Academic literature on the topic 'Scale thrust faulting'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Scale thrust faulting.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Scale thrust faulting"

1

Kamberis, E., S. Sotiropoulos, F. Marnelis, and N. Rigakis. "Thrust tectonics in the central part of the External Hellenides, the case of the Gavrovo thrust." Bulletin of the Geological Society of Greece 47, no. 2 (January 24, 2017): 540. http://dx.doi.org/10.12681/bgsg.11081.

Full text
Abstract:
Thrust faulting plays an important role in the structural deformation of Gavrovo and Ionian zones in the central part of the ‘External Hellenides’ fold-and-thrust belt. The Skolis mountain in NW Peloponnese as well as the Varassova and Klokova mountains in Etoloakarnania are representative cases of ramp anticlines associated with the Gavrovo thrust. Surface geology, stratigraphic data and interpretation of seismic profiles indicate that it is a crustal-scale thrust acted throughout the Oligocene time. It is characterized by a ramp-flat geometry and significant displacement (greater than 10 km). Out of sequence thrust segmentation is inferred in south Etoloakarnania area. Down flexure and extensional faulting in the Ionian zone facilitated the thrust propagation to the west. The thrust emplacement triggered halokenetic movement of the Triassic evaporites in the Ionian zone as well as diapirisms that were developed in a later stage in the vicinity of the Skolis mountain.
APA, Harvard, Vancouver, ISO, and other styles
2

Smeraglia, Luca, Nathan Looser, Olivier Fabbri, Flavien Choulet, Marcel Guillong, and Stefano M. Bernasconi. "U–Pb dating of middle Eocene–Pliocene multiple tectonic pulses in the Alpine foreland." Solid Earth 12, no. 11 (November 9, 2021): 2539–51. http://dx.doi.org/10.5194/se-12-2539-2021.

Full text
Abstract:
Abstract. Foreland fold-and-thrust belts (FTBs) record long-lived tectono-sedimentary activity, from passive margin sedimentation, flexuring, and further evolution into wedge accretion ahead of an advancing orogen. Therefore, dating fault activity is fundamental for plate movement reconstruction, resource exploration, and earthquake hazard assessment. Here, we report U–Pb ages of syn-tectonic calcite mineralizations from four thrusts and three tear faults sampled at the regional scale across the Jura fold-and-thrust belt in the northwestern Alpine foreland (eastern France). Three regional tectonic phases are recognized in the middle Eocene–Pliocene interval: (1) pre-orogenic faulting at 48.4±1.5 and 44.7±2.6 Ma associated with the far-field effect of the Alpine or Pyrenean compression, (2) syn-orogenic thrusting at 11.4±1.1, 10.6±0.5, 9.7±1.4, 9.6±0.3, and 7.5±1.1 Ma associated with the formation of the Jura fold-and-thrust belt with possible in-sequence thrust propagation, and (3) syn-orogenic tear faulting at 10.5±0.4, 9.1±6.5, 5.7±4.7, and at 4.8±1.7 Ma including the reactivation of a pre-orogenic fault at 3.9±2.9 Ma. Previously unknown faulting events at 48.4±1.5 and 44.7±2.6 Ma predate the reported late Eocene age for tectonic activity onset in the Alpine foreland by ∼10 Myr. In addition, we date the previously inferred reactivation of pre-orogenic strike-slip faults as tear faults during Jura imbrication. The U–Pb ages document a minimal time frame for the evolution of the Jura FTB wedge by possible in-sequence thrust imbrication above the low-friction basal decollement consisting of evaporites.
APA, Harvard, Vancouver, ISO, and other styles
3

Schwerdtner, Walfried M., Sheng J. Lu, and Jack F. Yang. "Wall-rock structure at the present contact surfaces between repeatedly deformed thrust sheets, Grenville Orogen of central Ontario, Canada." Canadian Journal of Earth Sciences 47, no. 6 (June 2010): 875–99. http://dx.doi.org/10.1139/e10-007.

Full text
Abstract:
In the Central Gneiss Belt of the Grenville Orogen (Ontario), ca. 1020 Ma, extensional shearing, disharmonic buckle folding, and seismic faulting at middle to upper crustal levels affected the geological structure of pre-1040 Ma, ductile-thrust sheets. Because much of the repeated in situ deformation was mechanically discontinuous, the present contacts between thrust sheets may not coincide at all localities with the original thrust surfaces. We focused special attention on the basal contact of the Parry Sound domain, whose synformal structure may have resulted from gravitational subsidence of its dense rocks immediately after ductile thrusting. East of Wahwashkesh Lake, a transverse gradient of total strain is absent on horizontal scales of 100–1000 m in lithologically uniform granite gneiss comprising the uppermost western footwall of the northern Parry Sound domain. This contrasts with the steep transverse-strain gradients documented by others, on the same scale, in the wall rocks of Phanerozoic ductile thrusts. We hypothesize that ductile or brittle extension faulting may have removed a 10–20 km long sole-thrust segment at the western flank of the northern Parry Sound domain, together with severely strained rocks of the original uppermost footwall, from the level of the current erosion surface. Within the Parry Sound domain, by contrast, most if not all of the original footwall of the 1160 Ma Mill Lake thrust seems to be preserved at the presently exposed contact surface between the allochthonous basal and interior Parry Sound assemblages.
APA, Harvard, Vancouver, ISO, and other styles
4

Caplan, Charlotte A., Helen C. Gildersleeves, Al G. Harding, Benedict J. R. Harris, Benedict W. W. Johnson, James A. Kershaw, and Matthew J. Maltby. "Geology of the Northwestern Krania Basin." Bulletin of the Geological Society of Greece 54, no. 1 (November 19, 2019): 113. http://dx.doi.org/10.12681/bgsg.19375.

Full text
Abstract:
We present a new map of 30 km2 of the northwestern Krania Basin at 1:10,000 scale, including rocks of the Pindos Ophiolite Group and associated units, and the sedimentary fill of the Krania Basin. The Krania Basin is a flexural basin developed in the Middle – Late Eocene and filled first with alluvial fan conglomerates and later with turbidite sandstones and siltstones, following a deepening of the basin. Analysis of the clasts within the sediment, combined with paleoflow analyses, suggest sediment input from the eroding Pindos Ophiolite to the west. The Pindos Ophiolite Group is represented in the area by pillow lavas, sheeted dykes and serpentinized harzburgites of the Aspropotamos Complex. The ophiolite forms imbricated, thrust bounded blocks which show two phases of thrusting, corresponding to Late Jurassic and Eocene stages of ophiolite emplacement. We identify five stages of deformation within the basin itself, starting with Early - Middle Eocene syndepositional extensional faulting associated with the formation of the basin. This was followed by four stages of post-depositional deformation, starting with Late Eocene compression associated with basin closure, which caused thrust faulting and folding of the sediments. Oligocene dextral faulting with a thrust component affected the basin margins. Finally, two normal faulting events with different orientations have affected the basin since the Miocene.
APA, Harvard, Vancouver, ISO, and other styles
5

Barmuta, Jan, Krzysztof Starzec, and Wojciech Schnabel. "Seismic-Scale Evidence of Thrust-Perpendicular Normal Faulting in the Western Outer Carpathians, Poland." Minerals 11, no. 11 (November 11, 2021): 1252. http://dx.doi.org/10.3390/min11111252.

Full text
Abstract:
Based on the interpretation of 2D seismic profiles integrated with surface geological investigations, a mechanism responsible for the formation of a large scale normal fault zone has been proposed. The fault, here referred to as the Rycerka Fault, has a predominantly normal dip-slip component with the detachment surface located at the base of Carpathian units. The fault developed due to the formation of an anticlinal stack within the Dukla Unit overlain by the Magura Units. Stacking of a relatively narrow duplex led to the growth of a dome-like culmination in the lower unit, i.e., the Dukla Unit, and, as a consequence of differential uplift of the unit above and outside the duplex, the upper unit (the Magura Unit) was subjected to stretching. This process invoked normal faulting along the lateral culmination wall and was facilitated by the regional, syn-thrusting arc–parallel extension. Horizontal movement along the fault plane is a result of tear faulting accommodating a varied rate of advancement of Carpathian units. The time of the fault formation is not well constrained; however, based on superposition criterion, the syn -thrusting origin is anticipated.
APA, Harvard, Vancouver, ISO, and other styles
6

Schenk, P. M. "Origin of Mountains on Io by Thrust Faulting and Large-Scale Mass Movements." Science 279, no. 5356 (March 6, 1998): 1514–17. http://dx.doi.org/10.1126/science.279.5356.1514.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lin, Xiangdong, Huaiyu Yuan, Michael C. Dentith, Ruth Murdie, Klaus Gessner, and Avinash Nayak. "Improved full waveform moment tensor inversion of Cratonic intraplate earthquakes in southwest Australia." Geophysical Journal International 227, no. 1 (May 31, 2021): 123–45. http://dx.doi.org/10.1093/gji/ggab214.

Full text
Abstract:
SUMMARY In contrast to global observations in stable continental crust, the present-day orientation of the maximum horizontal stress in Western Australia is at a high angle to plate motion, suggesting that in addition to large-scale plate driving forces, local factors also play an important role in stress repartitioning. As a reliable stress indicator, full waveform moment tensor solutions are calculated for earthquakes that occurred between 2010 and 2018 in the southern Yilgarn Craton and the adjacent Albany-Fraser Orogen in southwestern Australia. Due to regional velocity heterogeneities in the crust, we produced two geographically distinct shear wave velocity models by combining published crustal velocity models with new ambient noise tomography results. We applied a full waveform inversion technique to 15 local earthquakes and obtained 10 robust results. Three of these events occurred near Lake Muir in the extreme south of the study area within the Albany-Fraser Orogen. The focal mechanism of the 16th September 2018 Lake Muir event is thrust; two ML≥ 4.0 aftershocks are normal and strike-slip. Our results are consistent with field observations, fault orientations inferred from aeromagnetic data and surface displacements mapped by Interferometric Synthetic Aperture Radar which are all consistent with reactivation of existing faults. The other seven solutions are in the southeastern Yilgarn Craton. These solutions show that the faulting mechanisms are predominantly thrust and strike-slip. This kinematic framework is consistent with previous studies that linked active seismicity in the Yilgarn Craton to the reactivation of the NNW–SSE oriented Neoarchean structures by an approximately E–W oriented regional stress field. Our results suggest that the kind of faulting that occurs in southwest Australia is critically dependent on the local geological structure. Thrust faulting is the dominant rupture mechanism, with some strike-slip faulting occurring on favourably oriented structures.
APA, Harvard, Vancouver, ISO, and other styles
8

Bosworth, William. "East-directed imbrication and oblique-slip faulting in the Humber Arm Allochthon of western Newfoundland: structural and tectonic significance." Canadian Journal of Earth Sciences 22, no. 9 (September 1, 1985): 1351–60. http://dx.doi.org/10.1139/e85-139.

Full text
Abstract:
Many of the dominant outcrop-scale structural features in the lower, clastic thrust sheets of the Humber Arm Allochthon were not generated during the westerly emplacement of the allochthonous terranes of western Newfoundland. Two general groups of structures are abundant in the Humber Arm rocks: (1) east-verging folds accompanied by a weakly to moderately developed slaty cleavage and cut by west-dipping thrust faults; and (2) northeast–southwest-striking high-angle faults, with predominantly normal oblique-slip motion and with larger faults down-stepping to the northwest. Evidence of the earlier, west-directed thrusting (refolded and downward-facing folds, folded thrusts, etc.) is uncommon in the Humber Arm area. Slaty cleavage-generation structures, however, appear to overprint the phacoidal fabrics of the mélange zones that exist between and within thrust slices of the allochthon, making the mélange fabrics the most readily identified features associated with the initial east over west imbrication and emplacement of the allochthon.These observations suggest that the original detachment of the rocks of the Humber Arm Supergroup from their basement (early Taconian deformation) occurred with only limited internal deformation. Mélange zones presently define some or all of the early surfaces of movement. The fully assembled and emplaced allochthonous terrane was subsequently reimbricated on a smaller scale through east-directed thrusting, at which time the allochthon was more pervasively deformed (regional slaty cleavage and fold formation). This may represent late Taconian back thrusting or Acadian shortening. The youngest deformation of the Humber Arm region appears to have been a regional extensional event, with a significant northeast–southwest strike-slip component of movement. This may correlate with the development of Carboniferous strike-slip basins in the present Gulf of St. Lawrence and western Newfoundland. Much of the present structural geometry in the Humber Arm region, including the contacts between ophiolitic and clastic thrust sheets, may have originated during these later two deformational sequences, rather than as a consequence of the initial emplacement history.
APA, Harvard, Vancouver, ISO, and other styles
9

Wang, Chien‐Ying. "Detection of a recent earthquake fault by the shallow reflection seismic method." GEOPHYSICS 67, no. 5 (September 2002): 1465–73. http://dx.doi.org/10.1190/1.1512791.

Full text
Abstract:
The 1999 Chi‐Chi earthquake in Taiwan was a relatively unique seismic event which activated the Chelungpu thrust fault with extraordinarily large surface ruptures up to 9.8 m horizontally and 5.6 m vertically. The fault is 80 km long, lying mostly in a north–south direction and with a reverse thrust dipping shallowly to the east. For this paper we used the shallow reflection seismic method (a small‐scale method) to map this active fault (a large‐scale structure) and provide evidence in support of the thin‐skinned thrust model for this earthquake fault. The investigation is comprised of two parts. The first concentrates on the northern portion of the fault where the fault trace was bent 70° to the northeast and was accompanied by abnormally large ground displacements and damage. The seismic sections obtained are of good quality and can be used to explore the detailed faulting mechanism. The second part aims to find the gross features of the 60 × 20‐km fault surface using limited shallow seismic measurements (about 50 seismic lines), incorporating the thin‐skinned thrust concept. This is a test to examine the feasibility of using a small‐scale economical method to study a big structure. The results are quite plausible.
APA, Harvard, Vancouver, ISO, and other styles
10

Boncio, Paolo, Francesca Liberi, Martina Caldarella, and Fiia-Charlotta Nurminen. "Width of surface rupture zone for thrust earthquakes: implications for earthquake fault zoning." Natural Hazards and Earth System Sciences 18, no. 1 (January 19, 2018): 241–56. http://dx.doi.org/10.5194/nhess-18-241-2018.

Full text
Abstract:
Abstract. The criteria for zoning the surface fault rupture hazard (SFRH) along thrust faults are defined by analysing the characteristics of the areas of coseismic surface faulting in thrust earthquakes. Normal and strike–slip faults have been deeply studied by other authors concerning the SFRH, while thrust faults have not been studied with comparable attention. Surface faulting data were compiled for 11 well-studied historic thrust earthquakes occurred globally (5.4 ≤ M ≤ 7.9). Several different types of coseismic fault scarps characterize the analysed earthquakes, depending on the topography, fault geometry and near-surface materials (simple and hanging wall collapse scarps, pressure ridges, fold scarps and thrust or pressure ridges with bending-moment or flexural-slip fault ruptures due to large-scale folding). For all the earthquakes, the distance of distributed ruptures from the principal fault rupture (r) and the width of the rupture zone (WRZ) were compiled directly from the literature or measured systematically in GIS-georeferenced published maps. Overall, surface ruptures can occur up to large distances from the main fault ( ∼ 2150 m on the footwall and ∼ 3100 m on the hanging wall). Most of the ruptures occur on the hanging wall, preferentially in the vicinity of the principal fault trace ( > ∼ 50 % at distances < ∼ 250 m). The widest WRZ are recorded where sympathetic slip (Sy) on distant faults occurs, and/or where bending-moment (B-M) or flexural-slip (F-S) fault ruptures, associated with large-scale folds (hundreds of metres to kilometres in wavelength), are present. A positive relation between the earthquake magnitude and the total WRZ is evident, while a clear correlation between the vertical displacement on the principal fault and the total WRZ is not found. The distribution of surface ruptures is fitted with probability density functions, in order to define a criterion to remove outliers (e.g. 90 % probability of the cumulative distribution function) and define the zone where the likelihood of having surface ruptures is the highest. This might help in sizing the zones of SFRH during seismic microzonation (SM) mapping. In order to shape zones of SFRH, a very detailed earthquake geologic study of the fault is necessary (the highest level of SM, i.e. Level 3 SM according to Italian guidelines). In the absence of such a very detailed study (basic SM, i.e. Level 1 SM of Italian guidelines) a width of ∼ 840 m (90 % probability from "simple thrust" database of distributed ruptures, excluding B-M, F-S and Sy fault ruptures) is suggested to be sufficiently precautionary. For more detailed SM, where the fault is carefully mapped, one must consider that the highest SFRH is concentrated in a narrow zone, ∼ 60 m in width, that should be considered as a fault avoidance zone (more than one-third of the distributed ruptures are expected to occur within this zone). The fault rupture hazard zones should be asymmetric compared to the trace of the principal fault. The average footwall to hanging wall ratio (FW : HW) is close to 1 : 2 in all analysed cases. These criteria are applicable to "simple thrust" faults, without considering possible B-M or F-S fault ruptures due to large-scale folding, and without considering sympathetic slip on distant faults. Areas potentially susceptible to B-M or F-S fault ruptures should have their own zones of fault rupture hazard that can be defined by detailed knowledge of the structural setting of the area (shape, wavelength, tightness and lithology of the thrust-related large-scale folds) and by geomorphic evidence of past secondary faulting. Distant active faults, potentially susceptible to sympathetic triggering, should be zoned as separate principal faults. The entire database of distributed ruptures (including B-M, F-S and Sy fault ruptures) can be useful in poorly known areas, in order to assess the extent of the area within which potential sources of fault displacement hazard can be present. The results from this study and the database made available in the Supplement can be used for improving the attenuation relationships for distributed faulting, with possible applications in probabilistic studies of fault displacement hazard.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Scale thrust faulting"

1

(13114611), Wesley James Foi Nichols. "Surface and borehole geophysical analysis of structures within the Callide Basin, eastern Central Queensland." Thesis, 2001. https://figshare.com/articles/thesis/Surface_and_borehole_geophysical_analysis_of_structures_within_the_Callide_Basin_eastern_Central_Queensland/20334999.

Full text
Abstract:

Traditional geophysical techniques, such as electrical, magnetic, seismic and gamma spectroscopic methods, have been deployed across the Callide Basin, Eastern Central Queensland, intent on delineating basin -wide structures. Further, innovative surface and borehole geophysical techniques have been applied for coal mine -scale exploration and production with the intention of reducing global geological ambiguity and optimising exploration resources at Callide Coalfields.


A very low frequency electromagnetic surface impedance mapping method, the SIROLOG downhole technique, acoustic scanning, electromagnetic tomography and

full wave -form sonic borehole logging have been trialed for geological hazard and mine design applications at Callide Coalfields as the precursor to their wider

application and acceptance in the Australian coal industry.


In this thesis, the theoretical basis for these techniques is provided. However, more importantly, the case studies presented demonstrate the role that these geophysical

techniques have played in identifying geological structures critical to mining.

Reverse faults that daylight in highwalls and intrusions constitute geological hazards that affect safety, costs and scheduling in mining operations. Identification of the limit

of oxidation of coal seams (coal subcrop) is critical in mine design. During the course of this thesis, the application of geophysical techniques resulted in:

a) a major structure (the "Trap Gully Monocline") being redefined from its original

interpretation as a normal fault to a monocline that is stress -relieved by minor scale thrust faulting;

b) two previously unidentified intrusions (the Kilburnie "Homestead" plug and The Hut "Crater" plug) that impinge on mining have been discovered;

c) the delineation of two coal subcrop lines has resulted in the discovery of an additional 1.5 million tonnes of coal reserve at Boundary Hill mine and the successful redesign of mining strips at The Hut Central Valley and Eastern

Hillside brownfield sites; and

d) the first ever attempt to petrophysically characterise the lithotypes within the Callide Basin.

APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Scale thrust faulting"

1

Key, Erica, and Patricia H. Cashman. "Insights from the Golconda Summit Area, Nevada: Late Paleozoic Structures, Regional Strike-Slip Offset, and Correlation of the “Comus Formation”." In Late Paleozoic and Early Mesozoic Tectonostratigraphy and Biostratigraphy of Western Pangea, 89–101. SEPM (Society for Sedimentary Geology), 2022. http://dx.doi.org/10.2110/sepmsp.113.08.

Full text
Abstract:
Detailed mapping and reevaluation of biostratigraphic data provide new insights into the regional stratigraphic significance of the Ordovician Comus Formation at its type locality at Iron Point, Edna Mountain, Humboldt County, Nevada. Mapping of the internal stratigraphy of the Comus Formation yielded six new subunits and a previously unrecognized formation that is potentially correlative to the Middle Ordovician Eureka Quartzite. The age designation of the Comus Formation was reexamined, using the most current understanding of Ordovician graptolite biostratigraphy. The species of graptolites found in the Comus strata at Iron Point are Late Ordovician, in contrast to the Middle Ordovician age assignment in previous studies. Structural analyses using the new detailed mapping revealed six deformational events at Iron Point. The first fold set, F1, is west-vergent and likely correlative to mid-Pennsylvanian folds observed nearby at Edna Mountain. The second fold set, F2, records north–south contraction and is likely correlative to Early Permian folds observed at Edna Mountain. The King fault is a normal fault that strikes north and dips east. It truncates the F1 and F2 fold sets and has not been active since the Early Permian. The Silver Coin thrust strikes east, places the Ordovician Vinini Formation over the Comus Formation, truncates the King fault, and is not affected by the F1 and F2 fold sets. Timing of the Silver Coin thrust is unknown, but it is likely post-Early Permian based on crosscutting relationships. The West fault strikes southeast and dips southwest. It truncates the Silver Coin thrust on the west, and the fault surface records several phases of motion. Finally, Iron Point is bounded on the east side by the Pumpernickel fault, a normal fault that strikes north and dips east. The movement on this structure is likely related to Miocene to Recent Basin and Range faulting. Several key findings resulted from this detailed study of the Ordovician rocks at Iron Point. (1) Based on detailed mapping of the internal stratigraphy of the Comus Formation at Iron Point, it is here interpreted to be correlative with the autochthonous Late Ordovician Hanson Creek Formation rather than the well-known “Comus Formation” that hosts Carlin-style gold mineralization in the Osgood Mountains to the north. (2) The Comus Formation at Iron Point is autochthonous, and the Roberts Mountains thrust is not present at Iron Point, either at the surface or in the subsurface. (3) The stratigraphic mismatch between Iron Point and Edna Mountain requires a fault with significant lateral offset between the two areas; its current expression could be the West fault. (4) West- and southwest-vergent structures at Iron Point and Edna Mountain are rotated counterclockwise relative to northwest-vergent structures at Carlin Canyon and elsewhere in northern Nevada. This relationship is consistent with large-scale sinistral slip along the continental margin to the west.
APA, Harvard, Vancouver, ISO, and other styles
2

Weil, Arlo Brandon, and Adolph Yonkee. "The Laramide orogeny: Current understanding of the structural style, timing, and spatial distribution of the classic foreland thick-skinned tectonic system." In Laurentia: Turning Points in the Evolution of a Continent. Geological Society of America, 2022. http://dx.doi.org/10.1130/2022.1220(33).

Full text
Abstract:
ABSTRACT The Laramide foreland belt comprises a broad region of thick-skinned, contractional deformation characterized by an anastomosing network of basement-cored arches and intervening basins that developed far inboard of the North American Cordilleran plate margin during the Late Cretaceous to Paleogene. Laramide deformation was broadly coincident in space and time with development of a flat-slab segment along part of the Cordilleran margin. This slab flattening was marked by a magmatic gap in the Sierra Nevada and Mojave arc sectors, an eastward jump of limited igneous activity from ca. 80 to 60 Ma, a NE-migrating wave of dynamic subsidence and subsequent uplift across the foreland, and variable hydration and cooling of mantle lithosphere during slab dewatering as recorded by xenoliths. The Laramide foreland belt developed within thick lithospheric mantle, Archean and Proterozoic basement with complex preexisting fabrics, and thin sedimentary cover. These attributes are in contrast to the thin-skinned Sevier fold-and-thrust belt to the west, which developed within thick passive-margin strata that overlay previously rifted and thinned lithosphere. Laramide arches are bounded by major reverse faults that typically dip 25°–40°, have net slips of ~3–20 km, propagate upward into folded sedimentary cover rocks, and flatten into a lower-crustal detachment or merge into diffuse lower-crustal shortening and buckling. Additional folds and smaller-displacement reverse faults developed along arch flanks and in associated basins. Widespread layer-parallel shortening characterized by the development of minor fault sets and subtle grain-scale fabrics preceded large-scale faulting and folding. Arches define a regional NW- to NNW-trending fabric across Wyoming to Colorado, but individual arches are curved and vary in trend from N-S to E-W. Regional shortening across the Laramide foreland was oriented WSW-ENE, similar to the direction of relative motion between the North American and Farallon plates, but shortening directions were locally refracted along curved and obliquely trending arches, partly related to reactivation of preexisting basement weaknesses. Shortening from large-scale structures varied from ~10%–15% across Wyoming and Colorado to &lt;5% in the Colorado Plateau, which may have had stronger crust, and &lt;5% along the northeastern margin of the belt, where differential stress was likely less. Synorogenic strata deposited in basins and thermochronologic data from basement rocks record protracted arch uplift, exhumation, and cooling starting ca. 80 Ma in the southern Colorado Plateau and becoming younger northeastward to ca. 60 Ma in northern Wyoming and central Montana, consistent with NE migration of a flat-slab segment. Basement-cored uplifts in southwest Montana, however, do not fit this pattern, where deformation and rapid inboard migration of igneous activity started at ca. 80 Ma, possibly related to development of a slab window associated with subduction of the Farallon-Kula Ridge. Cessation of contractional deformation began at ca. 50 Ma in Montana to Wyoming, followed by a southward-migrating transition to extension and flare-up in igneous activity, interpreted to record rollback of the Farallon slab. We present a model for the tectonic evolution of the Laramide belt that combines broad flat-slab subduction, stress transfer to the North American plate from end loading along a lithospheric keel and increased basal traction, upward stress transfer through variably sheared lithospheric mantle, diffuse lower-crustal shortening, and focused upper-crustal faulting influenced by preexisting basement weaknesses.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Scale thrust faulting"

1

Lin, Ming-Lang, Fu-Shu Jeng, Tisan-Hwei Huang, Chun-Fu Chung, and Hung-Hwei Lee. "A Study on the Damage Degree of Shield Tunnels Submerged in Overburden Soil During the Thrust Fault Offset." In ASME 2006 Pressure Vessels and Piping/ICPVT-11 Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/pvp2006-icpvt-11-93345.

Full text
Abstract:
When an under-lain thrust fault slips, especially triggered by earthquakes, the overburden soil may deform and fail so that a fault zone also develops inwardly. The research about the deformation and the failure of the overburden soil is an essential issue to evaluating the safety of ground or underground structures near the potential faulted zone. In this study, a MRT tunnel, closed to a thrust fault and fault dip 60 degree, is considered, both of the sandbox experiment and the numerical analyses are adopted to discuss the damage degree of a tunnel submerged in an overburden soil under the thrust faulting. In the numerical analyses, a small-scale model, simulation of the sandbox, is justified according to the experimental results and used to discuss the base behavior of the overburden soil. In addition, a full-scale model is used to evaluate the damage degree of tunnel segments by defining a dangerous factor. Moreover, considering the real behaviors of sand particles, the distinct element method is adopted as well. In the sandbox experiment, the results indicate that the development of the shear zone was apparently hindered by the existence of a model tunnel near the fault tip, and induced significant deformation of the tunnel. In addition, the results from numerical analyses, the finite element method and the distinct element method, are similar to the experimental results. The numerical analysis results of the full-scale model indicate that the damage degree is increased while the tunnel is close to the fault tip, and the footing wall is more dangerous than the hanging wall. The defined dangerous factor is able to reflect the damage degree of the tunnel. In the distinct element analysis, the full-scale model, it can be observed that a fault zone extends from the fault tip to the ground surface, but discussions on the distribution of stress and moment in the tunnel are not included and will be considered in the future study.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Scale thrust faulting"

1

Wozniakowska, P., D. W. Eaton, C. Deblonde, A. Mort, and O. H. Ardakani. Identification of regional structural corridors in the Montney play using trend surface analysis combined with geophysical imaging, British Columbia and Alberta. Natural Resources Canada/CMSS/Information Management, 2021. http://dx.doi.org/10.4095/328850.

Full text
Abstract:
The Western Canada Sedimentary Basin (WCSB) is a mature oil and gas basin with an extraordinary endowment of publicly accessible data. It contains structural elements of varying age, expressed as folding, faulting, and fracturing, which provide a record of tectonic activity during basin evolution. Knowledge of the structural architecture of the basin is crucial to understand its tectonic evolution; it also provides essential input for a range of geoscientific studies, including hydrogeology, geomechanics, and seismic risk analysis. This study focuses on an area defined by the subsurface extent of the Triassic Montney Formation, a region of the WCSB straddling the border between Alberta and British Columbia, and covering an area of approximately 130,000 km2. In terms of regional structural elements, this area is roughly bisected by the east-west trending Dawson Creek Graben Complex (DCGC), which initially formed in the Late Carboniferous, and is bordered to the southwest by the Late Cretaceous - Paleocene Rocky Mountain thrust and fold belt (TFB). The structural geology of this region has been extensively studied, but structural elements compiled from previous studies exhibit inconsistencies arising from distinct subregions of investigation in previous studies, differences in the interpreted locations of faults, and inconsistent terminology. Moreover, in cases where faults are mapped based on unpublished proprietary data, many existing interpretations suffer from a lack of reproducibility. In this study, publicly accessible data - formation tops derived from well logs, LITHOPROBE seismic profiles and regional potential-field grids, are used to delineate regional structural elements. Where seismic profiles cross key structural features, these features are generally expressed as multi-stranded or en echelon faults and structurally-linked folds, rather than discrete faults. Furthermore, even in areas of relatively tight well control, individual fault structures cannot be discerned in a robust manner, because the spatial sampling is insufficient to resolve fault strands. We have therefore adopted a structural-corridor approach, where structural corridors are defined as laterally continuous trends, identified using geological trend surface analysis supported by geophysical data, that contain co-genetic faults and folds. Such structural trends have been documented in laboratory models of basement-involved faults and some types of structural corridors have been described as flower structures. The distinction between discrete faults and structural corridors is particularly important for induced seismicity risk analysis, as the hazard posed by a single large structure differs from the hazard presented by a corridor of smaller pre-existing faults. We have implemented a workflow that uses trend surface analysis based on formation tops, with extensive quality control, combined with validation using available geophysical data. Seven formations are considered, from the Late Cretaceous Basal Fish Scale Zone (BFSZ) to the Wabamun Group. This approach helped to resolve the problem of limited spatial extent of available seismic data and provided a broader spatial coverage, enabling the investigation of structural trends throughout the entirety of the Montney play. In total, we identified 34 major structural corridors and number of smaller-scale structures, for which a GIS shapefile is included as a digital supplement to facilitate use of these features in other studies. Our study also outlines two buried regional foreland lobes of the Rocky Mountain TFB, both north and south of the DCGC.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography