Academic literature on the topic 'Scalable video'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Scalable video.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Scalable video"
Wang, Te-heng, Mei-juan Chen, Ming-chieh Chi, Shu-fen Huang, and Chia-hung Yeh. "Computation-scalable algorithm for scalable video coding." IEEE Transactions on Consumer Electronics 57, no. 3 (August 2011): 1194–202. http://dx.doi.org/10.1109/tce.2011.6018874.
Full textHu Chen, Meng-Ping Kao, and Truong Q. Nguyen. "Bidirectional Scalable Motion for Scalable Video Coding." IEEE Transactions on Image Processing 19, no. 11 (November 2010): 3059–64. http://dx.doi.org/10.1109/tip.2010.2050933.
Full textHöferlin, Benjamin, Markus Höferlin, Gunther Heidemann, and Daniel Weiskopf. "Scalable video visual analytics." Information Visualization 14, no. 1 (June 5, 2013): 10–26. http://dx.doi.org/10.1177/1473871613488571.
Full textAlhaisoni, Majed, Mohammed Ghanbari, and Antonio Liotta. "Scalable P2P Video Streaming." International Journal of Business Data Communications and Networking 6, no. 3 (July 2010): 49–65. http://dx.doi.org/10.4018/jbdcn.2010070103.
Full textJiang Li, Keman Yu, Tielin He, Yunfeng Lin, Shipeng Li, and Ya-Qin Zhang. "Scalable portrait video for mobile video communication." IEEE Transactions on Circuits and Systems for Video Technology 13, no. 5 (May 2003): 376–84. http://dx.doi.org/10.1109/tcsvt.2003.811611.
Full textSchierl, T., T. Stockhammer, and T. Wiegand. "Mobile Video Transmission Using Scalable Video Coding." IEEE Transactions on Circuits and Systems for Video Technology 17, no. 9 (September 2007): 1204–17. http://dx.doi.org/10.1109/tcsvt.2007.905528.
Full textHou, Yanzhao, Nan Hu, Qimei Cui, and Xiaofeng Tao. "Performance analysis of scalable video transmission in machine-type-communication caching network." International Journal of Distributed Sensor Networks 15, no. 1 (January 2019): 155014771881585. http://dx.doi.org/10.1177/1550147718815851.
Full textSecker, A., and D. Taubman. "Highly scalable video compression with scalable motion coding." IEEE Transactions on Image Processing 13, no. 8 (August 2004): 1029–41. http://dx.doi.org/10.1109/tip.2004.826089.
Full textRantelobo, Kalvein, Hendro Lami, and Wirawan Wirawan. "Video Transmission using Combined Scalability Video Coding over MIMO-OFDM Systems." Indonesian Journal of Electrical Engineering and Computer Science 4, no. 2 (November 1, 2016): 390. http://dx.doi.org/10.11591/ijeecs.v4.i2.pp390-396.
Full textFeng, Wei, Ashraf A. Kassim, and Chen-Khong Tham. "A scalable video codec for layered video streaming." Real-Time Imaging 10, no. 5 (October 2004): 297–305. http://dx.doi.org/10.1016/j.rti.2004.08.005.
Full textDissertations / Theses on the topic "Scalable video"
Lee, Ying 1979. "Scalable video." Thesis, Massachusetts Institute of Technology, 2000. http://hdl.handle.net/1721.1/9071.
Full textIncludes bibliographical references (p. 51).
This thesis presents the design and implementation of a scalable video scheme that accommodates the uncertainties in networks and the differences in receivers' displaying mechanisms. To achieve scalability, a video stream is encoded into two kinds of layers, namely the base layer and the enhancement layer. The decoder must process the base layer in order to display minimally acceptable video quality. For higher quality, the decoder simply combines the base layer with one or more enhancement layers. Incorporated with the IP multicast system, the result is a highly flexible and extensible structure that facilitates video viewing to a wide variety of devices, yet customizes the presentation for each individual receiver.
by Ying Lee.
