Academic literature on the topic 'Scanning near-field microscopy'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Scanning near-field microscopy.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Scanning near-field microscopy"

1

Chornii, V. "New materials for luminescent scanning near-field microscopy." Functional materials 20, no. 3 (September 25, 2013): 402–6. http://dx.doi.org/10.15407/fm20.03.402.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Vobornik, Dušan, and Slavenka Vobornik. "Scanning Near-Field Optical Microscopy." Bosnian Journal of Basic Medical Sciences 8, no. 1 (February 20, 2008): 63–71. http://dx.doi.org/10.17305/bjbms.2008.3000.

Full text
Abstract:
An average human eye can see details down to 0,07 mm in size. The ability to see smaller details of the matter is correlated with the development of the science and the comprehension of the nature. Today’s science needs eyes for the nano-world. Examples are easily found in biology and medical sciences. There is a great need to determine shape, size, chemical composition, molecular structure and dynamic properties of nano-structures. To do this, microscopes with high spatial, spectral and temporal resolution are required. Scanning Near-field Optical Microscopy (SNOM) is a new step in the evolution of microscopy. The conventional, lens-based microscopes have their resolution limited by diffraction. SNOM is not subject to this limitation and can offer up to 70 times better resolution.
APA, Harvard, Vancouver, ISO, and other styles
3

OKAZAKI, Satoshi, and Toshihiko NAGAMURA. "Near-field Scanning Optical Microscopy." Journal of the Japan Society for Precision Engineering 57, no. 7 (1991): 1155–58. http://dx.doi.org/10.2493/jjspe.57.1155.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Troyon, Michel, David Pastré, Jean Pierre Jouart, and Jean Louis Beaudoin. "Scanning near-field cathodoluminescence microscopy." Ultramicroscopy 75, no. 1 (October 1998): 15–21. http://dx.doi.org/10.1016/s0304-3991(98)00049-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Buratto, Steven K. "Near-field scanning optical microscopy." Current Opinion in Solid State and Materials Science 1, no. 4 (August 1996): 485–92. http://dx.doi.org/10.1016/s1359-0286(96)80062-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kirstein, Stefan. "Scanning near-field optical microscopy." Current Opinion in Colloid & Interface Science 4, no. 4 (August 1999): 256–64. http://dx.doi.org/10.1016/s1359-0294(99)90005-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

AOKI, Hiroyuki. "Scanning Near-Field Optical Microscopy." Kobunshi 55, no. 10 (2006): 831–35. http://dx.doi.org/10.1295/kobunshi.55.831.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Paule, E., and P. Reineker. "Scanning near field exciton microscopy." Journal of Luminescence 83-84 (November 1999): 121–26. http://dx.doi.org/10.1016/s0022-2313(99)00084-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Dürig, U., D. W. Pohl, and F. Rohner. "Near‐field optical‐scanning microscopy." Journal of Applied Physics 59, no. 10 (May 15, 1986): 3318–27. http://dx.doi.org/10.1063/1.336848.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dunn, Robert C. "Near-Field Scanning Optical Microscopy." Chemical Reviews 99, no. 10 (October 1999): 2891–928. http://dx.doi.org/10.1021/cr980130e.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Scanning near-field microscopy"

1

Leong, Siang Huei. "Apertureless scanning near-field optical microscopy." Thesis, University of Cambridge, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.615953.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

LeBlanc, Philip R. "Dual-wavelength scanning near-field optical microscopy." Thesis, McGill University, 2002. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=82911.

Full text
Abstract:
A dual-wavelength Scanning Near-Field Optical Microscope was developed in order to investigate near-field contrast mechanisms as well as biological samples in air. Using a helium-cadmium laser, light of wavelengths 442 and 325 nanometers is coupled into a single mode optical fiber. The end of the probe is tapered to a sub-wavelength aperture, typically 50 nanometers, and positioned in the near-field of the sample. Light from the aperture is transmitted through the sample and detected in a confocal arrangement by two photomultiplier tubes. The microscope has a lateral topographic resolution of 10 nanometers, a vertical resolution of 0.1 nanometer and an optical resolution of 30 nanometers. Two alternate methods of producing the fiber probes, heating and pulling, or acid etching, are compared and the metal coating layer defining the aperture is discussed. So-called "shear-force" interactions between the tip and sample are used as the feedback mechanism during raster scanning of the sample. An optical and topographic sample standard was developed to calibrate the microscope and extract the ultimate resolution of the instrument. The novel use of two wavelengths enables the authentication of true near-field images, as predicted by various models, as well as the identification of scanning artifacts and the deconvolution of often highly complicated relationships between the topographical and optical images. Most importantly, the use of two wavelengths provides information on the chemical composition of the sample. Areas of a polystyrene film are detected by a significant change in the relative transmission of the two wavelengths with a resolution of 30 nanometers. As a biological application, a preliminary investigation of the composition of Black Spruce wood cell fibers was performed. Comparisons of the two optical channels reveal the expected lignin distributions in the cell wall.
APA, Harvard, Vancouver, ISO, and other styles
3

Thoma, Arne [Verfasser]. "Apertureless Scanning Terahertz Near Field Microscopy / Arne Thoma." München : Verlag Dr. Hut, 2011. http://d-nb.info/1011442043/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hadjipanayi, Maria. "Scanning near-field optical microscopy of semiconducting nano-structures." Thesis, University of Oxford, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.442754.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Schneider, Susanne Christine. "Scattering Scanning Near-Field Optical Microscopy on Anisotropic Dielectrics." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2007. http://nbn-resolving.de/urn:nbn:de:swb:14-1192105974322-82865.

Full text
Abstract:
Near-field optical microscopy allows the nondestructive examination of surfaces with a spatial resolution far below the diffraction limit of Abbe. In fact, the resolution of this kind of microscope is not at all dependent on the wavelength, but is typically in the range of 10 to 100 nanometers. On this scale, many materials are anisotropic, even though they might appear isotropic on the macroscopic length scale. In the present work, the previously never studied interaction between a scattering-type near-field probe and an anisotropic sample is examined theoretically as well as experimentally. In the theoretical part of the work, the analytical dipole model, which is well known for isotropic samples, is extended to anisotropic samples. On isotropic samples one observes an optical contrast between different materials, whereas on anisotropic samples one expects an additional contrast between areas with different orientations of the same dielectric tensor. The calculations show that this anisotropy contrast is strong enough to be observed if the sample is excited close to a polariton resonance. The experimental setup allows the optical examination in the visible and in the infrared wavelength regimes. For the latter, a free-electron laser was used as a precisely tunable light source for resonant excitation. The basic atomic force microscope provides a unique combination of different scanning probe microscopy methods that are indispensable in order to avoid artifacts in the measurement of the near-field signal and the resulting anisotropy contrast. Basic studies of the anisotropy contrast were performed on the ferroelectric single crystals barium titanate and lithium niobate. On lithium niobate, we examined the spectral dependence of the near-field signal close to the phonon resonance of the sample as well as its dependence on the tip-sample distance, the polarization of the incident light, and the orientation of the sample. On barium titanate, analogous measurements were performed and, additionally, areas with different types of domains were imaged and the near-field optical contrast due to the anisotropy of the sample was directly measured. The experimental results of the work agree with the theoretical predictions. A near-field optical contrast due to the anisotropy of the sample can be measured and allows areas with different orientations of the dielectric tensor to be distinguished optically. The contrast results from variations of the dielectric tensor components both parallel and perpendicular to the sample surface. The presented method allows the optical examination of anisotropies of a sample with ultrahigh resolution, and promises applications in many fields of research, such as materials science, information technology, biology, and nanooptics
Die optische Nahfeldmikroskopie ermöglicht die zerstörungsfreie optische Unter- suchung von Oberflächen mit einer räumlichen Auflösung weit unterhalb des klas- sischen Beugungslimits von Abbe. Die Auflösung dieser Art von Mikroskopie ist unabhängig von der verwendeten Wellenlänge und liegt typischerweise im Bereich von 10-100 Nanometern. Auf dieser Längenskala zeigen viele Materialien optisch anisotropes Verhalten, auch wenn sie makroskopisch isotrop erscheinen. In der vorliegenden Arbeit wird die bisher noch nicht bestimmte Wechselwirkung einer streuenden Nahfeldsonde mit einer anisotropen Probe sowohl theoretisch als auch experimentell untersucht. Im theoretischen Teil wird das für isotrope Proben bekannte analytische Dipol- modell auf anisotrope Materialien erweitert. Während fÄur isotrope Proben ein reiner Materialkontrast beobachtet wird, ist auf anisotropen Proben zusätzlich ein Kontrast zwischen Bereichen mit unterschiedlicher Orientierung des Dielektrizitätstensors zu erwarten. Die Berechnungen zeigen, dass dieser Anisotropiekontrast messbar ist, wenn die Probe nahe einer Polaritonresonanz angeregt wird. Der verwendete experimentelle Aufbau ermöglicht die optische Untersuchung von Materialien im sichtbaren sowie im infraroten Wellenlängenbereich, wobei zur re- sonanten Anregung ein Freie-Elektronen-Laser verwendet wurde. Das dem Nahfeld- mikroskop zugrunde liegende Rasterkraftmikroskop bietet eine einzigartige Kombi- nation verschiedener Rastersondenmikroskopie-Methoden und ermöglicht neben der Untersuchung von komplementären Probeneigenschaften auch die Unterdrückung von mechanisch und elektrisch induzierten Fehlkontrasten im optischen Signal. An den ferroelektrischen Einkristallen Lithiumniobat und Bariumtitanat wurde der anisotrope Nahfeldkontrast im infraroten WellenlÄangenbereich untersucht. An eindomÄanigem Lithiumniobat wurden das spektrale Verhalten des Nahfeldsignals sowie dessen charakteristische Abhängigkeit von Polarisation, Abstand und Proben- orientierung grundlegend untersucht. Auf Bariumtitanat, einem mehrdomänigen Kristall, wurden analoge Messungen durchgeführt und zusätzlich Gebiete mit ver- schiedenen Domänensorten abgebildet, wobei ein direkter nachfeldoptischer Kon- trast aufgrund der Anisotropie der Probe nachgewiesen werden konnte. Die experimentellen Ergebnisse dieser Arbeit stimmen mit den theoretischen Vorhersagen überein. Ein durch die optische Anisotropie der Probe induzierter Nahfeldkontrast ist messbar und erlaubt die optische Unterscheidung von Gebie- ten mit unterschiedlicher Orientierung des Dielektriziätstensors, wobei eine Än- derung desselben sowohl parallel als auch senkrecht zur Probenoberfläche messbar ist. Diese Methode erlaubt die hochauflösende optische Untersuchung von lokalen Anisotropien, was in zahlreichen Gebieten der Materialwissenschaft, Speichertech- nik, Biologie und Nanooptik von Interesse ist
APA, Harvard, Vancouver, ISO, and other styles
6

Low, Chun Hong. "Near Field Scanning Optical Microscopy(NSOM) of nano devices." Thesis, Monterey, Calif. : Naval Postgraduate School, 2008. http://edocs.nps.edu/npspubs/scholarly/theses/2008/Dec/08Dec%5FLow.pdf.

Full text
Abstract:
Thesis (M.S. in Combat Systems Science and Technology)--Naval Postgraduate School, December 2008.
Thesis Advisor(s): Haegel, Nancy M. ; Luscombe, James. "December 2008." Description based on title screen as viewed on January 29, 2009. Sponsoring/Monitoring Agency Report Number: "DMR-0526330." Includes bibliographical references (p. 59-61). Also available in print.
APA, Harvard, Vancouver, ISO, and other styles
7

Stevenson, Richard. "Scanning near-field optical microscopy (SNOM) of semiconductor nanostructures." Thesis, University of Cambridge, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.621756.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chaipiboonwong, Tipsuda. "Characterising nonlinear waveguides by scanning near-field optical microscopy." Thesis, University of Southampton, 2008. https://eprints.soton.ac.uk/65528/.

Full text
Abstract:
Scanning near-field optical microscopy (SNOM) has been applied to investigate the dispersion and nonlinear phenomena in a multimode Ta2O5 rectangular waveguide. Unlike the conventional approach of observing only the output spectra, the SNOM technique can collect the localised spectra from the evanescent field at various locations of the waveguide. This provides the visualisation of pulse evolution prior to the final development as the output light. The SNOM-acquired spectra consist of unique features which have not been observed before in previous nonlinear pulse propagation researches. These distinctive characteristics are attributed to the localised nature of the data and the multimode nonlinear pulse propagation. In order to understand the underlying physics of the experimental data, a numerical model simulating this SNOM visualisation has been developed. The simulation was based on the nonlinear Schrödinger equation, adapted for multimode pulses, and performed by the split-step Fourier algorithm. The spectra exhibit very fine features which can be attributed to the interference of various modes with different phase modulation owing to dispersion and nonlinear effects. Accordingly, the complexity of the spectral features increase with the propagation distance and the number of contributing modes. The multimode spectra rapidly broaden at the beginning stage of the propagation, owing to the supplementary intermodal phase modulation. Unlike the single-mode case, in which the spectral broadening caused by the self-phase modulation continuously develops along the propagation distance, the broadening process in the multimode pulse is decelerated at the later distance. This is owing to the separation of the higher-order modes and consequently the influence of the cross-phase modulation on the spectral broadening is reduced. The SNOM technique can also provide the observation of high resolution evolution of the pulse spectra. Both spectral variations along the length of the waveguide and across the waveguide are observable. Such a variation over the wavelength scale is caused by the interference of modes with different phases complexly formed by the dispersion and nonlinear effects.
APA, Harvard, Vancouver, ISO, and other styles
9

Kershaw, Kevin Neil. "Development of scanning near-field optical microscopy for biological applications." Thesis, University of Leeds, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.405591.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Demming, Anna Linda. "Theoretical investigations into apertureless scanning near field optical microscopy systems." Thesis, King's College London (University of London), 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.429644.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Scanning near-field microscopy"

1

NATO Advanced Research Workshop on Near Field Optics (1992 Arc-et-Senans, France). Near field optics. Dordrecht: Kluwer Academic, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

service), SpringerLink (Online, ed. Quantum Theory of Near-Field Electrodynamics. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zhang, Peng. Development of a near-field scanning optical microscope and its application in studying the optical mode localization of self-affine Ag colloidal films. Ottawa: National Library of Canada = Bibliothèque nationale du Canada, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

A, Paesler Michael, Moyer Patrick J, and Society of Photo-optical Instrumentation Engineers., eds. Near-field optics: 9-10 July, 1995, San Diego, California. Bellingham, Wash., USA: SPIE, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Atomic Force Microscopy, Scanning Nearfield Optical Microscopy and Nanoscratching: Application to Rough and Natural Surfaces (NanoScience and Technology). Springer, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Keller, Ole. Quantum Theory of Near-Field Electrodynamics. Springer, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Martin, Francis L., and Hubert M. Pollock. Microspectroscopy as a tool to discriminate nanomolecular cellular alterations in biomedical research. Edited by A. V. Narlikar and Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533053.013.8.

Full text
Abstract:
This article considers the use of microspectroscopy for discriminating nanomolecular cellular alterations in biomedical research. It begins with an overview of some existing mid-infrared microspectroscopy techniques, including FTIR microspectroscopy and Raman microspectroscopy. It then discusses near-field techniques such as scanning near-field optical microscopy, near-field Raman microscopy, and photothermal microspectroscopy (PTMS). It also examines promising alternative sources of IR light, possible advantages of using normal atomic force microscopy probes, experimental procedures for PTMS, and prospects for high spatial resolution in near-field FTIR spectroscopy. Finally, it describes the spectroscopic detection of small particles, along with the use of the analysis paradigm to discriminate nanomolecular cellular alterations in biomedical research.
APA, Harvard, Vancouver, ISO, and other styles
8

Yang, Seung Yun. Imaging silver nanowire using near-field scanning optical microscope. 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Nagy, Noemi Zsuzsanna. Development of a hybrid near-field scanning optical chemical probe microscope. 2002, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Nagy, Noémi Zsuzsanna. Development of a hybrid near-field scanning optical chemical probe microscope. 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Scanning near-field microscopy"

1

Fischer, U. Ch. "Scanning Near Field Optical Microscopy." In Scanning Microscopy, 76–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84810-0_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fischer, U. C. "Scanning Near-Field Optical Microscopy." In Scanning Probe Microscopy, 161–210. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-03606-8_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Paulson, C. A., and D. W. Van Der Weide. "Near-Field High-Frequency Probing." In Scanning Probe Microscopy, 315–45. New York, NY: Springer New York, 2007. http://dx.doi.org/10.1007/978-0-387-28668-6_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Narushima, Tetsuya. "Scanning Near-Field Optical Microscopy/Near-Field Scanning Optical Microscopy." In Compendium of Surface and Interface Analysis, 577–82. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-6156-1_93.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gimzewski, J. K., R. Berndt, R. R. Schlittler, A. W. McKinnon, M. E. Welland, T. M. H. Wong, Ph Dumas, et al. "Optical Spectroscopy and Microscopy Using Scanning Tunneling Microscopy." In Near Field Optics, 333–40. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1978-8_38.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Avasthy, Shraddha, Gajendra S. Shekhawat, and Vinayak P. Dravid. "Scanning Near-Field Ultrasound Holography." In Acoustic Scanning Probe Microscopy, 293–313. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-27494-7_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zhu, Yimei, Hiromi Inada, Achim Hartschuh, Li Shi, Ada Della Pia, Giovanni Costantini, Amadeo L. Vázquez de Parga, et al. "Scanning Near-Field Optical Microscopy." In Encyclopedia of Nanotechnology, 2280–92. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-90-481-9751-4_283.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hartschuh, Achim. "Scanning Near-Field Optical Microscopy." In Encyclopedia of Nanotechnology, 3508–21. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-017-9780-1_283.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Keilmann, F., and B. Knoll. "Infrared Scanning Near-Field Microscopy." In Spectroscopy of Biological Molecules: Modern Trends, 599–600. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5622-6_271.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Saiki, Toshiharu. "Near-Field Scanning Optical Microscope." In Roadmap of Scanning Probe Microscopy, 23–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-34315-8_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Scanning near-field microscopy"

1

Haegel, Nancy M., Chun-Hong Low, Lee Baird, and Goon-Hwee Ang. "Transport imaging with near-field scanning optical microscopy." In SPIE Scanning Microscopy, edited by Michael T. Postek, Dale E. Newbury, S. Frank Platek, and David C. Joy. SPIE, 2009. http://dx.doi.org/10.1117/12.824114.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Leidenberger, Patrick, and Christian Hafner. "Dielectric slot tip for scanning near-field microwave microscope." In Scanning Microscopy 2010, edited by Michael T. Postek, Dale E. Newbury, S. Frank Platek, and David C. Joy. SPIE, 2010. http://dx.doi.org/10.1117/12.853727.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zhang, John X. J., Kazunori Hoshino, and Ashwini Gopal. "Near-field scanning nanophotonic microscopy." In 2008 IEEE/LEOS Internationall Conference on Optical MEMs and Nanophotonics. IEEE, 2008. http://dx.doi.org/10.1109/omems.2008.4607888.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ozcan, A., E. Cubukcu, A. Bilenca, K. Crozier, B. E. Bouma, F. Capasso, and G. J. Tearney. "Differential near-field scanning optical microscopy." In 2007 Quantum Electronics and Laser Science Conference. IEEE, 2007. http://dx.doi.org/10.1109/qels.2007.4431771.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Isakov, D., T. Geinzer, A. Tio, J. C. H. Phang, Y. Zhang, and L. J. Balk. "Scanning near-field photon emission microscopy." In 2008 IEEE International Reliability Physics Symposium (IRPS). IEEE, 2008. http://dx.doi.org/10.1109/relphy.2008.4558947.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Betzig, E., M. Isaacson, H. Barshatzky, A. Lewis, and K. Lin. "Near-Field Scanning Optical Microscopy (NSOM)." In 1988 Los Angeles Symposium--O-E/LASE '88, edited by E. Clayton Teague. SPIE, 1988. http://dx.doi.org/10.1117/12.944521.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Weinbrenner, Paul, Stefan Ernst, Dominik M. Irber, and Friedemann Reinhard. "A planar scanning probe microscope for near-field microscopy." In Quantum Nanophotonic Materials, Devices, and Systems 2020, edited by Mario Agio, Cesare Soci, and Matthew T. Sheldon. SPIE, 2020. http://dx.doi.org/10.1117/12.2568029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

"Nanofabrication Using Scanning Near-Field Optical Microscopy." In Microprocesses and Nanotechnology '98. 1998 International Microprocesses and Nanotechnology Conference. IEEE, 1998. http://dx.doi.org/10.1109/imnc.1998.730081.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Stanciu, G. A., C. Stoichita, and S. G. Stanciu. "Scanning laser microscopy: From far field to near field." In 2009 11th International Conference on Transparent Optical Networks (ICTON). IEEE, 2009. http://dx.doi.org/10.1109/icton.2009.5185068.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Greener, H., M. Mrejen, U. Arieli, and H. Suchowski. "Multifrequency Near Field Scanning Optical Microscopy (MF-SNOM)." In CLEO: Applications and Technology. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/cleo_at.2018.jth2a.66.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Scanning near-field microscopy"

1

Nakakura, Craig Y., and Aaron Michael Katzenmeyer. Novel Applications of Near-Field Scanning Optical Microscopy (NSOM). Office of Scientific and Technical Information (OSTI), September 2018. http://dx.doi.org/10.2172/1475250.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Yan, M., J. McWhirter, T. Huser, and W. Siekhaus. Defect studies of optical materials using near-field scanning optical microscopy and spectroscopy. Office of Scientific and Technical Information (OSTI), January 2001. http://dx.doi.org/10.2172/15004114.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Barbara, Paul F. Ultrafast Near-Field Scanning Optical Microscopy (NSOM) of Emerging Display Technology Media: Solid State Electronic Structure and Dynamics,. Fort Belvoir, VA: Defense Technical Information Center, May 1995. http://dx.doi.org/10.21236/ada294879.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Nowak, Derek. The Design of a Novel Tip Enhanced Near-field Scanning Probe Microscope for Ultra-High Resolution Optical Imaging. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.361.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography