Journal articles on the topic 'Scale Flapping Wing'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Scale Flapping Wing.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Malhan, Ria, Moble Benedict, and Inderjit Chopra. "Experimental Studies to Understand the Hover and Forward Flight Performance of a MAV-Scale Flapping Wing Concept." Journal of the American Helicopter Society 57, no. 2 (April 1, 2012): 1–11. http://dx.doi.org/10.4050/jahs.57.022003.
Full textHawkes, Elliot W., and David Lentink. "Fruit fly scale robots can hover longer with flapping wings than with spinning wings." Journal of The Royal Society Interface 13, no. 123 (October 2016): 20160730. http://dx.doi.org/10.1098/rsif.2016.0730.
Full textMeresman, Yonatan, and Gal Ribak. "Allometry of wing twist and camber in a flower chafer during free flight: How do wing deformations scale with body size?" Royal Society Open Science 4, no. 10 (October 2017): 171152. http://dx.doi.org/10.1098/rsos.171152.
Full textShyy, Wei, Chang-kwon Kang, Pakpong Chirarattananon, Sridhar Ravi, and Hao Liu. "Aerodynamics, sensing and control of insect-scale flapping-wing flight." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 472, no. 2186 (February 2016): 20150712. http://dx.doi.org/10.1098/rspa.2015.0712.
Full textGoszczyński, Jacek A., Maciej Lasek, Józef Pietrucha, and Krzysztof Sibilski. "ANIMALOPTERS-TOWARDS A NEW DIMENSION OF FLIGHT MECHANICS." TRANSPORT 17, no. 3 (June 30, 2002): 108–16. http://dx.doi.org/10.3846/16483840.2002.10414023.
Full textLiu, Guangze, Song Wang, and Wenfu Xu. "Flying State Sensing and Estimation Method of Large-Scale Bionic Flapping Wing Flying Robot." Actuators 11, no. 8 (July 31, 2022): 213. http://dx.doi.org/10.3390/act11080213.
Full textChen, Yufeng, Cathleen Arase, Zhijian Ren, and Pakpong Chirarattananon. "Design, Characterization, and Liftoff of an Insect-Scale Soft Robotic Dragonfly Powered by Dielectric Elastomer Actuators." Micromachines 13, no. 7 (July 18, 2022): 1136. http://dx.doi.org/10.3390/mi13071136.
Full textChen, Yufeng, Nick Gravish, Alexis Lussier Desbiens, Ronit Malka, and Robert J. Wood. "Experimental and computational studies of the aerodynamic performance of a flapping and passively rotating insect wing." Journal of Fluid Mechanics 791 (February 15, 2016): 1–33. http://dx.doi.org/10.1017/jfm.2016.35.
Full textConn, A. T., S. C. Burgess, and C. S. Ling. "Design of a parallel crank-rocker flapping mechanism for insect-inspired micro air vehicles." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 221, no. 10 (September 30, 2007): 1211–22. http://dx.doi.org/10.1243/09544062jmes517.
Full textYang, Xuan, Aswathi Sudhir, Atanu Halder, and Moble Benedict. "Nonlinear Aeroelastic Analysis for Highly Flexible Flapping Wing in Hover." Journal of the American Helicopter Society 67, no. 2 (April 1, 2022): 1–15. http://dx.doi.org/10.4050/jahs.67.022002.
Full textThielicke, William, and Eize J. Stamhuis. "The influence of wing morphology on the three-dimensional flow patterns of a flapping wing at bird scale." Journal of Fluid Mechanics 768 (March 4, 2015): 240–60. http://dx.doi.org/10.1017/jfm.2015.71.
Full textCote, Braden, Samuel Weston, and Mark Jankauski. "Modeling and Analysis of a Simple Flexible Wing—Thorax System in Flapping-Wing Insects." Biomimetics 7, no. 4 (November 21, 2022): 207. http://dx.doi.org/10.3390/biomimetics7040207.
Full textWHITNEY, J. P., and R. J. WOOD. "Aeromechanics of passive rotation in flapping flight." Journal of Fluid Mechanics 660 (July 27, 2010): 197–220. http://dx.doi.org/10.1017/s002211201000265x.
Full textJones, K. D., C. J. Bradshaw, J. Papadopoulos, and M. F. Platzer. "Bio-inspired design of flapping-wing micro air vehicles." Aeronautical Journal 109, no. 1098 (August 2005): 385–93. http://dx.doi.org/10.1017/s0001924000000804.
Full textGao, Hang, James Lynch, and Nick Gravish. "Soft Molds with Micro-Machined Internal Skeletons Improve Robustness of Flapping-Wing Robots." Micromachines 13, no. 9 (September 7, 2022): 1489. http://dx.doi.org/10.3390/mi13091489.
Full textdel Estal Herrero, Alejandro, Mustafa Percin, Matej Karasek, and Bas van Oudheusden. "Flow Visualization around a Flapping-Wing Micro Air Vehicle in Free Flight Using Large-Scale PIV." Aerospace 5, no. 4 (September 20, 2018): 99. http://dx.doi.org/10.3390/aerospace5040099.
Full textMoses, Kenneth, Mark Willis, and Roger Quinn. "Biomimicry of the Hawk Moth, Manduca sexta (L.), Produces an Improved Flapping-Wing Mechanism." Biomimetics 5, no. 2 (June 4, 2020): 25. http://dx.doi.org/10.3390/biomimetics5020025.
Full textMin, Yilong, Gengyao Zhao, Dingyi Pan, and Xueming Shao. "Aspect Ratio Effects on the Aerodynamic Performance of a Biomimetic Hummingbird Wing in Flapping." Biomimetics 8, no. 2 (May 23, 2023): 216. http://dx.doi.org/10.3390/biomimetics8020216.
Full textBluman, James E., Madhu K. Sridhar, and Chang-kwon Kang. "Chordwise wing flexibility may passively stabilize hovering insects." Journal of The Royal Society Interface 15, no. 147 (October 2018): 20180409. http://dx.doi.org/10.1098/rsif.2018.0409.
Full textOzaki, Takashi, Norikazu Ohta, and Kanae Hamaguchi. "Resonance-Driven Passive Folding/Unfolding Flapping Wing Actuator." Applied Sciences 10, no. 11 (May 29, 2020): 3771. http://dx.doi.org/10.3390/app10113771.
Full textPARKER, K., K. D. VON ELLENRIEDER, and J. SORIA. "Morphology of the forced oscillatory flow past a finite-span wing at low Reynolds number." Journal of Fluid Mechanics 571 (January 4, 2007): 327–57. http://dx.doi.org/10.1017/s0022112006003491.
Full textZ˙bikowski, Rafał, Cezary Galin´ski, and Christopher B. Pedersen. "Four-Bar Linkage Mechanism for Insectlike Flapping Wings in Hover: Concept and an Outline of Its Realization." Journal of Mechanical Design 127, no. 4 (June 27, 2005): 817–24. http://dx.doi.org/10.1115/1.1829091.
Full textBluman, James, and Chang-Kwon Kang. "Wing-wake interaction destabilizes hover equilibrium of a flapping insect-scale wing." Bioinspiration & Biomimetics 12, no. 4 (June 15, 2017): 046004. http://dx.doi.org/10.1088/1748-3190/aa7085.
Full textKang, Chang-kwon, Madhu Sridhar, Rachel Twigg, Jeremy Pohly, Taeyoung Lee, and Hikaru Aono. "Power Benefits of High-Altitude Flapping Wing Flight at the Monarch Butterfly Scale." Biomimetics 8, no. 4 (August 8, 2023): 352. http://dx.doi.org/10.3390/biomimetics8040352.
Full textHarne, R. L., and K. W. Wang. "Dipteran wing motor-inspired flapping flight versatility and effectiveness enhancement." Journal of The Royal Society Interface 12, no. 104 (March 2015): 20141367. http://dx.doi.org/10.1098/rsif.2014.1367.
Full textChirarattananon, Pakpong, Kevin Y. Ma, and Robert J. Wood. "Adaptive control of a millimeter-scale flapping-wing robot." Bioinspiration & Biomimetics 9, no. 2 (May 22, 2014): 025004. http://dx.doi.org/10.1088/1748-3182/9/2/025004.
Full textCONN, ANDREW T., STUART C. BURGESS, and SENG LING CHUNG. "THE PARALLEL CRANK-ROCKER FLAPPING MECHANISM: AN INSECT-INSPIRED DESIGN FOR MICRO AIR VEHICLES." International Journal of Humanoid Robotics 04, no. 04 (December 2007): 625–43. http://dx.doi.org/10.1142/s0219843607001199.
Full textOzaki, Takashi, Norikazu Ohta, Tomohiko Jimbo, and Kanae Hamaguchi. "A wireless radiofrequency-powered insect-scale flapping-wing aerial vehicle." Nature Electronics 4, no. 11 (November 2021): 845–52. http://dx.doi.org/10.1038/s41928-021-00669-8.
Full textDong, Xin, Ziyu Wang, Fangyuan Liu, Song Li, Fan Fei, Daochun Li, and Zhan Tu. "Visual-Inertial Cross Fusion: A Fast and Accurate State Estimation Framework for Micro Flapping Wing Rotors." Drones 6, no. 4 (March 31, 2022): 90. http://dx.doi.org/10.3390/drones6040090.
Full textKang, Chang-kwon, and Wei Shyy. "Analytical model for instantaneous lift and shape deformation of an insect-scale flapping wing in hover." Journal of The Royal Society Interface 11, no. 101 (December 6, 2014): 20140933. http://dx.doi.org/10.1098/rsif.2014.0933.
Full textAllen, John S., and Kevin O'Rourke. "Sound generation in the flapping wing flight of insects." Journal of the Acoustical Society of America 153, no. 3_supplement (March 1, 2023): A270. http://dx.doi.org/10.1121/10.0018813.
Full textPENNYCUICK, C. J. "Flight of Auks (Alcidae) and Other Northern Seabirds Compared with Southern Procellariiformes: Ornithodolite Observations." Journal of Experimental Biology 128, no. 1 (March 1, 1987): 335–47. http://dx.doi.org/10.1242/jeb.128.1.335.
Full textGau, Jeff, Ryan Gemilere, LDS-VIP (FM subteam), James Lynch, Nick Gravish, and Simon Sponberg. "Rapid frequency modulation in a resonant system: aerial perturbation recovery in hawkmoths." Proceedings of the Royal Society B: Biological Sciences 288, no. 1951 (May 26, 2021): 20210352. http://dx.doi.org/10.1098/rspb.2021.0352.
Full textSuarez, Alejandro, Pedro Grau, Guillermo Heredia, and Anibal Ollero. "Winged Aerial Manipulation Robot with Dual Arm and Tail." Applied Sciences 10, no. 14 (July 12, 2020): 4783. http://dx.doi.org/10.3390/app10144783.
Full textChen, Si, Shijun Guo, Hao Li, Mingbo Tong, and Bing Ji. "Short Landing Performance and Scale Effect of a Flapping Wing Aircraft." Journal of Aerospace Engineering 33, no. 6 (November 2020): 04020085. http://dx.doi.org/10.1061/(asce)as.1943-5525.0001198.
Full textZou, Yang, Weiping Zhang, Sui Zhou, Xijun Ke, Feng Cui, and Wu Liu. "Monolithic fabrication of an insect‐scale self‐lifting flapping‐wing robot." Micro & Nano Letters 13, no. 2 (February 2018): 267–69. http://dx.doi.org/10.1049/mnl.2017.0730.
Full textJayabalan, Sakthi Swarrup, Ranjan Ganguli, and Giridhar Madras. "Nanomaterial-based ionic polymer metal composite insect scale flapping wing actuators." Mechanics of Advanced Materials and Structures 23, no. 11 (April 6, 2016): 1300–1311. http://dx.doi.org/10.1080/15376494.2015.1068409.
Full textPohly, Jeremy, James Salmon, James Bluman, Kabilan Nedunchezian, and Chang-kwon Kang. "Quasi-Steady versus Navier–Stokes Solutions of Flapping Wing Aerodynamics." Fluids 3, no. 4 (October 24, 2018): 81. http://dx.doi.org/10.3390/fluids3040081.
Full textHe, Guangping, Tingting Su, Taoming Jia, Lei Zhao, and Quanliang Zhao. "Dynamics Analysis and Control of a Bird Scale Underactuated Flapping-Wing Vehicle." IEEE Transactions on Control Systems Technology 28, no. 4 (July 2020): 1233–42. http://dx.doi.org/10.1109/tcst.2019.2908145.
Full textShyy, Wei, Chang-kwon Kang, Pakpong Chirarattananon, Sridhar Ravi, and Hao Liu. "Correction to ‘Aerodynamics, sensing and control of insect-scale flapping-wing flight’." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 472, no. 2187 (March 2016): 20160096. http://dx.doi.org/10.1098/rspa.2016.0096.
Full textChirarattananon, Pakpong, Yufeng Chen, E. Farrell Helbling, Kevin Y. Ma, Richard Cheng, and Robert J. Wood. "Dynamics and flight control of a flapping-wing robotic insect in the presence of wind gusts." Interface Focus 7, no. 1 (February 6, 2017): 20160080. http://dx.doi.org/10.1098/rsfs.2016.0080.
Full textChirarattananon, Pakpong, and Robert J. Wood. "OS1-10 Translational Flight Stability of an Insect-Scale Flapping-Wing Robot(OS1: Bio-inspired Flight System Biomechanics II)." Proceedings of the Asian Pacific Conference on Biomechanics : emerging science and technology in biomechanics 2015.8 (2015): 71. http://dx.doi.org/10.1299/jsmeapbio.2015.8.71.
Full textPan, Erzhen, Xu Liang, and Wenfu Xu. "Development of Vision Stabilizing System for a Large-Scale Flapping-Wing Robotic Bird." IEEE Sensors Journal 20, no. 14 (July 15, 2020): 8017–28. http://dx.doi.org/10.1109/jsen.2020.2981173.
Full textShi, Xing, Xianwen Huang, Yao Zheng, and Susu Zhao. "Effects of cambers on gliding and hovering performance of corrugated dragonfly airfoils." International Journal of Numerical Methods for Heat & Fluid Flow 26, no. 3/4 (May 3, 2016): 1092–120. http://dx.doi.org/10.1108/hff-10-2015-0414.
Full textTu, Zhan, Fan Fei, Jian Zhang, and Xinyan Deng. "An At-Scale Tailless Flapping-Wing Hummingbird Robot. I. Design, Optimization, and Experimental Validation." IEEE Transactions on Robotics 36, no. 5 (October 2020): 1511–25. http://dx.doi.org/10.1109/tro.2020.2993217.
Full textZou, Yang, Weiping Zhang, Xijun Ke, Xingliang Lou, and Sui Zhou. "The design and microfabrication of a sub 100 mg insect‐scale flapping‐wing robot." Micro & Nano Letters 12, no. 5 (May 2017): 297–300. http://dx.doi.org/10.1049/mnl.2016.0687.
Full textOsváth, Gergely, Orsolya Vincze, Dragomir-Cosmin David, László Jácint Nagy, Ádám Z. Lendvai, Robert L. Nudds, and Péter L. Pap. "Morphological characterization of flight feather shafts in four bird species with different flight styles." Biological Journal of the Linnean Society 131, no. 1 (July 28, 2020): 192–202. http://dx.doi.org/10.1093/biolinnean/blaa108.
Full textWang, Chenyang, Weiping Zhang, Jiaxin Zhao, Junqi Hu, and Yang Zou. "Design, takeoff and steering torques modulation of an 80‐mg insect‐scale flapping‐wing robot." Micro & Nano Letters 15, no. 15 (December 2020): 1079–83. http://dx.doi.org/10.1049/mnl.2020.0371.
Full textHAINSWORTH, F. REED. "Induced Drag Savings From Ground Effect and Formation Flight in Brown Pelicans." Journal of Experimental Biology 135, no. 1 (March 1, 1988): 431–44. http://dx.doi.org/10.1242/jeb.135.1.431.
Full textJardin, T., A. Farcy, and L. David. "Three-dimensional effects in hovering flapping flight." Journal of Fluid Mechanics 702 (May 23, 2012): 102–25. http://dx.doi.org/10.1017/jfm.2012.163.
Full text