Journal articles on the topic 'Scale Flapping Wings'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Scale Flapping Wings.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Hawkes, Elliot W., and David Lentink. "Fruit fly scale robots can hover longer with flapping wings than with spinning wings." Journal of The Royal Society Interface 13, no. 123 (October 2016): 20160730. http://dx.doi.org/10.1098/rsif.2016.0730.
Full textMeresman, Yonatan, and Gal Ribak. "Allometry of wing twist and camber in a flower chafer during free flight: How do wing deformations scale with body size?" Royal Society Open Science 4, no. 10 (October 2017): 171152. http://dx.doi.org/10.1098/rsos.171152.
Full textMalhan, Ria, Moble Benedict, and Inderjit Chopra. "Experimental Studies to Understand the Hover and Forward Flight Performance of a MAV-Scale Flapping Wing Concept." Journal of the American Helicopter Society 57, no. 2 (April 1, 2012): 1–11. http://dx.doi.org/10.4050/jahs.57.022003.
Full textGoszczyński, Jacek A., Maciej Lasek, Józef Pietrucha, and Krzysztof Sibilski. "ANIMALOPTERS-TOWARDS A NEW DIMENSION OF FLIGHT MECHANICS." TRANSPORT 17, no. 3 (June 30, 2002): 108–16. http://dx.doi.org/10.3846/16483840.2002.10414023.
Full textChen, Yufeng, Cathleen Arase, Zhijian Ren, and Pakpong Chirarattananon. "Design, Characterization, and Liftoff of an Insect-Scale Soft Robotic Dragonfly Powered by Dielectric Elastomer Actuators." Micromachines 13, no. 7 (July 18, 2022): 1136. http://dx.doi.org/10.3390/mi13071136.
Full textShyy, Wei, Chang-kwon Kang, Pakpong Chirarattananon, Sridhar Ravi, and Hao Liu. "Aerodynamics, sensing and control of insect-scale flapping-wing flight." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 472, no. 2186 (February 2016): 20150712. http://dx.doi.org/10.1098/rspa.2015.0712.
Full textYang, Xuan, Aswathi Sudhir, Atanu Halder, and Moble Benedict. "Nonlinear Aeroelastic Analysis for Highly Flexible Flapping Wing in Hover." Journal of the American Helicopter Society 67, no. 2 (April 1, 2022): 1–15. http://dx.doi.org/10.4050/jahs.67.022002.
Full textWHITNEY, J. P., and R. J. WOOD. "Aeromechanics of passive rotation in flapping flight." Journal of Fluid Mechanics 660 (July 27, 2010): 197–220. http://dx.doi.org/10.1017/s002211201000265x.
Full textChen, Yufeng, Nick Gravish, Alexis Lussier Desbiens, Ronit Malka, and Robert J. Wood. "Experimental and computational studies of the aerodynamic performance of a flapping and passively rotating insect wing." Journal of Fluid Mechanics 791 (February 15, 2016): 1–33. http://dx.doi.org/10.1017/jfm.2016.35.
Full textThielicke, William, and Eize J. Stamhuis. "The influence of wing morphology on the three-dimensional flow patterns of a flapping wing at bird scale." Journal of Fluid Mechanics 768 (March 4, 2015): 240–60. http://dx.doi.org/10.1017/jfm.2015.71.
Full textMin, Yilong, Gengyao Zhao, Dingyi Pan, and Xueming Shao. "Aspect Ratio Effects on the Aerodynamic Performance of a Biomimetic Hummingbird Wing in Flapping." Biomimetics 8, no. 2 (May 23, 2023): 216. http://dx.doi.org/10.3390/biomimetics8020216.
Full textdel Estal Herrero, Alejandro, Mustafa Percin, Matej Karasek, and Bas van Oudheusden. "Flow Visualization around a Flapping-Wing Micro Air Vehicle in Free Flight Using Large-Scale PIV." Aerospace 5, no. 4 (September 20, 2018): 99. http://dx.doi.org/10.3390/aerospace5040099.
Full textBluman, James E., Madhu K. Sridhar, and Chang-kwon Kang. "Chordwise wing flexibility may passively stabilize hovering insects." Journal of The Royal Society Interface 15, no. 147 (October 2018): 20180409. http://dx.doi.org/10.1098/rsif.2018.0409.
Full textGao, Hang, James Lynch, and Nick Gravish. "Soft Molds with Micro-Machined Internal Skeletons Improve Robustness of Flapping-Wing Robots." Micromachines 13, no. 9 (September 7, 2022): 1489. http://dx.doi.org/10.3390/mi13091489.
Full textMoses, Kenneth, Mark Willis, and Roger Quinn. "Biomimicry of the Hawk Moth, Manduca sexta (L.), Produces an Improved Flapping-Wing Mechanism." Biomimetics 5, no. 2 (June 4, 2020): 25. http://dx.doi.org/10.3390/biomimetics5020025.
Full textCote, Braden, Samuel Weston, and Mark Jankauski. "Modeling and Analysis of a Simple Flexible Wing—Thorax System in Flapping-Wing Insects." Biomimetics 7, no. 4 (November 21, 2022): 207. http://dx.doi.org/10.3390/biomimetics7040207.
Full textConn, A. T., S. C. Burgess, and C. S. Ling. "Design of a parallel crank-rocker flapping mechanism for insect-inspired micro air vehicles." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 221, no. 10 (September 30, 2007): 1211–22. http://dx.doi.org/10.1243/09544062jmes517.
Full textOzaki, Takashi, Norikazu Ohta, and Kanae Hamaguchi. "Resonance-Driven Passive Folding/Unfolding Flapping Wing Actuator." Applied Sciences 10, no. 11 (May 29, 2020): 3771. http://dx.doi.org/10.3390/app10113771.
Full textJones, K. D., C. J. Bradshaw, J. Papadopoulos, and M. F. Platzer. "Bio-inspired design of flapping-wing micro air vehicles." Aeronautical Journal 109, no. 1098 (August 2005): 385–93. http://dx.doi.org/10.1017/s0001924000000804.
Full textKang, Chang-kwon, Madhu Sridhar, Rachel Twigg, Jeremy Pohly, Taeyoung Lee, and Hikaru Aono. "Power Benefits of High-Altitude Flapping Wing Flight at the Monarch Butterfly Scale." Biomimetics 8, no. 4 (August 8, 2023): 352. http://dx.doi.org/10.3390/biomimetics8040352.
Full textZ˙bikowski, Rafał, Cezary Galin´ski, and Christopher B. Pedersen. "Four-Bar Linkage Mechanism for Insectlike Flapping Wings in Hover: Concept and an Outline of Its Realization." Journal of Mechanical Design 127, no. 4 (June 27, 2005): 817–24. http://dx.doi.org/10.1115/1.1829091.
Full textPENNYCUICK, C. J. "Flight of Auks (Alcidae) and Other Northern Seabirds Compared with Southern Procellariiformes: Ornithodolite Observations." Journal of Experimental Biology 128, no. 1 (March 1, 1987): 335–47. http://dx.doi.org/10.1242/jeb.128.1.335.
Full textSmith, M., P. Wilkin, and M. Williams. "The advantages of an unsteady panel method in modelling the aerodynamic forces on rigid flapping wings." Journal of Experimental Biology 199, no. 5 (May 1, 1996): 1073–83. http://dx.doi.org/10.1242/jeb.199.5.1073.
Full textProsser, Daniel, and Agamemnon Crassidis. "Computational Approaches to Design and Analysis of Small-Scale Flapping Wings." Journal of Aircraft 53, no. 3 (May 2016): 651–64. http://dx.doi.org/10.2514/1.c033415.
Full textCONN, ANDREW T., STUART C. BURGESS, and SENG LING CHUNG. "THE PARALLEL CRANK-ROCKER FLAPPING MECHANISM: AN INSECT-INSPIRED DESIGN FOR MICRO AIR VEHICLES." International Journal of Humanoid Robotics 04, no. 04 (December 2007): 625–43. http://dx.doi.org/10.1142/s0219843607001199.
