Journal articles on the topic 'Scalar viscous shocks'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 26 journal articles for your research on the topic 'Scalar viscous shocks.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Bressan, Alberto, and Carlotta Donadello. "On the formation of scalar viscous shocks problem." International Journal of Dynamical Systems and Differential Equations 1, no. 1 (2007): 1. http://dx.doi.org/10.1504/ijdsde.2007.013740.
Full textStokols, Logan F. "L2-type contraction of viscous shocks for scalar conservation laws." Journal of Hyperbolic Differential Equations 18, no. 02 (June 2021): 271–92. http://dx.doi.org/10.1142/s0219891621500089.
Full textKang, Moon-Jin. "L2-type contraction for shocks of scalar viscous conservation laws with strictly convex flux." Journal de Mathématiques Pures et Appliquées 145 (January 2021): 1–43. http://dx.doi.org/10.1016/j.matpur.2020.10.005.
Full textShixiang, Ma. "Inviscid Limit for Scalar Viscous Conservation Laws in Presence of Strong Shocks and Boundary Layers." Journal of Partial Differential Equations 25, no. 2 (June 2012): 171–86. http://dx.doi.org/10.4208/jpde.v25.n2.4.
Full textDalibard, Anne-Laure, and Moon-Jin Kang. "Existence and stability of planar shocks of viscous scalar conservation laws with space-periodic flux." Journal de Mathématiques Pures et Appliquées 107, no. 3 (March 2017): 336–66. http://dx.doi.org/10.1016/j.matpur.2016.07.003.
Full textChoi, Kyudong, and Alexis F. Vasseur. "Short-Time Stability of Scalar Viscous Shocks in the Inviscid Limit by the Relative Entropy Method." SIAM Journal on Mathematical Analysis 47, no. 2 (January 2015): 1405–18. http://dx.doi.org/10.1137/140961523.
Full textMEI, MING. "STABILITY OF SHOCK PROFILES FOR NONCONVEX SCALAR VISCOUS CONSERVATION LAWS." Mathematical Models and Methods in Applied Sciences 05, no. 03 (May 1995): 279–96. http://dx.doi.org/10.1142/s0218202595000188.
Full textHoff, David, and Kevin Zumbrun. "Asymptotic behavior of multidimensional scalar viscous shock fronts." Indiana University Mathematics Journal 49, no. 2 (2000): 427–74. http://dx.doi.org/10.1512/iumj.2000.49.1942.
Full textGoodman, Jonathan. "Stability of viscous scalar shock fronts in several dimensions." Transactions of the American Mathematical Society 311, no. 2 (February 1, 1989): 683. http://dx.doi.org/10.1090/s0002-9947-1989-0978372-9.
Full textNishihara, Kenji. "Boundary Effect on a Stationary Viscous Shock Wave for Scalar Viscous Conservation Laws." Journal of Mathematical Analysis and Applications 255, no. 2 (March 2001): 535–50. http://dx.doi.org/10.1006/jmaa.2000.7255.
Full textDeng, ShiJin, and WeiKe Wang. "Pointwise decaying rate of large perturbation around viscous shock for scalar viscous conservation law." Science China Mathematics 56, no. 4 (February 1, 2013): 729–36. http://dx.doi.org/10.1007/s11425-012-4566-9.
Full textKang, Moon-Jin, and Alexis F. Vasseur. "L2-contraction for shock waves of scalar viscous conservation laws." Annales de l'Institut Henri Poincaré C, Analyse non linéaire 34, no. 1 (January 2017): 139–56. http://dx.doi.org/10.1016/j.anihpc.2015.10.004.
Full textFreist�hler, Heinrich, and Denis Serre. "?1 stability of shock waves in scalar viscous conservation laws." Communications on Pure and Applied Mathematics 51, no. 3 (March 1998): 291–301. http://dx.doi.org/10.1002/(sici)1097-0312(199803)51:3<291::aid-cpa4>3.0.co;2-5.
Full textHoff, David, and Kevin Zumbrun. "Pointwise Green's Function Bounds for Multidimensional Scalar Viscous Shock Fronts." Journal of Differential Equations 183, no. 2 (August 2002): 368–408. http://dx.doi.org/10.1006/jdeq.2001.4125.
Full textPlaza, Ramón G. "Lp-decay rates for perturbations of degenerate scalar viscous shock waves." Journal of Mathematical Analysis and Applications 382, no. 2 (October 2011): 864–82. http://dx.doi.org/10.1016/j.jmaa.2011.04.091.
Full textNISHIHARA, Kenji, and Huijiang ZHAO. "Convergence rates to viscous shock profile for general scalar viscous conservation laws with large initial disturbance." Journal of the Mathematical Society of Japan 54, no. 2 (April 2002): 447–66. http://dx.doi.org/10.2969/jmsj/05420447.
Full textShi, Renkun, and Weike Wang. "Nonlinear stability of large perturbation around viscous shock wave for 2-D scalar viscous conservation law." Indiana University Mathematics Journal 65, no. 4 (2016): 1137–82. http://dx.doi.org/10.1512/iumj.2016.65.5850.
Full textLi, Yingwei. "Scalar Green function bounds for instantaneous shock location and one-dimensional stability of viscous shock waves." Quarterly of Applied Mathematics 74, no. 3 (June 16, 2016): 499–538. http://dx.doi.org/10.1090/qam/1431.
Full textTalbot, B., Y. Mammeri, and N. Bedjaoui. "Viscous shock anomaly in a variable-viscosity Burgers flow with an active scalar." Fluid Dynamics Research 47, no. 6 (October 1, 2015): 065502. http://dx.doi.org/10.1088/0169-5983/47/6/065502.
Full textKang, Moon-Jin, Alexis F. Vasseur, and Yi Wang. "L2-contraction of large planar shock waves for multi-dimensional scalar viscous conservation laws." Journal of Differential Equations 267, no. 5 (August 2019): 2737–91. http://dx.doi.org/10.1016/j.jde.2019.03.030.
Full textXin, Zhouping, Qian Yuan, and Yuan Yuan. "Asymptotic stability of shock profiles and rarefaction waves under periodic perturbations for 1-D convex scalar viscous conservation laws." Indiana University Mathematics Journal 70, no. 6 (2021): 2295–349. http://dx.doi.org/10.1512/iumj.2021.70.8706.
Full textLiu, Ye-chi. "Time Decay Rate of Solutions Toward the Viscous Shock Waves under Periodic Perturbations for the Scalar Conservation Law with Nonlinear Viscosity." Acta Mathematicae Applicatae Sinica, English Series 39, no. 1 (December 28, 2022): 28–48. http://dx.doi.org/10.1007/s10255-023-1028-9.
Full textYoshida, Natsumi. "Asymptotic Behavior of Solutions Toward the Viscous Shock Waves to the Cauchy Problem for the Scalar Conservation Law with Nonlinear Flux and Viscosity." SIAM Journal on Mathematical Analysis 50, no. 1 (January 2018): 891–932. http://dx.doi.org/10.1137/17m1118798.
Full textLiu, Yechi. "Time decay rate of solutions toward the viscous shock waves to the Cauchy problem for the scalar conservation law with nonlinear viscosity and discontinuous initial data." Nonlinear Analysis 222 (September 2022): 112945. http://dx.doi.org/10.1016/j.na.2022.112945.
Full textRestrepo, Julián, and José R. Simões-Moreira. "Viscous effects on real gases in quasi-one-dimensional supersonic convergent divergent nozzle flows." Journal of Fluid Mechanics 951 (November 3, 2022). http://dx.doi.org/10.1017/jfm.2022.853.
Full textKamin, S., and S. Schochet. "Global asymptotic stability for finite-cross-section planar shock profiles of viscous scalar conservation laws." Differential and Integral Equations 17, no. 7-8 (January 1, 2004). http://dx.doi.org/10.57262/die/1356060330.
Full text