M.Eng.
Stampleman, Joseph Bruce. "Scalable video compression." Thesis, Massachusetts Institute of Technology, 1992. http://hdl.handle.net/1721.1/70216.
Full textWee, Susie Jung-Ah. "Scalable video coding." Thesis, Massachusetts Institute of Technology, 1996. http://hdl.handle.net/1721.1/11007.
Full textDereboylu, Ziya. "Error resilient scalable video coding." Thesis, University of Surrey, 2014. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.582748.
Full textSanhueza, Gutiérrez Andrés Edgardo. "Scalable video coding sobre TCP." Tesis, Universidad de Chile, 2015. http://repositorio.uchile.cl/handle/2250/136454.
Full textEn tiempos modernos la envergadura del contenido multimedia avanza más rápido que el desarrollo de las tecnologías necesarias para su correcta difusión a través de la red. Es por esto que se hacen necesarios nuevos protocolos que sirvan como puente entre ambas entidades para así obtener un máximo de provecho del contenido a pesar de que la tecnología para distribuirlos aún no sea la adecuada. Es así, que dentro de las últimas tecnologías de compresión de video se encuentra Scalable Video Coding (SVC), la cual tiene por objetivo codi car distintas calidades en un único bitstream capaz de mostrar cualquiera de las calidades embebidas en éste según se reciba o no toda la información. En el caso de una conexión del tipo streaming, en donde es necesaria una uidez y delidad en ambos extremos, la tecnología SVC tiene un potencial muy grande respecto de descartar un mínimo de información para privilegiar la uidez de la transmisión. El software utilizado para la creación y manipulación de estos bitstreams SVC es Joint Scalable Video Model (JSVM). En este contexto, se desarrolla el algoritmo de deadline en Matlab, que omite informaci ón del video SVC de acuerdo a qué tan crítico sea el escenario de transmisión. En este escenario se considera la percepción de uidez del usuario como medida clave, por lo cual se prioriza mantener siempre una tasa de 30 fps a costa de una pérdida de calidad mínima. El algoritmo, omite información de acuerdo a qué tan lejos se esté de este deadline de 30 fps, si se está muy lejos, se omite información poco relevante, y si se está muy cerca, información más importante. Los resultados se contrastan con TCP y se evalúan para distintos valores de RTTs, cumpliendo totalmente el objetivo para valores menores a 150 ms que resultan en diferencias de hasta 20 s a favor del algoritmo de deadline al término de la transmisión. Esta mejora en tiempo de arribo no descarta información esencial y sólo degrada ligeramente la calidad del video en pos de mantener la tasa de 30fps. Por el contrario, en escenarios muy adversos de 300 ms en RTT, las omisiones son de gran envergadura y comprometen frames completos, en conjunto con una degradación generalizada del video y la aparición de artefactos en éste. Por tanto la propuesta cumple los objetivos en ambientes no muy adversos. Para toda la simulación se uso un video en movimiento de 352x288 y 150 frames de largo.
Mehrseresht, Nagita Electrical Engineering & communication UNSW. "Adaptive techniques for scalable video compression." Awarded by:University of New South Wales. Electrical Engineering and communication, 2005. http://handle.unsw.edu.au/1959.4/20552.
Full textFan, Dian. "Scalable Video Transport over IP Networks." Scholarly Repository, 2010. http://scholarlyrepository.miami.edu/oa_dissertations/460.
Full textKim, Taehyun. "Scalable Video Streaming over the Internet." Diss., Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/6829.
Full textAkhlaghian, Tab Fardin. "Multiresolution scalable image and video segmentation." Access electronically, 2005. http://www.library.uow.edu.au/adt-NWU/public/adt-NWU20060227.100704/index.html.
Full textAl-Muscati, Hussain. "Scalable transcoding of H.264 video." Thesis, McGill University, 2010. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=92256.
Full textIn this thesis, transcoding of a single layer H.264/AVC stream to H.264/SVC stream with combined spatial-temporal scalability is achieved through the use of a heterogeneous video transcoder in the pixel domain. This architecture is chosen as a compromise between complexity and reconstruction quality.
In this transcoder, the input H.264/AVC stream is fully decoded. The macroblock coding modes and partitioning decisions are reused to encode the output H.264/SVC stream. A set of new motion vectors is computed from the input stream coded motion vectors. This extracted and modified information is collectively downsampled, together with the decoded frames, in order to provide multiple scalable layers. The newly computed motion vectors are further subjected to a 3 pixel refinement. The output stream is coded with either a hierarchical B-frame or a zero-delay referencing structure.
The performance of the proposed transcoder is validated through simulation results. These simulations compare both the compression efficiency (PSNR/bit-rate) and computational complexity (computation time) of the implemented transcoding scheme to a setup that preforms a full decoding followed by a full encoding of the incoming video stream. It is shown that a significant decrease in computational complexity is achieved with a reduction of over 60% in some cases, while maintaining a small loss in compression efficiency.
Le transcodage vid´eo num´erique fournit un m´ecanisme de faible complexit´e pour convertir un flux vid´eo d'un format de compression `a un autre. Cette conversion devrait etre atteinte tout en maintenant une haute qualit´e visuelle. La r´ecente ´emergence et la normalisation de l'extension "scalable" (en couches) de la norme H.264, ainsi que la grande disponibilit´e de contenu cod´e au format H.264 `a couche unique donnent une grande importance au d´eveloppement d'un m´ecanisme de transcodage qui convertit du format `a couche unique `a la forme "scalable" .
Dans cette th`ese, le transcodage d'un flux simple couche H.264/AVC vers un flux H.264/SVC combinant des couches spatiales et temporelles est obtenue par l'utilisation d'un transcodeur vid´eo h´et´erog`ene dans le domaine des pixels. Cette architecture est choisie comme un compromis entre la complexit´e et la qualit´e de reconstruction.
Dans ce transcodeur, le flux d'entr´ee H.264/AVC est enti`erement d´ecod´e. Le mode de codage et les d´ecisions de partitionnement pour les macro-blocs sont r´eutilis´es pour encoder le flux de sortie H.264/SVC. Un ensemble de nouveaux vecteurs de mouvement est calcul´e `a partir des vecteurs de mouvement du flux d'entr´ee cod´e. Cette information modifi´ee est sous-´echantillonn´ee, en meme temps que les images d´ecod´ees, afin de fournir de multiples couches spatiales. Les vecteurs de mouvement nouvellement calcul´e sont en outre soumis `a un raffinement de 3 pixels. Le flux de sortie est cod´e soit avec soit un syst`eme dimages B hi´erarchique soit avec une structure `a d´elai z´ero.
La performance du transcodeur propos´e est valid´ee par les r´esultats de simulation.
Ces simulations comparent `a la fois l'efficacit´e de compression (PSNR/d´ebit), et la complexit ´e des calculs (temps de calcul) du syst`eme de transcodage `a un syst`eme qui met en uvre un d´ecodage complet suivi d'un r´e-encodage complet du flux vid´eo entrant. Il est d´emontr´e qu'une diminution significative de la complexit´e algorithmique est atteinte avec une r´eduction de plus de 60% dans certains cas, tout en maintenant une faible perte en efficacit´e de compression.
Books on the topic "Scalable video"
Zink, Michael. Scalable Video on Demand. West Sussex, England: John Wiley & Sons, Ltd,., 2005. http://dx.doi.org/10.1002/9780470022702.
Full textScalable video on demand: Adaptive Internet-based distribution. Hoboken, NJ: J. Wiley & Sons, 2005.
Find full textTudor, P. N. Digital video compression: Standardisation of scalable coding schemes. London: British Broadcasting Corporation. Research and Development Department, 1994.
Find full textHwang, Kyung-Wook. Design of Scalable On-Demand Video Streaming Systems Leveraging Video Viewing Patterns. [New York, N.Y.?]: [publisher not identified], 2013.
Find full textRüfenacht, Dominic. Novel Motion Anchoring Strategies for Wavelet-based Highly Scalable Video Compression. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-8225-2.
Full textScalable computing and communications: Theory and practice. Hoboken, New Jersey: Wiley, 2013.
Find full textMauricio, Alvarez-Mesa, Chi Chi Ching, Azevedo Arnaldo, Meenderinck Cor, Ramirez Alex, and SpringerLink (Online service), eds. Scalable Parallel Programming Applied to H.264/AVC Decoding. New York, NY: Springer New York, 2012.
Find full textThie, Johnson. Optimal erasure protection assignment for scalable data: Protecting scalably compressed images and videos against erasure over packet-based networks. Köln: Lambert Academic Pub., 2009.
Find full textZhu, Chunrong. Scalable video coding for ATM networks. 1994.
Find full textZink, Michael. Scalable Video on Demand: Adaptive Internet-Based Distribution. Wiley & Sons, Incorporated, John, 2013.
Find full textBook chapters on the topic "Scalable video"
Jiang, Xiaofeng, Shuangwu Chen, and Jian Yang. "Scalable Video Streaming." In Encyclopedia of Wireless Networks, 1252–57. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-319-78262-1_281.
Full textJiang, Xiaofeng, Shuangwu Chen, and Jian Yang. "Scalable Video Streaming." In Encyclopedia of Wireless Networks, 1–6. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-32903-1_281-1.
Full textShi, Feng, Shaohui Liu, Hongxun Yao, Yan Liu, and Shengping Zhang. "Scalable and Credible Video Watermarking towards Scalable Video Coding." In Advances in Multimedia Information Processing - PCM 2010, 697–708. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15702-8_64.
Full textZink, Michael. "Scalable Adaptive Streaming Architecture." In Scalable Video on Demand, 9–35. West Sussex, England: John Wiley & Sons, Ltd,., 2013. http://dx.doi.org/10.1002/9780470022702.ch2.
Full textJillani, Rashad, and Hari Kalva. "Scalable Video Coding Standard." In Encyclopedia of Multimedia, 775–81. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-78414-4_63.
Full textMrak, Marta, and Ebroul Izquierdo. "Scalable Video Coding Fundamentals." In Encyclopedia of Multimedia, 771–75. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-78414-4_199.
Full textZink, Michael. "Introduction." In Scalable Video on Demand, 1–8. West Sussex, England: John Wiley & Sons, Ltd,., 2013. http://dx.doi.org/10.1002/9780470022702.ch1.
Full textZink, Michael. "Towards a Scalable Adaptive Streaming Architecture." In Scalable Video on Demand, 37–61. West Sussex, England: John Wiley & Sons, Ltd,., 2013. http://dx.doi.org/10.1002/9780470022702.ch3.
Full textZink, Michael. "Quality Variations in Layer-Encoded Video." In Scalable Video on Demand, 63–89. West Sussex, England: John Wiley & Sons, Ltd,., 2013. http://dx.doi.org/10.1002/9780470022702.ch4.
Full textZink, Michael. "Retransmission Scheduling." In Scalable Video on Demand, 91–125. West Sussex, England: John Wiley & Sons, Ltd,., 2013. http://dx.doi.org/10.1002/9780470022702.ch5.
Full textConference papers on the topic "Scalable video"
Liu, Shujie, and Chang Wen Chen. "Scalable video transmission." In the 21st international workshop. New York, New York, USA: ACM Press, 2011. http://dx.doi.org/10.1145/1989240.1989268.
Full textAbozeid, Amr, Hesham Farouk, and Kamal ElDahshan. "Scalable Video Summarization." In the International Conference. New York, New York, USA: ACM Press, 2017. http://dx.doi.org/10.1145/3093241.3093287.
Full textStankovic, Vladimir, Lina Stankovic, and Samuel Cheng. "Scalable compressive video." In 2011 18th IEEE International Conference on Image Processing (ICIP 2011). IEEE, 2011. http://dx.doi.org/10.1109/icip.2011.6116710.
Full textHill, P. R., A. Achim, and D. R. Bull. "Scalable video fusion." In 2013 20th IEEE International Conference on Image Processing (ICIP). IEEE, 2013. http://dx.doi.org/10.1109/icip.2013.6738263.
Full textAlfonso, Daniele, Matteo Gherardi, Andrea Vitali, and Fabrizio Rovati. "Performance analysis of the scalable video coding standard." In Packet Video 2007. IEEE, 2007. http://dx.doi.org/10.1109/packet.2007.4397047.
Full textMuge Sayit and Gamze Seckin. "Scalable video with raptor for wireless multicast networks." In Packet Video 2007. IEEE, 2007. http://dx.doi.org/10.1109/packet.2007.4397058.
Full textWang, Te-Heng, Mei-Juan Chen, Ming-Chieh Chi, Shu-Fen Huang, and Chia-Hung Yeh. "Computation-scalable algorithm for scalable video coding." In 2011 IEEE International Conference on Consumer Electronics (ICCE). IEEE, 2011. http://dx.doi.org/10.1109/icce.2011.5722500.
Full textHu Chen, Meng-Ping Kao, and Truong Nguyen. "Bidirectional scalable motion for scalable video coding." In 2009 16th IEEE International Conference on Image Processing ICIP 2009. IEEE, 2009. http://dx.doi.org/10.1109/icip.2009.5414489.
Full textLiu, Shu-Wei, Chi-Hui Huang, and Ja-Ling Wu. "Fully scalable video codec." In Photonics West 2001 - Electronic Imaging, edited by Bernd Girod, Charles A. Bouman, and Eckehard G. Steinbach. SPIE, 2000. http://dx.doi.org/10.1117/12.411874.
Full textKodama, M., and S. Suzuki. "Scalable video contents delivery method with scalable transcoding." In 2004 IEEE International Symposium on Industrial Electronics. IEEE, 2004. http://dx.doi.org/10.1109/isie.2004.1571824.
Full textReports on the topic "Scalable video"
Woods, John W. Scalable and Robust Video Compression. Fort Belvoir, VA: Defense Technical Information Center, December 2000. http://dx.doi.org/10.21236/ada391136.
Full textWenger, S., Y. K. Wang, T. Schierl, and A. Eleftheriadis. RTP Payload Format for Scalable Video Coding. RFC Editor, May 2011. http://dx.doi.org/10.17487/rfc6190.
Full textKondi, Lisimachos P. Scalable Video Transmission Over Multi-Rate Multiple Access Channels. Fort Belvoir, VA: Defense Technical Information Center, June 2007. http://dx.doi.org/10.21236/ada470529.
Full textHarizopoulos, Stavros, and Garth A. Gibson. PASTENSE: A Fast Start-up Algorithm for Scalable Video Libraries. Fort Belvoir, VA: Defense Technical Information Center, March 2001. http://dx.doi.org/10.21236/ada461107.
Full textFrankel, Martin, and Jon A. Webb. Design, Implementation, and Performance of a Scalable Multi-Camera Interactive Video Capture System,. Fort Belvoir, VA: Defense Technical Information Center, June 1995. http://dx.doi.org/10.21236/ada303255.
Full textSantoro, Fabrizio. Visual Nudges: How Deterrence and Equity Shape Tax Compliance Attitudes and Behaviour in Rwanda. Institute of Development Studies, August 2022. http://dx.doi.org/10.19088/ictd.2022.011.
Full textBell, Jack, Rik Law, Howell Li, Ben Anderson, and Darcy M. Bullock. New Opportunities for Automated Pedestrian Performance Measures. Purdue University, 2021. http://dx.doi.org/10.5703/1288284317351.
Full text