/tel-00002553.
Full textCayot, Pierre. "Schémas numériques d'ordre élevé pour la simulation des écoulements turbulents sur maillage structuré et non structuré." Phd thesis, Toulouse, INPT, 2016. http://oatao.univ-toulouse.fr/16624/1/Cayot_Pierre.pdf.
Full textBeljadid, Abdelaziz. "Nouvelles méthodes numériques pour les écoulements en eaux peu profondes." Thesis, Université d'Ottawa / University of Ottawa, 2015. http://hdl.handle.net/10393/32562.
Full textMontagnier, Julien. "Etude de schémas numériques d'ordre élevé pour la simulation de dispersion de polluants dans des géométries complexes." Phd thesis, Université Claude Bernard - Lyon I, 2010. http://tel.archives-ouvertes.fr/tel-00502476.
Full textYang, Chang. "Analyse et mise en oeuvre des schémas numériques pour la physique des plasmas ionosphériques et de tokamaks." Thesis, Lille 1, 2011. http://www.theses.fr/2011LIL10183/document.
Full textThis thesis focuses on modeling and numerical simulation of ionospheric and Tokamak plasmas.The first part of this work concerns the modeling and simulation of ionospheric perturbations effects for earth-satellite communications. The starting point of this part is an asymptotic analysis of Euler-Maxwell model leading to Dynamo model, which results into a 3D coupling problem between an elliptic equation for the electric potential and a mass conservation equation for the plasma density. Because of the strong anisotropy of the diffusion matrix associated with the elliptic equation, we developed an asymptotic preserving numerical scheme thus allowing the well conditioned linear system. The simulation of the mass conservation equation is made by using high order conservation laws scheme. The validation of this model Dynamo is obtained by a comparison with the 2D Striation model. In the second part, we are interested in tokamak plasma. We extract from TOKAM3D model, a 2D nonlinear energy balance equation containing all the numerical difficulties. Standard numerical methods are very CPU consuming, thus we develop an implicit-explicit scheme shown efficient and stable for this type of problem. Finally, this scheme is combined with dimensional splitting method for the discretization and numerical experiments are then presented
Hanss, Grégoire. "Schémas numériques compacts basés sur le résidu en maillage irrégulier pour les équations de Navier-Stokes en compressible." Paris, ENSAM, 2002. http://www.theses.fr/2002ENAM0013.
Full textThis work is devoted to an approach which makes use of the residual vanishing at steady-state tobuild 2,d or 3d_order space-accurate numerical schemes for the Euler and Navier-Stokes équations, which aresùnple, compact, robust and efficient. In the first part of this memoir, the design principles of this approach are recalled in a fuiite-differenceframework and the 3d order residual-based scheme is proved to compare very favourably with a conventional 3dorder approach on a set of model problems. Next, the residual-based scheme is extended in a rigorous way onirregular Cartesian grids so as to preserve its accuracy order. In the second part of this study, we propose a fmite-volume extension of the residual-based scheme thatguarantees, in a simple way, 2 ,d order accuracy on highly irregular grids. This accuracy-preserving extension ismade possible thanks to the compactness of the residual-based dissipation. The very good accuracy of this FVversion is demonstrated for inviscid and viscous flows over airfoils and a wing. In the last part of this work, a residual-based scheme is developed for unsteady flow problems within a dual-time framework. In this case, the residual used to build the scheme contains the derivative with respect to the physicaltime and vanishes at steady-state on a fictitious time. A 2d order time-accurate and 3d order space-accurate residual-based scheme is then devised, which yields better solution than a conventional directional scheme both for a model advection problem and a complex unsteady viscous flow. The implementation of a new organisation is a way to answer the pressure that an external environment firm may experience. We decide to manage this work as a project. The mainpoint of this project will be a new organisation design and implementation. We link design phase with an anticipated risk project management approach. In order to change we decide to propose an original approach which is an alternation between breaking change and continuous improvement change. We also identify the need for helping change adaptation people. All of our proposals are born of a work in a pharmaceutical firm. This research leads to the creation of a model based on three processes: project management, strategic management and people management. In order to answer the need for controlling theses processes, we propose a control method. This method is composed by five phases created from our model and by eight principles coming from our fieldwork
Angelini, Ophélie. "Étude de schémas numériques pour les écoulements diphasiques en milieu poreux déformable pour des maillages quelconques : application au stockage de déchets radioactifs." Phd thesis, Université Paris-Est, 2010. http://tel.archives-ouvertes.fr/tel-00587364.
Full textMANCIP, Martial. "Couplage de méthodes numériques pour les lois de conservation. Application au cas de l'injection." Phd thesis, INSA de Toulouse, 2001. http://tel.archives-ouvertes.fr/tel-00001960.
Full textcomplexe - lorsqu'il y a plusieurs modèles physiques à calculer sur des zones difficiles à délimiter, on utilise des méthodes de couplage par recouvrement de domaine.
Nous présentons ici un algorithme, nouveau et performant, calculé grâce à une superposition de deux maillages correspondant à deux schémas différents. On utilise des projections conservatives de la solution d'un maillage vers l'autre.
Cette méthode de décomposition de domaine ne fait
pas intervenir de conditions aux limites artificielles. Elle est basée sur une régularisation de la fonction de Heaviside sur la zone de couplage. Elle est parfaitement conservative et donc bien indiquée pour l'étude des lois de conservation.
L'analyse mathématique est réalisée pour les problèmes hyperboliques, dans le cas scalaire multidimensionnel. Elle est basée sur le convergence des schémas volumes finis. Tout d'abord, on obtient la convergence de la solution mesure grâce aux travaux de Diperna, puis on estime l'erreur de convergence en $h^(^1/_4)$. Une nouvelle estimation de type $H^1$ faible permet d'estimer les erreurs induites par le couplage.
De nombreuses applications numériques en mécanique des fluides avec les tubes à chocs et de détente montrent que la méthode est très stable et conservative. Nous utilisons aussi la méthode sans grille appelée Smooth Particule Hydrodynamics - plus précisément sa nouvelle variante renormalisée - pour calculer la création d'un jet en couplant la méthode volumes finis à la méthode SPH. On montre ainsi la robustesse de l'algorithme de couplage et sa souplesse pour le calcul des écoulement complexes.
Cette étude à fait l'objet d'une collaboration avec l'équipe du Pr. D. Kröner de l'Institut des Mathématiques Appliquées à l'Université de Frieburg (Allemagne).
Lamarque, Nicolas. "Schémas numériques et conditions limites pour la simulation aux grandes échelles de la combustion diphasique dans les foyers d'hélicoptère." Phd thesis, Toulouse, INPT, 2007. http://oatao.univ-toulouse.fr/7661/1/lamarque1.pdf.
Full textLaurent, Karine. "Étude de nouveaux schémas numériques pour la simulation des écoulements à rapport de mobilités défavorable dans un contexte EOR." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLC081/document.
Full textIn dynamic reservoir simulation, one of the most troublesome artifacts for the prediction of production is the grid orientation effect. Although this normally arises from any numerical scheme, it happens to be amplified by the instability of the physical model, which occurs when the mobility contrast between the water (pushing fluid, used in the processes of secondary recovery) and the oil (pushed fluid, containing the hydrocarbons) exceeds a some critical threshold. We then speak of flows with adverse mobility ratio. This GOE issue has received a lot of attention from the engineers. Numerous works dating back to the 1980s have resulted in the so-called nine-point scheme. Currently implemented in the IFPEN software PumaFlow, this scheme performs relatively well in square meshes and depends on a scalar parameter whose value varies from one author to another, on the grounds of heuristic considerations. In this thesis, we propose a new methodological approach in order not only to optimally adjust this free parameter, but also to extend the scheme to rectangular meshes. The strategy that we advocate is based on an error analysis of the problem, from which it is possible to define a notion of angular error and to guarantee that the behavior of the obtained scheme is the "least anisotropic" possible through a minimization of its deviation from some ideal behavior. This minimization procedure is then applied to two other families of numerical schemes: (1) a multidimensional scheme proposed by Kozdon, in which the free parameter is a function; (2) another nine-point scheme involving two scalar parameters. The latter provides the best results regarding GOE reduction when the ratio of the mesh steps is far away from 1. Finally, an extension of the method to more sophisticated physical models is envisaged
Lamarque, Nicolas. "Schémas numériques et conditions limites pour la simulation aux grandes échelles de la combustion diphasique dans les foyers d' hélicoptère." Phd thesis, Institut National Polytechnique de Toulouse - INPT, 2007. http://tel.archives-ouvertes.fr/tel-00410524.
Full textest tout d'abord fournie. On procède ensuite à une analyse théorique puis pratique des erreurs induites par ceux-ci et on propose des solutions pour les réduire. Une attention particulière est portée aux discrétisations aux bords du domaine de calcul ainsi qu'au type de conditions limites choisi. La chambre de combustion du banc expérimental MERCATO de l'ONERA sert à mettre en oeuvre, à valider et enfin à évaluer ces stratégies numériques. Enfin, trois méthodes de détermination des impédances acoustiques de conduits à section variable sont analysées et validées. Celles-ci permettent de caractériser les conditions limites d'entrée et de sortie des brûleurs industriels, en particulier pour les calculs de modes propres acoustiques.