Contents
Academic literature on the topic 'Schéma d'écoulement'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Schéma d'écoulement.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Schéma d'écoulement"
Barret, Michel, Éric Faucher, Jean-Marc Hérard, and Jean-Félix Durastanti. "Mise en œuvre de schémas numériques pour l'étude d'écoulements diphasiques instationnaires." Mécanique & Industries 5, no. 6 (November 2004): 673–76. http://dx.doi.org/10.1051/meca:2004070.
Full textCombe, Laure, and Jean-Marc Hérard. "Un schéma Volumes-Finis pour la simulation d'un modèle bi-fluide d'écoulements diphasiques compressibles gaz-solide." Revue Européenne des Éléments Finis 6, no. 2 (January 1997): 197–231. http://dx.doi.org/10.1080/12506559.1997.10511266.
Full textHabets, Florence, Pierre Etchevers, and Patrick Le Moigne. "La représentation des surfaces continentales pour la prévision hydrologique." La Météorologie, no. 108 (2020): 088. http://dx.doi.org/10.37053/lameteorologie-2020-0021.
Full textDissertations / Theses on the topic "Schéma d'écoulement"
Sunday, Nsidibe. "Numerical Investigation of Multiphase Flow in Horizontal and Inclined Flowlines." Electronic Thesis or Diss., Bourges, INSA Centre Val de Loire, 2023. http://www.theses.fr/2023ISAB0005.
Full textAs the quest for hydrocarbon approaches the next frontiers in a challenging and hostile subsea environment. The enormous cost of handling the challenges of flow assurance in subsea wells, flowlines, and risers, especially in deepwater applications, has necessitated a proactive approach to prevent their risk of occurrence. To ensure that the transportation of the hydrocarbon is economical and efficient from the subsea wellhead to the processing units, a flow assurance heat management system is relevant in the design and planning of a fluid transport system. Therefore, the advancement of new technologies to serve the increasing need by exploring the technologically challenging and hostile subsea environment is of great significance. The figures from the study showed the need for scientific research in the field of active heating.This work continues at this point. It investigates and extends a three-dimensional two-phase model regarding different aspects. For this purpose, the two-phase solver interFoam in the OpenFoam source code is employed. To begin with, the hydrodynamic properties of different models in flowlines are investigated by analyzing a 3-D two-phase gas and liquid flow in a horizontal flowline. InterFoam a transient two-phase solver was first modified to implement the Low Reynolds Number (LRN) k-ε model in the OpenFOAM code. This LRN k-ε turbulence model is utilized to resolve the turbulence phenomena within the gas and liquid mixtures. The two-phase flow is calculated by using the developed solver based on the Volume of Fluid (VOF) approach. Results of the flow patterns at different superficial gas and liquid velocities are validated by the experimental data in the literature. Afterward, Three Reynolds-Averaged Navier-Stokes (RANS) models were used for computations: LRN k-ε, standard k-ε, and the Shear Stress Transport k-omega (SST k-ω) models. Generated numerical results are compared with obtainable experimental data and mechanistic models.Furthermore, the oil-water flow structure reported in the literature is completely different from that of gas-oil flow and this distinction is attributed to the small buoyancy effect and large momentum transfer capacity in the oil-water flows. To find the features of the oil-water flow, a 3D mathematical model of oil-water Newtonian flow under non-isothermal conditions is established to explore the complex mechanisms of the two-phase oil-water transportation and heat transfer in the horizontal and inclined flowline. In this work, a non-isothermal two-phase flow model is first modified and then implemented in the InterFoam solver by introducing the energy equation using OpenFOAM®. The LRN k-ε turbulence model is utilized to resolve the turbulence phenomena within the oil and water mixtures. The flow patterns and the local heat transfer coefficients (HTC) for two-phase oil-water flow at different flowlines inclinations (0°, +4°, +7°) are validated by the experimental literature results and the relative errors are also compared. The model was also employed to ascertain the effect of input water cut and flowline inclinations on the flow regimes, and the results were validated in the literature with a high accuracy level. Global sensitivity analysis is then conducted to determine the effect of the different parameters on the performance of the produced two-phase hydrocarbon systems for effective subsea fluid transportation.Thereafter, HTC and flow patterns for oil-water flows at a flowline inclination ranging from -10° to +10° can be predicted by the model
Floc'H, France. "Prédiction de trajectoires d'objets immergés par couplage entre modèles d'écoulement et équations d'Euler-Newton." Phd thesis, Université de Bretagne occidentale - Brest, 2011. http://tel.archives-ouvertes.fr/tel-00624098.
Full textIvanova, Kseniya. "Mathematical model of multi-dimensional shear shallow water flows : problems and solutions." Thesis, Aix-Marseille, 2017. http://www.theses.fr/2017AIXM0642/document.
Full textThis thesis is devoted to the numerical modelling of multi-dimensional shear shallow water flows. In 1D case, the corresponding equations coincide with the equations describing non--isentropic gas flows with a special equation of state. However, in the multi-D case, the system differs significantly from the gas dynamics model. This is a 2D hyperbolic non-conservative system of equations which is reminiscent of a generic Reynolds averaged model of barotropic turbulent flows. The model has three families of characteristics corresponding to the propagation of surface waves, shear waves and average flow (contact characteristics). First, we show the ability of the one-dimensional conservative shear shallow water model to predict the formation of roll-waves from unstable initial data. The stability of roll waves is also studied.Second, we present in 2D case a new numerical scheme based on a splitting approach for non-conservative systems of equations. Each split subsystem contains only one family of waves (either surface or shear waves) and contact characteristics. The accuracy of such an approach is tested on exact 2D solutions describing the flow where the velocity is linear with respect to the space variables, and on the solutions describing 1D roll waves. Finally, we model a circular hydraulic jump formed in a convergent radial flow of water. Obtained numerical results are qualitatively similar to those observed experimentally: oscillation of the hydraulic jump and its rotation with formation of a singular point. These validations demonstrate the capability of the model and numerical method to solve challenging multi--dimensional problems of shear shallow water flows
Vazquez, gonzalez Thibaud. "Schémas numériques mimétiques et conservatifs pour la simulation d'écoulements multiphasiques compressibles." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLC051/document.
Full textIn some highly demanding fluid dynamics simulations, it appears necessary tosimulate multiphase flows involving numerous constraints at the same time : large numbers of fluids, both isentropic and strongly shocked compressible evolution, highly variable and contrasted equations of state, large deformations, and transport over large distances. Fulfilling such a challengein a robust and tractable way demands that thermodynamic consistency of the numerical scheme be carefully ensured.In the first chapter, a Lagrange plus remap scheme is proposed for the simulation of two-phase flows with a dissipation-free six-equation bakcbone model. The importance of the property of isentropic flow preservation is highlighted with a comparison with Ransom test results fromthe literature. This chapter also also point out certain limitations of the Lagrange plus remap approach for multiphase simulations.In order to overcome these limitations, a novel derivation procedure is proposed to construct a mimetic scheme for the simulation of unsteady and compressible flows in a direct ALE (ArbitraryLagrangian-Eulerian) formalism. The possibility to choose a priori the degrees of freedom allows to obtain a continuity with historical staggered scheme, while imposing conservativity at discretelevel. The discrete momentum evolution equation is obtained by application of a variational principle, thus natively ensuring the thermodynamic consistency of pressure efforts. This approach is applied to single-fluid flows as a proof of concept in Chapter 3, then it is extended to N-phasecompressible flows in Chapter 4. Single- and multi-phase tests show satisfactory behavior in terms on conservation, versatility to grid motions, and robustness
Ciccoli, Marie Claude. "Schémas numériques efficaces pour le calcul d'écoulements hypersoniques réactifs." Nice, 1992. http://www.theses.fr/1992NICE4574.
Full textBinous, Mohamed Sabeur. "Simulations numériques d'écoulements anisothermes turbulents : application à la cavité ventilée." Thesis, Perpignan, 2017. http://www.theses.fr/2017PERP0031/document.
Full textThe aim of this work is about a numerical study of anisothermal incompressible flowsconfined in a cavity. We perform a modeling of heat transfer in a wall where one of its faces iscovered with a thin layer of phase change material (PCM). This modeling is based on aSignorini boundary condition. The transfer equations are solved by a specific iterativeprocedure. This procedure is then applied to a differentially heated cavity, one of the walls ofwhich is covered with a thin layer of PCM. The transfer equations are solved by a semi-implicit method with finite second order differences and the projection algorithm. We validatethe procedure by applying it to the lid-driven cavity, downward motion, flow around a squaresection bar and natural convection in a differentially heated cavity. In a second step, the studyof incompressible turbulent flows in a ventilated cavity was carried out using a parallel highprecision solver developed at LAMPS. The transfer equations are solved by a finite differencecompact scheme and the projection algorithm. It is shown in particular that the heat flowapplied to the lower wall of the cavity greatly influences the structure of the flow and the heattransfers, as well as the mean and fluctuating fields of velocity and temperature
Gougeon, Ludivine. "Comparaison de schémas numériques pour la simulation d'écoulements turbulents réactifs." Phd thesis, Université d'Orléans, 2007. http://tel.archives-ouvertes.fr/tel-00282242.
Full textLe premier code, basé sur des schémas aux différences finies compactes centrées d'ordre 6, très précis et non dissipatifs, permet la simulation numérique directe (DNS) d'écoulements 3D turbulents sans chocs, en géométrie cartésienne. Ce code n'introduit pas de dissipation numérique et sert de référence pour tester l'approche MILES.
Le second code s'appuie sur l'utilisation de méthodes récentes à capture de chocs : les schémas WENO. La formulation aux différences finies des schémas WENO d'ordre 3 à 11 est implémentée dans un code bidimensionnel. Le pouvoir de résolution des schémas WENO des différents ordres est évalué par analyse linéaire. Les problèmes spécifiques au cas multi-espèces sont mis en évidence et la positivité des fractions massiques est respectée grâce à la méthode de Larrouturou. Les différentes reconstructions ainsi que l'ordre du schéma sont évalués sur une série de cas test.
Les deux codes font l'objet d'une comparaison sur la simulation d'une flamme 1D laminaire de prémélange et d'un jet 2D turbulent réactif H2/air. Enfin, les potentialités du schéma WENO sont démontrées sur une onde de détonation puis sur une interaction réactive onde de choc/bulle d'hydrogène.
Huart, Robin. "Simulation numérique d'écoulements magnétohydrodynamiques par des schémas distribuant le résidu." Thesis, Bordeaux 1, 2012. http://www.theses.fr/2012BOR14480/document.
Full textDuring this thesis, we worked on the numerical resolution of the Magnetohydrodynamic (MHD) equations, to which we added a hyperbolic transport equation for the divergence errors of the magnetic field.The first step consisted in symmetrizing the new ideal MHD system in order to study its eigensystem, which was the opportunity to remind the role of the entropy in this calculation as well as in the Clausius-Duhem inequality. Next, we aimed at solving these ideal equations by the mean of Residual Distribution (RD) schemes.The four main schemes were tested, and we showed among other things that the N scheme (although it has been proven very efficient with Euler equations in Fluid Mechanics) could not give satisfying results with the MHD equations. Classical strategies for the limitation and the stabilization were revisited then. Moreover,since we dealt with unsteady equations, we had to formulate atime discretization and a spatial distribution of the unsteady terms (as well as possible sources). We first choosed an implicit approach allowing us to be powerful on the long simulations needed for tokamak experiments, and to treat the divergence cleaning part in an original and efficient way. The convergence problems of our Newton-Raphson algorithm having not been fully resolved, we turned to an explicit alternative (Runge-Kutta type).Finally, we discussed about the principles of higher order schemes (theoretically, up to arbitrary orders, taking into account the Gibbs phenomenon) thanks to any type of 2D or 3D finite element (properly defined), without having been able to to validate all these aspects. We also implemented the dissipative part of the full MHD equations (in the classical sense, i.e. omitting the Hall effect) by the use of a RD/Galerkin coupling
Fürst, Jiří. "Modélisation numérique d'écoulements transsoniques avec des schémas TVD et ENO." Aix-Marseille 2, 2001. http://www.theses.fr/2001AIX22046.
Full textDemay, Charles. "Modélisation et simulation d'écoulements transitoires diphasiques eau-air dans les circuits hydrauliques." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAM100/document.
Full textThe present work is dedicated to the mathematical and numerical modelling of transient air-water flows in pipes which occur in piping systems of several industrial areas such as nuclear or hydroelectric power plants or sewage pipelines. It deals more specifically with the so-called mixed flows which involve stratified regimes driven by slow gravity waves, pressurized or dry regimes (pipe full of water or air) driven by fast acoustic waves and entrapped air pockets. An accurate modelling of these flows is necessary to guarantee the operability of the related hydraulic system. While most of available models in the literature focus on the water phase neglecting the air phase, a compressible two-layer model which accounts for air-water interactions is proposed herein. The derivation process relies on a depth averaging of the isentropic Euler set of equations for both phases where the hydrostatic constraint is applied on the water pressure gradient. The resulting system is hyperbolic and satisfies an entropy inequality in addition to other significant mathematical properties, including the uniqueness of jump conditions and the positivity of heights and densities for each layer. Regarding the discrete level, the simulation of mixed flows with the compressible two-layer model raises key challenges due to the discrepancy of wave speeds characterizing each regime combined with the fast underlying relaxation processes and with phase vanishing when the flow becomes pressurized or dry. Thus, an implicit-explicit fractional step method is derived. It relies on the fast pressure relaxation in addition to a mimetic approach with the shallow water equations for the slow dynamics of the water phase. In particular, a relaxation method provides stabilization terms activated according to the flow regime. Several test cases are performed and attest the ability of the compressible two-layer model to deal with mixed flows in pipes involving air pocket entrapment