Academic literature on the topic 'Scattering coefficient'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Scattering coefficient.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Scattering coefficient"
Zhang, Q. Q., X. J. Wu, C. Wang, S. W. Zhu, Y. L. Wang, Bruce Z. Gao, and X. C. Yuan. "Scattering Coefficients of Mice Organs Categorized Pathologically by Spectral Domain Optical Coherence Tomography." BioMed Research International 2014 (2014): 1–5. http://dx.doi.org/10.1155/2014/471082.
Full textKÖRKKÖ, MIKA, OSSI LAITINEN, ANTTI HAAPALA, ARI ÄMMÄLÄ, and JOUKO NIINIMÄKI. "Scattering properties of recycled pulp at the near infrared region and its effect on the determination of residual ink." June 2011 10, no. 6 (July 1, 2011): 17–22. http://dx.doi.org/10.32964/tj10.6.17.
Full textSato, Haruo. "Isotropic scattering coefficient of the solid earth." Geophysical Journal International 218, no. 3 (June 6, 2019): 2079–88. http://dx.doi.org/10.1093/gji/ggz266.
Full textChung, Won Young, Sun Young Kim, and Chang Ho Kang. "Image Dehazing Using LiDAR Generated Grayscale Depth Prior." Sensors 22, no. 3 (February 5, 2022): 1199. http://dx.doi.org/10.3390/s22031199.
Full textEsmonde-White, Francis W. L., and David H. Burns. "A Portable Multi-Wavelength near Infrared Photon Time-of-flight Instrument for Measuring Light Scattering." Journal of Near Infrared Spectroscopy 17, no. 4 (January 1, 2009): 167–76. http://dx.doi.org/10.1255/jnirs.847.
Full textBlaney, Giles, Angelo Sassaroli, and Sergio Fantini. "Method for Measuring Absolute Optical Properties of Turbid Samples in a Standard Cuvette." Applied Sciences 12, no. 21 (October 27, 2022): 10903. http://dx.doi.org/10.3390/app122110903.
Full textChen, Zezong, Jian Li, Chen Zhao, Fan Ding, and Xi Chen. "The Scattering Coefficient for Shore-to-Air Bistatic High Frequency (HF) Radar Configurations as Applied to Ocean Observations." Remote Sensing 11, no. 24 (December 11, 2019): 2978. http://dx.doi.org/10.3390/rs11242978.
Full textBasak, Soumen, and Parthasarathi Majumdar. "Reflection coefficient for superresonant scattering." Classical and Quantum Gravity 20, no. 13 (June 12, 2003): 2929–36. http://dx.doi.org/10.1088/0264-9381/20/13/335.
Full textVorlaender, Michael, and Stefan Feistel. "Show your scattering coefficients." Journal of the Acoustical Society of America 152, no. 4 (October 2022): A209. http://dx.doi.org/10.1121/10.0016032.
Full textWang, Hai Tao, Xiang Yang Zeng, and Yan Shan Liu. "Calculation of the Scattering Coefficient of Large Scale Periodic Structure." Advanced Materials Research 889-890 (February 2014): 135–39. http://dx.doi.org/10.4028/www.scientific.net/amr.889-890.135.
Full textDissertations / Theses on the topic "Scattering coefficient"
Fröba, Andreas P., Cristina Botero, Heiko Kremer, and Alfred Leipertz. "Mutual diffusion coefficient in fluids by dynamic light scattering." Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-196269.
Full textFröba, Andreas P., Cristina Botero, Heiko Kremer, and Alfred Leipertz. "Mutual diffusion coefficient in fluids by dynamic light scattering." Diffusion fundamentals 2 (2005) 70, S. 1-2, 2005. https://ul.qucosa.de/id/qucosa%3A14404.
Full textBaker, Stephen. "Optimal determination of the optical coefficients from scattering media." Thesis, University of Nottingham, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.268794.
Full textDavies, Joshua. "NNNLO and all-order corrections to splitting and coefficient functions in deep-inelastic scattering." Thesis, University of Liverpool, 2016. http://livrepository.liverpool.ac.uk/3003745/.
Full textAslan, Gokhan. "Cepstral Deconvolution Method For Measurement Of Absorption And Scattering Coefficients Of Materials." Master's thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/3/12608021/index.pdf.
Full textO'Bree, Terry Adam, and s9907681@student rmit edu au. "Investigations of light scattering by Australian natural waters for remote sensing applications." RMIT University. Applied Sciences, 2007. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20080110.140055.
Full textBotero, Cristina, Heiko Kremer, Andreas P. Fröba, and Alfred Leipertz. "Particle diffusion coefficient and dynamic viscosity in non-ideal liquid mixtures by dynamic light scattering." Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-196233.
Full textBotero, Cristina, Heiko Kremer, Andreas P. Fröba, and Alfred Leipertz. "Particle diffusion coefficient and dynamic viscosity in non-ideal liquid mixtures by dynamic light scattering." Diffusion fundamentals 2 (2005) 67, S. 1-2, 2005. https://ul.qucosa.de/id/qucosa%3A14401.
Full textNeukermans, Griet. "Les particules en suspension dans les eaux côtières turbides : estimation par mesures optique in situ et depuis l'espace." Thesis, Littoral, 2012. http://www.theses.fr/2012DUNK0406/document.
Full textParticles suspended in seawater include sediments, phytoplankton, zooplankton, bacteria, viruses, and detritus, and are collectively referred to as suspended particulate matter, SPM. In coastal waters, SPM is transported over long distances and in the water column by biological, tide or wind-driven advection and resuspension processes, thus varying strongly in time and space. These strong dynamics challenge the traditional measurement of the concentration of SPM, [SPM], through filtration of seawater sampled from ships. Estimation of [SPM] from sensors recording optical scattering allows to cover larger temporal or spatial scales. So called ocean colour satelittes, for example, have been used for the mapping of [SPM] on a global scale since the late 1970s. These polar-orbiting satellites typically provide one image per day forthe North Sea area. However, the sampling frequency of these satellites is a serious limitation in coastal waters where [SPM] changes rapidly during the day due to tides and winds.Optical instruments installed on moored platforms or on under-water vehicles can be operated continuously, but their spatial coverage is limited. This work aims to advance in situ and space-based optical techniques for [SPM] retrieval by investigating the natural variability in the relationship between [SPM] and light scattering by particles and by investigating whether the European geostationary meteorological SEVIRI sensor, which provides imagery every 15 minutes, can be used for the mapping of [SPM] in the southern North Sea. Based on an extensive in situ dataset, we show that [SPM] is best estimated from red light scattered in the back directions (backscattering). Moreover, the relationship between [SPM]] and particulate backscattering is driven by the organic/inorganic composition of suspended particles, offering opportunities to improve [SPM] retrieval algorithms. We also show that SEVIRI successfully retrieves [SPM] and related parameters such as turbidity and the vertical light attenuation coefficient in turbid waters. Even though uncertainties are considerable in clear waters, this is a remarkable result for a meteorological sensor designed to monitor clouds and ice, much brighter targets than the sea! On cloud free days, tidal variability of [SPM] can now be resolved by remote sensing for the first time, offering new opportunities for monitoring of turbidity and ecosystem modelling. In June 2010 the first geostationary ocean colour sensor was launched into space which provides hourly multispectral imagery of Korean waters. Other geostationary ocean colour sensors are likely to become operational in the (near?) future over the rest of the world's sea. This work allows us to maximally prepare for the coming of geostationary ocean colour satellites, which are expected to revolutionize optical oceanography
De in zeewater aanwezige zwevende materie zoals sedimenten, fytoplankton, zooplankton, bacteriën, virussen en detritus, worden collectief "suspended particulate matter" (SPM) genoemd. In kustwateren worden deze deeltjes over lange afstanden en in de waterkolom getransporteerd door biologische processen of wind- of getijdenwerking, waardoor SPM sterk varieert in ruimte en tijd. Door deze sterke dynamiek wordt de traditionele bemonstering van de concentratie van SPM, [SPM], door middel van filtratie van zeewaterstalen aan boord van schepen ontoereikend. Optische technieken die gebruik maken van de lichtverstriioongseigenschappen van SPM bieden een gebieds- of tijdsdekkend alternatief. Zogenaamde "ocean colour" satellieten bijvoorbeeld leveren beelden van o.a. [SPM] aan het zeeoppervlak op globale schaal sinds eind 1970, met een frequantie van één beeld per dag voor de Noordzee. Deze frequentie is echter onvoldoende in onze kustwateren waar [SPM] drastisch kan veranderen in enkele uren tijd. Optische instrumenten aan boord vann schepen of op onderwatervoertuigen kunnen continu meten, maar de gebiedsdekking is deperkt. Dit werk heeft tot doel de lichtverstriioongseigenschappen van SPM te karakterizeren en te onderzoeken of de Europese geostationaire weersatelliet, die elk kwartier een beeld geeft, kan worden gebruikt voor de kartering van [SPM] in de zuidelijke Noordzee. Op basis van een grote dataset van in situ metingen tonen wij aan dat [SPM] het nauwkeurigst kan worden bepaald door de meting van de verstrooiing van rood licht in achterwaartse richtingen (terugverstrooiing). Bovendien blijkt de relatie tussen [SPM] en terugverstrooiing afhankelijk van de organische-anorganische samenstelling van zwenvende stof, wat mogelijkhenden biedt tot het verfijnen van teledetectiealgoritmen voor [SPM]. Voorts tonen woj aan dat de Europese weersatelliet, SEVIRI, successvol kan worden aangewend voor de kartering van [SPM] en gerelateerde parameters zoals troebelheid en lichtdemping in de waterkolom. Hoewel met grote meetonzekerheid in klaar water toch een opmerkelijk resultaat voor een sensor die ontworpen werd voor detectie van wolken en ijs! Op wolkenvrije dagen wordt hierdoor de getijdendynamiek van [SPM] in de zuidelijke Noordzee voor het eerst detecteerbaar vanuit de ruimte, wat nieuwe mogelijkheden biedt voor de monitoring van waterkwaliteit en verbetering van ecosysteellodellen. Sinds juni 2010 is de eerste geostationaire ocean colour satelliet een feit : elk uur een multispectraal beeld van Koreaanse wateren. Vermoedelijk zullen er in de (nabije?) toekomst meer volgen over Europa en Amerika. Dit werk laat toe ons maximaal voor te bereiden op te komst van zo'n satellieten, waarvan verwacht wordt dat zij een nieuwe revolutie in optische oceanografie zullen ontketenen
Синашенко, Оксана Володимирівна, Оксана Владимировна Синашенко, Oksana Volodymyrivna Synashenko, Зінаїда Миколаївна Макуха, Зинаида Николаевна Макуха, Zinaida Mykolaivna Makukha, Іван Юхимович Проценко, Иван Ефимович Проценко, and Ivan Yukhymovych Protsenko. "The Influence of Electrons Scattering at Grain Boundary and at Surface on Resistivity and Thermal Coefficient of Resistance of Nanocrystalline Silver Films." Thesis, Sumy State University, 2012. http://essuir.sumdu.edu.ua/handle/123456789/34900.
Full textBooks on the topic "Scattering coefficient"
National Institute of Standards and Technology (U.S.), ed. An examination and assessment of available incoherent scattering S-Matrix theory, also compton profile information, and their impact on photon attenuation coefficient compilations. Gaithersburg, MD (100 Bureau Drive, Gaithersburg 20899-8463): U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1999.
Find full textNational Institute of Standards and Technology (U.S.), ed. An examination and assessment of available incoherent scattering S-Matrix theory, also compton profile information, and their impact on photon attenuation coefficient compilations. Gaithersburg, MD (100 Bureau Drive, Gaithersburg 20899-8463): U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1999.
Find full textUnited States. National Aeronautics and Space Administration., ed. Improved Gaussian beam-scattering algorithm. [Washington, DC: National Aeronautics and Space Administration, 1995.
Find full textUnited States. National Aeronautics and Space Administration., ed. Improved Gaussian beam-scattering algorithm. [Washington, DC: National Aeronautics and Space Administration, 1995.
Find full textUnited States. National Aeronautics and Space Administration., ed. Improved Gaussian beam-scattering algorithm. [Washington, DC: National Aeronautics and Space Administration, 1995.
Find full textWang, Chʻing-lin. A numerical procedure for recovering true scattering coefficients from measurements with wide-beam antennas. Lawrence, Kan: Unversity of Kansas Center for Research, Inc., Radar Systems and Remote Sensing Laboratory, 1991.
Find full textA, Polka Lesley, Liu Kefeng, and Langley Research Center, eds. Scattering from coated structures and antenna pattern control using impedance surfaces: Semiannual progress report. Hampton, VA: National Aeronautics and Space Administration, Langley Research Center, 1990.
Find full textA, Polka Lesley, Liu Kefeng, and Langley Research Center, eds. Scattering from coated structures and antenna pattern control using impedance surfaces: Semiannual progress report. Hampton, VA: National Aeronautics and Space Administration, Langley Research Center, 1990.
Find full textUnited States. National Aeronautics and Space Administration., ed. Final report on radiative effects of aerosols. [Washington, DC: National Aeronautics and Space Administration, 1996.
Find full textK, Moore Richard, and United States. National Aeronautics and Space Administration., eds. Correction of WindScat scatterometric measurements by combining with AMSR radiometric data. Lawrence, Kan: Radar Systems and Remote Sensing Laboratory, University of Kansas Center for Research, 1996.
Find full textBook chapters on the topic "Scattering coefficient"
Weik, Martin H. "scattering coefficient." In Computer Science and Communications Dictionary, 1522. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_16663.
Full textGooch, Jan W. "Scattering Coefficient, Mie." In Encyclopedic Dictionary of Polymers, 647. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_10324.
Full textWeik, Martin H. "spectral scattering coefficient." In Computer Science and Communications Dictionary, 1632–33. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_17889.
Full textGooch, Jan W. "Scattering Coefficient, Kubelka-Munk." In Encyclopedic Dictionary of Polymers, 647. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_10323.
Full textGupta, Kalpak, and M. R. Shenoy. "Light Scattering from Mixtures of Turbid Media: Determination of Interaction Coefficient." In Springer Proceedings in Physics, 545–48. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9259-1_125.
Full textHusain, Noor Asma, and Mohd Shafry Mohd Rahim. "The Dynamic Scattering Coefficient on Image Dehazing Method with Different Haze Conditions." In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 223–41. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-99188-3_14.
Full textAlpay, Daniel, Israel Gohberg, and Lev Sakhnovich. "Inverse Scattering Problem for Continuous Transmission Lines with Rational Reflection Coefficient Function." In Recent Developments in Operator Theory and Its Applications, 1–16. Basel: Birkhäuser Basel, 1996. http://dx.doi.org/10.1007/978-3-0348-9035-9_1.
Full textLiu, Yejia, Xiang Li, Xunbo Li, and Zhiyong Zhang. "Swarm Intelligence Enhanced Parameters Estimation for Multi-mode Separation and Scattering Coefficient Matrix Reconstruction." In Proceedings of the Eighth Asia International Symposium on Mechatronics, 1817–28. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-1309-9_174.
Full textRamm, Alexander G. "Many-Body Wave Scattering Problems for Small Scatterers and Creating Materials with a Desired Refraction Coefficient." In Mathematical Analysis and Applications, 57–75. Hoboken, NJ, USA: John Wiley & Sons, Inc, 2018. http://dx.doi.org/10.1002/9781119414421.ch3.
Full textLi, Bifeng, Bing Xue, Jiafang Kang, Chuntao Cai, and Yue Liu. "Establishment of Empirical Expression of Atmospheric Scattering Coefficient for Line-of-Sight Ultraviolet Propagation in Coastal Area." In Data Mining and Big Data, 449–61. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-8991-9_32.
Full textConference papers on the topic "Scattering coefficient"
Zaginailo, Yu I., Yu M. Gorbanev, and V. D. Motrich. "Height scattering indicatrices and the earth's atmosphere scattering coefficient." In Twenty-third European Meeting on Atmospheric Studies by Optical Methods, edited by Vasily N. Ivchenko. SPIE, 1997. http://dx.doi.org/10.1117/12.284761.
Full textMarchesini, R., A. Andreola, A. Bertoni, E. Melloni, and A. E. Sichirollo. "Attenuation coefficient and scattering phase function of human tissues." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1988. http://dx.doi.org/10.1364/oam.1988.thd7.
Full textWang, Yangyang, Xiaoling Zhang, and Jun Shi. "Target scattering coefficient measurement system and method." In 2020 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC). IEEE, 2020. http://dx.doi.org/10.1109/icspcc50002.2020.9259466.
Full textJodai, Yasuhisa, Tomohiko Oishi, Y. Saruya, and Motoaki Kishino. "Bypass method for estimating backward scattering coefficient." In Ocean Optics XIII, edited by Steven G. Ackleson and Robert J. Frouin. SPIE, 1997. http://dx.doi.org/10.1117/12.266484.
Full textWlodarczyk, Marek T. "Scattering and absorption in thin-film waveguides." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1986. http://dx.doi.org/10.1364/oam.1986.thg2.
Full textDurant, Stephane, Jean-Jacques Greffet, Olivier Calvo-Perez, and Nicolas Vukadinovic. "Extinction coefficient in absorbing media: a theoretical and numerical study." In Tenth Conference on Electromagnetic and Light Scattering. Connecticut: Begellhouse, 2007. http://dx.doi.org/10.1615/ichmt.2007.confelectromagligscat.110.
Full textMeyer, William V., James A. Lock, David S. Cannell, Thomas W. Taylor, Padetha Tin, Anthony E. Smart, H. Michael Cheung, and J. A. Mann. "A Single Wavelength Cross-Correlation Technique Which Suppresses Multiple Scattering." In Photon Correlation and Scattering. Washington, D.C.: Optica Publishing Group, 1996. http://dx.doi.org/10.1364/pcs.1996.fb.1.
Full textChang, Shuang, Theodore Leng, Sylvia L. Groth, and Audrey K. Bowden. "Detection of early-stage glaucoma with a depth-resolved optical attenuation coefficient." In Biomedical Applications of Light Scattering XII, edited by Adam Wax and Vadim Backman. SPIE, 2022. http://dx.doi.org/10.1117/12.2609866.
Full textCalla, O. P. N., K. C. Harit, Rajesh Vyas, Dinesh Bohra, and Sanjeev Kumar Mishra. "Comparison of measured scattering coefficient of dry soil at X-band with the scattering coefficient estimated using the dielectric constant." In 2007 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2007. http://dx.doi.org/10.1109/igarss.2007.4423509.
Full textDeAngelo, Bianca, Grant Arzumanov, Patrick Shanley, Zhang Xu, and M. Xu. "Determination of the scattering coefficient, the reduced scattering coefficient, and the anisotropy factor of tissue with differential interference contrast microscopy." In SPIE BiOS, edited by Adam P. Wax and Vadim Backman. SPIE, 2012. http://dx.doi.org/10.1117/12.910457.
Full textReports on the topic "Scattering coefficient"
Pilon, R. O., and J. M. Headrick. Estimating the Scattering Coefficient of the Ocean Surface for High- Frequency Over-the-Horizon Radar. Fort Belvoir, VA: Defense Technical Information Center, March 1986. http://dx.doi.org/10.21236/ada165722.
Full textHegg, Dean A., and David S. Covert. Measurements of the Aerosol Light-Scattering Coefficient at Ambient and 85% Relative Humidity on the ONR Pelican During ACE-2. Fort Belvoir, VA: Defense Technical Information Center, September 2006. http://dx.doi.org/10.21236/ada613675.
Full textHegg, Dean A., and David S. Covert. Measurements of the Aerosol Light-scattering Coefficient at Ambient and 85% Relative Humidity on the ONR Pelican During ACE-2. Fort Belvoir, VA: Defense Technical Information Center, September 1997. http://dx.doi.org/10.21236/ada627631.
Full textHegg, Dean A., and David S. Covert. Measurements of the Aerosol Light-Scattering Coefficient at Ambient and 85% Relative Humidity on the ONR Pelican During ACE-2. Fort Belvoir, VA: Defense Technical Information Center, September 2001. http://dx.doi.org/10.21236/ada627899.
Full textHegg, Dean A., and David S. Covert. Measurements of the Aerosol Light-Scattering Coefficient at Ambient and 85% Relative Humidity on the ONR Pelican During ACE-2. Fort Belvoir, VA: Defense Technical Information Center, September 1999. http://dx.doi.org/10.21236/ada629757.
Full textHegg, Dean A., and David S. Covert. Measurements of the Aerosol Light-Scattering Coefficient at Ambient and 85% Relative Humidity on the ONR Pelican During ACE-2. Fort Belvoir, VA: Defense Technical Information Center, September 2003. http://dx.doi.org/10.21236/ada629995.
Full textHegg, Dean A., and David S. Covert. Measurements of the Aerosol Light-Scattering Coefficient at Ambient and 85% Relative Humidity on the ONR Pelican During ACE-2. Fort Belvoir, VA: Defense Technical Information Center, September 2005. http://dx.doi.org/10.21236/ada572509.
Full textMoore, Casey. Development and Characterization of a Variable Aperture Attenuation Meter for the Determination of the Small Angle Volume Scattering Function and System Attenuation Coefficient. Fort Belvoir, VA: Defense Technical Information Center, September 1997. http://dx.doi.org/10.21236/ada634009.
Full textHubbell, J. H. An examination and assessment of available incoherent scattering s-matrix theory, also compton profile information, and their impact on photon attenuation coefficient compilations. Gaithersburg, MD: National Institute of Standards and Technology, 1999. http://dx.doi.org/10.6028/nist.ir.6358.
Full textManickavasagam, S., and M. P. Menguec. The scattering phase function coefficients of pulverized-coal particles in flames. Office of Scientific and Technical Information (OSTI), December 1992. http://dx.doi.org/10.2172/10149865.
Full text