Full textKang, Chang-kwon, and Wei Shyy. "Analytical model for instantaneous lift and shape deformation of an insect-scale flapping wing in hover." Journal of The Royal Society Interface 11, no. 101 (December 6, 2014): 20140933. http://dx.doi.org/10.1098/rsif.2014.0933.
Full textGau, Jeff, Ryan Gemilere, LDS-VIP (FM subteam), James Lynch, Nick Gravish, and Simon Sponberg. "Rapid frequency modulation in a resonant system: aerial perturbation recovery in hawkmoths." Proceedings of the Royal Society B: Biological Sciences 288, no. 1951 (May 26, 2021): 20210352. http://dx.doi.org/10.1098/rspb.2021.0352.
Full textSuarez, Alejandro, Pedro Grau, Guillermo Heredia, and Anibal Ollero. "Winged Aerial Manipulation Robot with Dual Arm and Tail." Applied Sciences 10, no. 14 (July 12, 2020): 4783. http://dx.doi.org/10.3390/app10144783.
Full textPARKER, K., K. D. VON ELLENRIEDER, and J. SORIA. "Morphology of the forced oscillatory flow past a finite-span wing at low Reynolds number." Journal of Fluid Mechanics 571 (January 4, 2007): 327–57. http://dx.doi.org/10.1017/s0022112006003491.
Full textPohly, Jeremy, James Salmon, James Bluman, Kabilan Nedunchezian, and Chang-kwon Kang. "Quasi-Steady versus Navier–Stokes Solutions of Flapping Wing Aerodynamics." Fluids 3, no. 4 (October 24, 2018): 81. http://dx.doi.org/10.3390/fluids3040081.
Full textKirkpatrick, S. J. "Scale effects on the stresses and safety factors in the wing bones of birds and bats." Journal of Experimental Biology 190, no. 1 (May 1, 1994): 195–215. http://dx.doi.org/10.1242/jeb.190.1.195.
Full textSridhar, Madhu, and Chang-kwon Kang. "Aerodynamic performance of two-dimensional, chordwise flexible flapping wings at fruit fly scale in hover flight." Bioinspiration & Biomimetics 10, no. 3 (May 6, 2015): 036007. http://dx.doi.org/10.1088/1748-3190/10/3/036007.
Full textVo-Doan, T. Thang, V. Than Dung, and Hirotaka Sato. "A Cyborg Insect Reveals a Function of a Muscle in Free Flight." Cyborg and Bionic Systems 2022 (May 4, 2022): 1–11. http://dx.doi.org/10.34133/2022/9780504.
Full textMazharmanesh, Soudeh, Jace Stallard, Albert Medina, Alex Fisher, Noriyasu Ando, Fang-Bao Tian, John Young, and Sridhar Ravi. "Effects of uniform vertical inflow perturbations on the performance of flapping wings." Royal Society Open Science 8, no. 6 (June 2021): 210471. http://dx.doi.org/10.1098/rsos.210471.
Full textZhao, Liang, Qingfeng Huang, Xinyan Deng, and Sanjay P. Sane. "Aerodynamic effects of flexibility in flapping wings." Journal of The Royal Society Interface 7, no. 44 (August 19, 2009): 485–97. http://dx.doi.org/10.1098/rsif.2009.0200.
Full textZhang, Jiao-Long, Jun-Hu, Yong Yu, and Hai-Bin Xuan. "The influence of leading-edge deflection on the stability of the leading-edge vortices." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 234, no. 20 (April 20, 2020): 3992–4008. http://dx.doi.org/10.1177/0954406220919452.
Full textMeng, Rui, Bifeng Song, Jianlin Xuan, and Xiaojun Yang. "Design and Verification of a Large-Scaled Flapping-Wing Aircraft Named “Cloud Owl”." Applied Sciences 13, no. 9 (May 4, 2023): 5667. http://dx.doi.org/10.3390/app13095667.
Full textZhu, Zhichao, Bifeng Song, and Dong Xue. "Design and Verification of Large-Scaled Flapping Wings for High Altitude Environment." Applied Sciences 12, no. 10 (May 19, 2022): 5140. http://dx.doi.org/10.3390/app12105140.
Full textRistroph, Leif, and Stephen Childress. "Stable hovering of a jellyfish-like flying machine." Journal of The Royal Society Interface 11, no. 92 (March 6, 2014): 20130992. http://dx.doi.org/10.1098/rsif.2013.0992.
Full textBanerjee, Abhijit, Saurav K. Ghosh, and Debopam Das. "Aerodynamics of Flapping Wing at Low Reynolds Numbers: Force Measurement and Flow Visualization." ISRN Mechanical Engineering 2011 (May 22, 2011): 1–8. http://dx.doi.org/10.5402/2011/162687.
Full textAllen, John S., and Kevin O'Rourke. "Sound generation in the flapping wing flight of insects." Journal of the Acoustical Society of America 153, no. 3_supplement (March 1, 2023): A270. http://dx.doi.org/10.1121/10.0018813.
Full textLiu, Guangze, Song Wang, and Wenfu Xu. "Flying State Sensing and Estimation Method of Large-Scale Bionic Flapping Wing Flying Robot." Actuators 11, no. 8 (July 31, 2022): 213. http://dx.doi.org/10.3390/act11080213.
Full textJacob, Flavia Gerbi, Irenilza de Alencar Nääs, Douglas D’Alessandro Salgado, Marta dos Santos Baracho, Nilsa Duarte da Silva Lima, and Danilo Florentino Pereira. "Does Environmental Enrichment with Music and Strobe Light Affect Broilers’ Welfare? Analyzing Their On-Farm Reaction." AgriEngineering 4, no. 3 (August 1, 2022): 707–18. http://dx.doi.org/10.3390/agriengineering4030045.
Full textTobalske, B., and K. Dial. "Flight kinematics of black-billed magpies and pigeons over a wide range of speeds." Journal of Experimental Biology 199, no. 2 (February 1, 1996): 263–80. http://dx.doi.org/10.1242/jeb.199.2.263.
Full textMuijres, Florian T., Nicole A. Iwasaki, Michael J. Elzinga, Johan M. Melis, and Michael H. Dickinson. "Flies compensate for unilateral wing damage through modular adjustments of wing and body kinematics." Interface Focus 7, no. 1 (February 6, 2017): 20160103. http://dx.doi.org/10.1098/rsfs.2016.0103.
Full textKang, Chang-kwon, and Wei Shyy. "Scaling law and enhancement of lift generation of an insect-size hovering flexible wing." Journal of The Royal Society Interface 10, no. 85 (August 6, 2013): 20130361. http://dx.doi.org/10.1098/rsif.2013.0361.
Full textBeratlis, Nikolaos, Francesco Capuano, Krishnamoorthy Krishnan, Roi Gurka, Kyle Squires, and Elias Balaras. "Direct Numerical Simulations of a Great Horn Owl in Flapping Flight." Integrative and Comparative Biology 60, no. 5 (September 14, 2020): 1091–108. http://dx.doi.org/10.1093/icb/icaa127.
Full textSane, Sanjay P., and Michael H. Dickinson. "The control of flight force by a flapping wing: lift and drag production." Journal of Experimental Biology 204, no. 15 (August 1, 2001): 2607–26. http://dx.doi.org/10.1242/jeb.204.15.2607.
Full textCheng, Bo, Jesse Roll, Yun Liu, Daniel R. Troolin, and Xinyan Deng. "Three-dimensional vortex wake structure of flapping wings in hovering flight." Journal of The Royal Society Interface 11, no. 91 (February 6, 2014): 20130984. http://dx.doi.org/10.1098/rsif.2013.0984.
Full textSum Wu, Kit, Jerome Nowak, and Kenneth S. Breuer. "Scaling of the performance of insect-inspired passive-pitching flapping wings." Journal of The Royal Society Interface 16, no. 161 (December 2019): 20190609. http://dx.doi.org/10.1098/rsif.2019.0609.
Full text