To see the other types of publications on this topic, follow the link: SCATTERING LENGTHS.

Journal articles on the topic 'SCATTERING LENGTHS'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'SCATTERING LENGTHS.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Kondo, Y., O. Morimatsu, and Y. Nishino. "Hadron-Nucleon Scattering Lengths from QCD Sum Rules." Australian Journal of Physics 50, no. 1 (1997): 221. http://dx.doi.org/10.1071/p96039.

Full text
Abstract:
Hadron–nucleon scattering lengths are studied by the QCD sum rule. First we explain our motivation and present the formulation for calculating hadron-nucleon scattering lengths by the QCD sum rule, where the relation between the hadron mass in the nuclear medium and the hadron–nucleon scattering length is also clarified. Secondly we discuss two applications, the pion–nucleon scattering lengths and the nucleon-nucleon scattering lengths. In the case of the pion–nucleon scattering length we show that the results of the QCD sum rule are consistent with the low-energy theorem. In the case of the nucleon–nucleon scattering lengths we show that the results of the QCD sum rule are in qualitative agreement with experiment.
APA, Harvard, Vancouver, ISO, and other styles
2

Lage, Michael, Ulf-G. Meißner, and Akaki Rusetsky. "Antikaon-nucleon scattering lengths." Hyperfine Interactions 193, no. 1-3 (September 2009): 69–74. http://dx.doi.org/10.1007/s10751-009-0063-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Guagnelli, Marco, Enzo Marinari, and Giorgio Parisi. "Scattering lengths from fluctuations." Physics Letters B 240, no. 1-2 (April 1990): 188–92. http://dx.doi.org/10.1016/0370-2693(90)90431-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

BLACK, DEIRDRE, AMIR H. FARIBORZ, RENATA JORA, NAE WOONG PARK, JOSEPH SCHECHTER, and M. NAEEM SHAHID. "REMARK ON PION SCATTERING LENGTHS." Modern Physics Letters A 24, no. 28 (September 14, 2009): 2285–89. http://dx.doi.org/10.1142/s0217732309031533.

Full text
Abstract:
First it is shown that the tree amplitude for pion–pion scattering in the minimal linear sigma model has an exact expression which is proportional to a geometric series in the quantity [Formula: see text], where mB is the sigma mass which appears in the Lagrangian and is the only a priori unknown parameter in the model. This induces an infinite series for every predicted scattering length in which each term corresponds to a given order in the chiral perturbation theory counting. It is noted that, perhaps surprisingly, the pattern, though not the exact values, of chiral perturbation theory predictions for both the isotopic spin 0 and isotopic spin 2 s-wave pion–pion scattering lengths to orders p2, p4 and p6 seems to agree with this induced pattern. The values of the p8 terms are also given for comparison with a possible future chiral perturbation theory calculation. Further aspects of this approach and future directions are briefly discussed.
APA, Harvard, Vancouver, ISO, and other styles
5

Madigozhin, D. "Pion scattering lengths from NA48." Nuclear Physics B - Proceedings Supplements 164 (February 2007): 85–88. http://dx.doi.org/10.1016/j.nuclphysbps.2006.11.069.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Abraham, E. R. I., W. I. McAlexander, J. M. Gerton, R. G. Hulet, R. Côté, and A. Dalgarno. "Singlets-wave scattering lengths ofLi6andLi7." Physical Review A 53, no. 6 (June 1, 1996): R3713—R3715. http://dx.doi.org/10.1103/physreva.53.r3713.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

HUSSEIN, M. S. "THEORY OF COMPLEX SCATTERING LENGTHS." Modern Physics Letters B 15, no. 03 (February 10, 2001): 105–9. http://dx.doi.org/10.1142/s0217984901001562.

