Academic literature on the topic 'Schauder estimate'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Schauder estimate.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Schauder estimate"
Du, Kai, and Jiakun Liu. "A Schauder estimate for stochastic PDEs." Comptes Rendus Mathematique 354, no. 4 (April 2016): 371–75. http://dx.doi.org/10.1016/j.crma.2016.01.010.
Full textImbert, Cyril, and Luis Silvestre. "The Schauder estimate for kinetic integral equations." Analysis & PDE 14, no. 1 (February 19, 2021): 171–204. http://dx.doi.org/10.2140/apde.2021.14.171.
Full textNardi, Giacomo. "Schauder estimate for solutions of Poisson’s equation with Neumann boundary condition." L’Enseignement Mathématique 60, no. 3 (2014): 421–35. http://dx.doi.org/10.4171/lem/60-3/4-9.
Full textLiu, Xiangao, Zixuan Liu, and Kui Wang. "Interior estimates of harmonic heat flow." International Journal of Mathematics 32, no. 07 (March 31, 2021): 2150039. http://dx.doi.org/10.1142/s0129167x21500397.
Full textLuo, Yousong, and Neil S. Trudinger. "Linear second order elliptic equations with Venttsel boundary conditions." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 118, no. 3-4 (1991): 193–207. http://dx.doi.org/10.1017/s0308210500029048.
Full textLiang, Xiao, Linshan Wang, and Ruili Wang. "Random Attractor of Reaction-Diffusion Hopfield Neural Networks Driven by Wiener Processes." Mathematical Problems in Engineering 2018 (2018): 1–11. http://dx.doi.org/10.1155/2018/2538658.
Full textImbert, Cyril, and Clément Mouhot. "The Schauder estimate in kinetic theory with application to a toy nonlinear model." Annales Henri Lebesgue 4 (May 27, 2021): 369–405. http://dx.doi.org/10.5802/ahl.75.
Full textJuodagalvytė, Rita, Grigory Panasenko, and Konstantinas Pileckas. "Steady-State Navier–Stokes Equations in Thin Tube Structure with the Bernoulli Pressure Inflow Boundary Conditions: Asymptotic Analysis." Mathematics 9, no. 19 (September 30, 2021): 2433. http://dx.doi.org/10.3390/math9192433.
Full textFELLI, VERONICA, and MATTHIAS SCHNEIDER. "COMPACTNESS AND EXISTENCE RESULTS FOR DEGENERATE CRITICAL ELLIPTIC EQUATIONS." Communications in Contemporary Mathematics 07, no. 01 (February 2005): 37–73. http://dx.doi.org/10.1142/s0219199705001623.
Full textChen, Wenxiong, Congming Li, and Yan Li. "A direct blowing-up and rescaling argument on nonlocal elliptic equations." International Journal of Mathematics 27, no. 08 (July 2016): 1650064. http://dx.doi.org/10.1142/s0129167x16500646.
Full textDissertations / Theses on the topic "Schauder estimate"
MARINO, LORENZO. "Regolarizzazione debole attraverso rumore di Lévy degenere e sue applicazioni." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2021. http://hdl.handle.net/10281/330542.
Full textAfter a general introduction about the regularization by noise phenomenon in the degenerate setting, the first part of this thesis focuses at establishing the Schauder estimates, a useful analytical tool to prove also the well-posedness of stochastic differential equations (SDEs), for two different classes of Kolmogorov equations under a weak Hörmander-like condition, whose coefficients lie in suitable anisotropic Hölder spaces with multi-indices of regularity. The first class considers a nonlinear system controlled by a symmetric ⍺-stable operator acting only on some components. Our method of proof relies on a perturbative approach based on forward parametrix expansions through Duhamel-type formulas. Due to the low regularizing properties given by the degenerate setting, we also exploit some controls on Besov norms, in order to deal with the non-linear perturbation. As an extension of the first one, we also present Schauder estimates associated with a degenerate Ornstein-Uhlenbeck operator driven by a larger class of ⍺-stable-like operators, like the relativistic or the Lamperti stable one. The proof of this result relies instead on a precise analysis of the behaviour of the associated Markov semigroup between anisotropic Hölder spaces and some interpolation techniques. Exploiting a backward parametrix approach, the second part of this thesis aims at establishing the well-posedness in a weak sense of a degenerate chain of SDEs driven by the same class of ⍺-stable-like processes, under the assumptions of the minimal Hölder regularity on the coefficients. As a by-product of our method, we also present Krylov-type estimates of independent interest for the associated canonical process. Finally, we emphasize through suitable counter-examples that there exists indeed an (almost) sharp threshold on the regularity exponents ensuring the weak well-posedness for the SDE. In connection with some mechanical applications for kinetic dynamics with friction, we conclude by investigating the stability of second-order perturbations for degenerate Kolmogorov operators in Lp and Hölder norms.
Ayed, Hela. "Analyse d'un problème d'interaction fluide-structure avec des conditions aux limites de type frottement à l'interface." Thesis, Normandie, 2017. http://www.theses.fr/2017NORMC213/document.
Full textThis PHD thesis is devoted to the theoretical and numerical analysis of a stationary fluid-structure interaction problem between an incompressible viscous Newtonian fluid, modeled by the 2D Stokes equations, and a deformable structure modeled by the 1D beam equations.The fluid and structure are coupled via a friction boundary condition at the fluid-structure interface.In the theoretical study, we prove the existence of a unique weak solution, under small displacements, of the fluid-structure interaction problem under a slip boundary condition of friction type (SBCF) by using Schauder fixed point theorem.In the numerical analysis, we first study a mixed finite element approximation of the Stokes equations under SBCF.We also prove an optimal a priori error estimate for regular data and we provide numerical examples.Finally, we present a fixed point algorithm for numerical simulation of the coupled problem under nonlinear boundary conditions
Bucur, C. D. "SOME NONLOCAL OPERATORS AND EFFECTS DUE TO NONLOCALITY." Doctoral thesis, Università degli Studi di Milano, 2017. http://hdl.handle.net/2434/488032.
Full textMarino, Greta. "A-priori estimates for some classes of elliptic problems." Doctoral thesis, Università di Catania, 2019. http://hdl.handle.net/10761/4116.
Full textNascimento, Moisés Aparecido do. "Resultados do tipo Ambrosetti-Prodi para problemas quasilineares." Universidade Federal de São Carlos, 2015. https://repositorio.ufscar.br/handle/ufscar/7640.
Full textApproved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-10-04T18:11:16Z (GMT) No. of bitstreams: 1 TeseMAN.pdf: 2601601 bytes, checksum: 70c6b910d382e2015025a5c8ec5ddd14 (MD5)
Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-10-04T18:11:29Z (GMT) No. of bitstreams: 1 TeseMAN.pdf: 2601601 bytes, checksum: 70c6b910d382e2015025a5c8ec5ddd14 (MD5)
Made available in DSpace on 2016-10-04T18:11:38Z (GMT). No. of bitstreams: 1 TeseMAN.pdf: 2601601 bytes, checksum: 70c6b910d382e2015025a5c8ec5ddd14 (MD5) Previous issue date: 2015-12-04
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
We present results of Ambrosseti-Prodi type to quasilinear problems involving the p-Laplace operator. We consider the scalar case and a a problem with systems of equations. In the scalar case, we work with the conditions of Neumann and Dirichlet. In the problem involving system, we consider the condition og Dirichlet. In order to get the results we use the theory of Leray-Schauder degree and a priori estimates.
Neste trabalho apresentamos resultados do tipo Ambrosseti-Prodi para problemas quasilineares envolvendo o aperador p-Laplaciano. Considerando o caso escalar eu um problema com sistemas de equações. Para os casos escalares, trabalhamos com a condições de Neumann e Dirichlet, já para o problema envolvendo sistema, consideramos a condição Dirichlet. Para obter mais resultados usamos a teoria do grau de Leray-Schauder e estimativas a priori.
Fino, Ahmad. "Contributions aux problèmes d'évolution." Phd thesis, Université de La Rochelle, 2010. http://tel.archives-ouvertes.fr/tel-00437141.
Full textArchalousová, Olga. "Singulární počáteční úloha pro obyčejné diferenciální a integrodiferenciální rovnice." Doctoral thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2011. http://www.nusl.cz/ntk/nusl-233525.
Full textChing, Tsai Shu, and 蔡淑靖. "Schauder's Estimates for the Parabolic Equation." Thesis, 1993. http://ndltd.ncl.edu.tw/handle/57948794998720095848.
Full text國立中正大學
應用數學研究所
81
In this paper, we prove two uniqueness theorems and prove the istence of solution for Cauchy problem and its Schauder'ss. The first theorem is concerned to the uniqueness ofquation, the second theorem is concerned tp theeat equation. The last theorem is concerned to thee solution and its Schauder's estimates for Cauchy problem. Moreover, by uniqueness theorem, we know that theres a constant c satisfying the Schauder's estimates for then of Cauchy problem.
Pu-ZhaoKow and 邱普照. "Schauder's Estimates and Asymptotic Behavior of Solutions of the Stationary Navier-Stokes Equation in an Exterior Domain." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/muhqpe.
Full textBooks on the topic "Schauder estimate"
König, Manfred. Schauder's estimates and boundary value problems for quasilinear partial differential equations. Montréal, Québec, Canada: Presses de l'Université de Montréal, 1985.
Find full textSchauder's estimates and boundary value problems for quasilinear partial differential equations. Montréal, Québec, Canada: Presses de l'Université Montréal, 1985.
Find full textEpstein, Charles L., and Rafe Mazzeo. Existence of Solutions. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691157122.003.0010.
Full textEpstein, Charles L., and Rafe Mazzeo. Holder Estimates for the 1-dimensional Model Problems. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691157122.003.0006.
Full textKonig, Manfred. Schauder's Estimates and Boundary Value Problems for Quasilinear Partial Differential Equations (Seminaire de mathematiques superieures). Gaetan Morin Editeur Ltee, 1985.
Find full textBook chapters on the topic "Schauder estimate"
Giaquinta, Mariano, and Luca Martinazzi. "Schauder estimates." In An Introduction to the Regularity Theory for Elliptic Systems, Harmonic Maps and Minimal Graphs, 75–95. Pisa: Scuola Normale Superiore, 2012. http://dx.doi.org/10.1007/978-88-7642-443-4_5.
Full textTaylor, Michael E. "Extension of the Schauder estimates." In Pseudodifferential Operators and Nonlinear PDE, 178–82. Boston, MA: Birkhäuser Boston, 1991. http://dx.doi.org/10.1007/978-1-4612-0431-2_11.
Full textKrylov, N. V., and E. Priola. "Poisson Stochastic Process and Basic Schauder and Sobolev Estimates in the Theory of Parabolic Equations (Short Version)." In Stochastic Partial Differential Equations and Related Fields, 201–11. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-74929-7_10.
Full text"Schauder estimates and applications." In Translations of Mathematical Monographs, 163–82. Providence, Rhode Island: American Mathematical Society, 1992. http://dx.doi.org/10.1090/mmono/099/07.
Full textKichenassamy, Satyanad. "Chapter 5 Schauder-type estimates and applications." In Handbook of Differential Equations: Stationary Partial Differential Equations, 401–64. Elsevier, 2006. http://dx.doi.org/10.1016/s1874-5733(06)80009-4.
Full text"Chapter 15. Schauder Estimates For Beltrami Operators." In Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane (PMS-48), 389–402. Princeton University Press, 2008. http://dx.doi.org/10.1515/9781400830114.389.
Full text"Schauder's Estimates for Linear Elliptic Equations." In Elliptic and Parabolic Equations, 159–96. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812772800_0006.
Full text"Schauder's Estimates for Linear Parabolic Equations." In Elliptic and Parabolic Equations, 197–232. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812772800_0007.
Full textLunardi, Alessandra, and Vincenzo Vespri. "Optimal L ∞ and Schauder Estimates for Elliptic and Parabolic Operators with Unbounded Coefficients." In Reaction Diffusion Systems, 217–39. CRC Press, 2020. http://dx.doi.org/10.1201/9781003072195-18.
Full textBilalov, Bilal, Sabina Sadigova, and Zaur Kasumov. "Some Solvability Problems of Differential Equations in Non-standard Sobolev Spaces." In Differential Equations [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.104918.
Full text