Full text
Abstract:
We derive a generalized Low equation for the T-matrix appropriate for complex atom–molecule interaction. The properties of this new equation at very low energies are studied and the complex scattering length and effective range are derived.
APA, Harvard, Vancouver, ISO, and other styles
8

Colangelo, G., J. Gasser, and H. Leutwyler. "The ππ S-wave scattering lengths." Physics Letters B 488, no. 3-4 (September 2000): 261–68. http://dx.doi.org/10.1016/s0370-2693(00)00898-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Black, T. C., H. J. Karwowski, E. J. Ludwig, A. Kievsky, S. Rosati, and M. Viviani. "Determination of proton-deuteron scattering lengths." Physics Letters B 471, no. 2-3 (December 1999): 103–7. http://dx.doi.org/10.1016/s0370-2693(99)01366-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Rosenberg, Leonard. "Minimum principle for Dirac scattering lengths." Physical Review A 50, no. 1 (July 1, 1994): 371–77. http://dx.doi.org/10.1103/physreva.50.371.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Fukugita, M., Y. Kuramashi, M. Okawa, H. Mino, and A. Ukawa. "Hadron scattering lengths in lattice QCD." Physical Review D 52, no. 5 (September 1, 1995): 3003–23. http://dx.doi.org/10.1103/physrevd.52.3003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Kaiser, N. "ππ-scattering lengths at finite temperature." Physical Review C 59, no. 5 (May 1, 1999): 2945–47. http://dx.doi.org/10.1103/physrevc.59.2945.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Sears, Varley F. "Neutron scattering lengths and cross sections." Neutron News 3, no. 3 (January 1992): 26–37. http://dx.doi.org/10.1080/10448639208218770.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Kvitsinsky, Andrei A., Jaume Carbonell, and Claude Gignoux. "Faddeev calculation ofe−-Ps scattering lengths." Physical Review A 46, no. 3 (August 1, 1992): 1310–15. http://dx.doi.org/10.1103/physreva.46.1310.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Tautz, R. C. "A NOTE ON PERPENDICULAR SCATTERING LENGTHS." Astrophysical Journal 703, no. 2 (September 8, 2009): 1294–96. http://dx.doi.org/10.1088/0004-637x/703/2/1294.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Ericson, T. E. O., and A. N. Ivanov. "Dispersive e.m. corrections to πN scattering lengths." Physics Letters B 634, no. 1 (March 2006): 39–47. http://dx.doi.org/10.1016/j.physletb.2006.01.024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Scimemi, Ignazio, Elvira Gámiz, and Joaquim Prades. "Measuring the – pion scattering lengths through decays." Nuclear Physics B - Proceedings Supplements 174 (December 2007): 105–8. http://dx.doi.org/10.1016/j.nuclphysbps.2007.08.098.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Gasparyan, A. M., J. Haidenbauer, and C. Hanhart. "Extraction of Scattering Lengths from Production Reactions." Journal of Physics: Conference Series 295 (May 1, 2011): 012104. http://dx.doi.org/10.1088/1742-6596/295/1/012104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Ananthanarayan, B., and P. Büttiker. "Scattering lengths and medium and high energyππscattering." Physical Review D 54, no. 9 (November 1, 1996): 5501–8. http://dx.doi.org/10.1103/physrevd.54.5501.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Uehara, M., and H. Kondo. "N Scattering Lengths in the Skyrmion Model." Progress of Theoretical Physics 75, no. 4 (April 1, 1986): 981–84. http://dx.doi.org/10.1143/ptp.75.981.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Sears, V. F. "Local-field refinement of neutron scattering lengths." Zeitschrift f�r Physik A Atoms and Nuclei 321, no. 3 (September 1985): 443–49. http://dx.doi.org/10.1007/bf01411978.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Quack, E., P. Zhuang, Y. Kalinovsky, S. P. Klevansky, and J. Hüfner. "π-π scattering lengths at finite temperature." Physics Letters B 348, no. 1-2 (March 1995): 1–6. http://dx.doi.org/10.1016/0370-2693(95)00128-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Koester, L., W. Waschkowski, and A. Klüver. "Neutron scattering lengths and neutron-electron interaction." Physica B+C 137, no. 1-3 (March 1986): 282–92. http://dx.doi.org/10.1016/0378-4363(86)90334-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Kuramashi, Y., M. Fukugita, H. Mino, M. Okawa, and A. Ukawa. "Lattice QCD calculation of hadron scattering lengths." Nuclear Physics B - Proceedings Supplements 34 (April 1994): 117–22. http://dx.doi.org/10.1016/0920-5632(94)90326-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Hannon, Alex C., Alexandra S. Gibbs, and Hidenori Takagi. "Neutron scattering length determination by means of total scattering." Journal of Applied Crystallography 51, no. 3 (May 29, 2018): 854–66. http://dx.doi.org/10.1107/s1600576718006064.

Full text
Abstract:
A new method for the measurement of bound coherent neutron scattering lengths is reported. It is shown that a relative measurement of the neutron scattering length, {\overline b}, of an element can be made by analysis of the neutron correlation function of a suitable oxide crystal powder. For this analysis, it is essential to take into account the average density contribution to the correlation function, as well as the contributions arising from distances between atoms in the crystal. The method is demonstrated and verified by analysis of the neutron correlation function for the corundum form of Al2O3, yielding a value {\overline b} = 3.44 (1) fm for Al, in good agreement with the literature. The method is then applied to the isotopes of iridium, for which the values of the scattering lengths were unknown, and which are difficult to investigate by other methods owing to the large cross sections for the absorption of neutrons. The neutron correlation function of a sample of Sr2IrO4 enriched in 193Ir is used to determine values {\overline b} = 9.71 (18) fm and {\overline b} = 12.1 (9) fm for 193Ir and 191Ir, respectively, and these are consistent with the tabulated scattering length and cross sections of natural Ir. These values are of potential application for obtaining improved neutron diffraction results on iridates by the use of samples enriched in 193Ir, so that the severe absorption problems associated with 191Ir are avoided. Rietveld refinement of the neutron diffraction pattern of isotopically enriched Sr2IrO4 is used to yield a similar result for Ir. However, in practice the Rietveld result is shown to be less reliable because of correlation between the parameters of the fit.
APA, Harvard, Vancouver, ISO, and other styles
26

Hale, G. M., D. C. Dodder, J. D. Seagrave, B. L. Berman, and T. W. Phillips. "Neutron-triton cross sections and scattering lengths obtained fromp−3He scattering." Physical Review C 42, no. 1 (July 1, 1990): 438–40. http://dx.doi.org/10.1103/physrevc.42.438.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Yuen, W. W. "Development of a Network Analogy and Evaluation of Mean Beam Lengths for Multidimensional Absorbing/Isotropically Scattering Media." Journal of Heat Transfer 112, no. 2 (May 1, 1990): 408–14. http://dx.doi.org/10.1115/1.2910392.

Full text
Abstract:
Based on Hottel’s zonal formulation, a network analogy is developed for the analysis of radiative transfer in general multidimensional absorbing/isotropically scattering media. Applying the analogy to the analysis of an isothermal medium and assuming that the incoming and outgoing flux density is homogeneous within the medium, the effect of scattering on the evaluation of mean beam lengths is illustrated. Two concepts of mean beam length, an absorption mean beam length (AMBL) and an extinction mean beam length (EMBL), are introduced and shown to be important for the analysis of radiative transfer in practical systems. Both mean beam lengths differ significantly from the conventional mean beam length in systems of moderate and large optical thickness. Relations between AMBL and EMBL and their limiting behavior are developed analytically. Numerical results for a sphere radiating to its surface and an infinite parallel slab radiating to one of its surfaces are presented to demonstrate quantitatively the mathematical behavior of the two mean beam lengths.
APA, Harvard, Vancouver, ISO, and other styles
28

Heinzen, D. J. "Ultracold Atomic Interactions and Bose–Einstein Condensation." International Journal of Modern Physics B 11, no. 28 (November 10, 1997): 3297–304. http://dx.doi.org/10.1142/s0217979297001593.

Full text
Abstract:
Atomic interactions play a crucial role in Bose-condensed alkali gases. The condensate self-energy, proportional to the two-body s-wave scattering length, strongly affects the stability and other properties of a condensate. Alkali atom scattering lengths have been determined only during the past few years by a combination of conventional molecular spectroscopy, photoassociation spectroscopy, and ultracold atomic collision studies. In this article, we present a brief review of alkali atom interactions and scattering length determinations.
APA, Harvard, Vancouver, ISO, and other styles
29

HOFERICHTER, M., V. BARU, C. HANHART, B. KUBIS, A. NOGGA, and D. R. PHILLIPS. "PRECISION CALCULATION OF THE π-d SCATTERING LENGTH." International Journal of Modern Physics A 26, no. 03n04 (February 10, 2011): 589–91. http://dx.doi.org/10.1142/s0217751x11052128.

Full text
Abstract:
We present a calculation of the π-d scattering length in the framework of chiral perturbation theory (ChPT) with focus on virtual-photon effects. Using data on pionic deuterium and pionic hydrogen atoms, we extract the isoscalar and isovector pion–nucleon scattering lengths [Formula: see text] and [Formula: see text], as well as—via the Goldberger–Miyazawa–Oehme sum rule—the charged-pion–nucleon coupling constant [Formula: see text]
APA, Harvard, Vancouver, ISO, and other styles
30

Wanke, R. "Measurement of ππ Scattering Lengths from and Decays." Nuclear Physics B - Proceedings Supplements 210-211 (January 2011): 193–96. http://dx.doi.org/10.1016/j.nuclphysbps.2010.12.073.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Sears, V. F. "Correction of neutron scattering lengths for electromagnetic interactions." Journal of Neutron Research 3, no. 2 (March 1, 1996): 53–62. http://dx.doi.org/10.1080/10238169608200191.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Kong, Xinwei, and Finn Ravndal. "Proton–proton scattering lengths from effective field theory." Physics Letters B 450, no. 4 (March 1999): 320–24. http://dx.doi.org/10.1016/s0370-2693(99)00144-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Kuramashi, Y., M. Fukugita, H. Mino, M. Okawa, and A. Ukawa. "Lattice QCD calculation of full pion scattering lengths." Physical Review Letters 71, no. 15 (October 11, 1993): 2387–90. http://dx.doi.org/10.1103/physrevlett.71.2387.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Kondo, Y., and O. Morimatsu. "Nucleon-nucleon scattering lengths in QCD sum rules." Physical Review Letters 71, no. 18 (November 1, 1993): 2855–58. http://dx.doi.org/10.1103/physrevlett.71.2855.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Morimatsu, O. "Hadron-Nucleon Scattering Lengths from QCD Sum Rules." Progress of Theoretical Physics Supplement 120 (May 16, 2013): 343–52. http://dx.doi.org/10.1143/ptp.120.343.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Morimatsu, Osamu. "Hadron-Nucleon Scattering Lengths from QCD Sum Rules." Progress of Theoretical Physics Supplement 120 (1995): 343–52. http://dx.doi.org/10.1143/ptps.120.343.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Liu, Yan-Rui, and Shi-Lin Zhu. "Decuplet contribution to the meson–baryon scattering lengths." European Physical Journal C 52, no. 1 (July 26, 2007): 177–86. http://dx.doi.org/10.1140/epjc/s10052-007-0348-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Hoferichter, Martin, Bastian Kubis, and Ulf-G. Meißner. "Isospin breaking in the pion–nucleon scattering lengths." Physics Letters B 678, no. 1 (July 2009): 65–71. http://dx.doi.org/10.1016/j.physletb.2009.05.068.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Angulo, C., M. Azzouz, P. Descouvemont, G. Tabacaru, D. Baye, M. Cogneau, M. Couder, et al. "Experimental determination of the Be+p scattering lengths." Nuclear Physics A 716 (March 2003): 211–29. http://dx.doi.org/10.1016/s0375-9474(02)01584-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Williams, C. J., E. Tiesinga, P. S. Julienne, H. Wang, W. C. Stwalley, and P. L. Gould. "Determination of the scattering lengths of39Kfrom1uphotoassociation line shapes." Physical Review A 60, no. 6 (December 1, 1999): 4427–38. http://dx.doi.org/10.1103/physreva.60.4427.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Garcilazo, Humberto, Leopold Mathelitsch, and Hubert Zankel. "Relativistic effects in the neutron-deuteron scattering lengths." Physical Review C 32, no. 1 (July 1, 1985): 264–66. http://dx.doi.org/10.1103/physrevc.32.264.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Kelkar, N. G., K. P. Khemchandani, and B. K. Jain. "ηN scattering lengths favour ηd and ηα states." Journal of Physics G: Nuclear and Particle Physics 32, no. 8 (July 24, 2006): 1157–70. http://dx.doi.org/10.1088/0954-3899/32/8/007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Jonsell, S. "Efimov states for systems with negative scattering lengths." Europhysics Letters (EPL) 76, no. 1 (October 2006): 8–14. http://dx.doi.org/10.1209/epl/i2006-10235-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Meißner, U. G., U. Raha, and A. Rusetsky. "The pion-nucleon scattering lengths from pionic deuterium." European Physical Journal C 45, no. 2 (November 25, 2005): 545. http://dx.doi.org/10.1140/epjc/s2005-02444-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Meißner, U. G., U. Raha, and A. Rusetsky. "Kaon–nucleon scattering lengths from kaonic deuterium experiments." European Physical Journal C 47, no. 2 (June 7, 2006): 473–80. http://dx.doi.org/10.1140/epjc/s2006-02578-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Szmytkowski, R. "Analytical calculations of scattering lengths in atomic physics." Journal of Physics A: Mathematical and General 28, no. 24 (December 21, 1995): 7333–45. http://dx.doi.org/10.1088/0305-4470/28/24/027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Rauch, H., and D. Tuppinger. "New methods for interferometric neutron scattering lengths measurements." Zeitschrift f�r Physik A Atoms and Nuclei 322, no. 3 (September 1985): 427–32. http://dx.doi.org/10.1007/bf01412077.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Ming-zhong, Wang, Wang Fan, and Chun Wa Wong. "Quark models of 1S0 nucleon-nucleon scattering lengths." Nuclear Physics A 483, no. 3-4 (June 1988): 661–68. http://dx.doi.org/10.1016/0375-9474(88)90090-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Kruglov, Timofey. "Spin-echo small-angle neutron scattering for dense systems of spheres." Journal of Applied Crystallography 38, no. 5 (September 15, 2005): 721–26. http://dx.doi.org/10.1107/s0021889805017012.

Full text
Abstract:
This paper presents (spin-echo) SANS correlation functions describing small-angle scattering on dense systems of spherical particles. (Spin-echo) small-angle correlation functions and associated correlation lengths for a single sphere, a dumbbell, excluded volume and structure are introduced. It is shown that the correlation length is proportional to the cumulative scattering probability. This approach is applied to a hard-sphere liquid.
APA, Harvard, Vancouver, ISO, and other styles
50

Dimenna, R. A., and R. O. Buckius. "Electromagnetic Theory Predictions of the Directional Scattering From Triangular Surfaces." Journal of Heat Transfer 116, no. 3 (August 1, 1994): 639–45. http://dx.doi.org/10.1115/1.2910917.

Full text
Abstract:
Angular predictions of directional scattering distributions for metal and dielectric surfaces with length scales of the order of the wavelength are made from rigorous electromagnetic scattering theory. The theoretical and numerical formulation of the electromagnetic scattering solution based on the extinction theorem is presented. One-dimensional triangular surface profiles are generated using a Fourier series representation for various correlation lengths, deviations, and surface peak positions. Bidirectional reflection functions and directional emissivities are calculated for the surface geometry parameters above and various optical properties. Angular enhancements in bidirectional reflection and emissivity are quantified. Angular scattering and emissivity predictions have been extended beyond those previously reported to include surfaces with equivalent correlation length and deviation.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography