Academic literature on the topic 'Sc-RNA seq'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Sc-RNA seq.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Sc-RNA seq"
Ma, Shi-Xun, and Su Bin Lim. "Single-Cell RNA Sequencing in Parkinson’s Disease." Biomedicines 9, no. 4 (April 1, 2021): 368. http://dx.doi.org/10.3390/biomedicines9040368.
Full textBiancalani, Tommaso, Gabriele Scalia, Lorenzo Buffoni, Raghav Avasthi, Ziqing Lu, Aman Sanger, Neriman Tokcan, et al. "Deep learning and alignment of spatially resolved single-cell transcriptomes with Tangram." Nature Methods 18, no. 11 (October 28, 2021): 1352–62. http://dx.doi.org/10.1038/s41592-021-01264-7.
Full textAjani, Jaffer A., Yan Xu, Longfei Huo, Ruiping Wang, Yuan Li, Ying Wang, Melissa Pool Pizzi, et al. "YAP1 mediates gastric adenocarcinoma peritoneal metastases that are attenuated by YAP1 inhibition." Gut 70, no. 1 (April 27, 2020): 55–66. http://dx.doi.org/10.1136/gutjnl-2019-319748.
Full textSi, Tong, Zackary Hopkins, John Yanev, Jie Hou, and Haijun Gong. "A novel f-divergence based generative adversarial imputation method for scRNA-seq data analysis." PLOS ONE 18, no. 11 (November 10, 2023): e0292792. http://dx.doi.org/10.1371/journal.pone.0292792.
Full textLi, Shenghao, Hui Guo, Simai Zhang, Yizhou Li, and Menglong Li. "Attention-based deep clustering method for scRNA-seq cell type identification." PLOS Computational Biology 19, no. 11 (November 10, 2023): e1011641. http://dx.doi.org/10.1371/journal.pcbi.1011641.
Full textLall, Snehalika, Sumanta Ray, and Sanghamitra Bandyopadhyay. "A copula based topology preserving graph convolution network for clustering of single-cell RNA-seq data." PLOS Computational Biology 18, no. 3 (March 10, 2022): e1009600. http://dx.doi.org/10.1371/journal.pcbi.1009600.
Full textHanamsagar, Richa, Robert Marcus, Mathew Chamberlain, Emanuele de Rinaldis, and Virginia Savova. "Optimum processing conditions for single cell RNA sequencing on frozen human PBMCs." Journal of Immunology 202, no. 1_Supplement (May 1, 2019): 131.15. http://dx.doi.org/10.4049/jimmunol.202.supp.131.15.
Full textHagemann, Tobias, Paul Czechowski, Adhideb Ghosh, Wenfei Sun, Hua Dong, Falko Noé, Christian Wolfrum, Matthias Blüher, and Anne Hoffmann. "Laminin α4 Expression in Human Adipose Tissue Depots and Its Association with Obesity and Obesity Related Traits." Biomedicines 11, no. 10 (October 17, 2023): 2806. http://dx.doi.org/10.3390/biomedicines11102806.
Full textLe, Huy, Beverly Peng, Janelle Uy, Daniel Carrillo, Yun Zhang, Brian D. Aevermann, and Richard H. Scheuermann. "Machine learning for cell type classification from single nucleus RNA sequencing data." PLOS ONE 17, no. 9 (September 23, 2022): e0275070. http://dx.doi.org/10.1371/journal.pone.0275070.
Full textLehman, Bettina J., Fernando J. Lopez-Diaz, Thom P. Santisakultarm, Linjing Fang, Maxim N. Shokhirev, Kenneth E. Diffenderfer, Uri Manor, and Beverly M. Emerson. "Dynamic regulation of CTCF stability and sub-nuclear localization in response to stress." PLOS Genetics 17, no. 1 (January 7, 2021): e1009277. http://dx.doi.org/10.1371/journal.pgen.1009277.
Full textDissertations / Theses on the topic "Sc-RNA seq"
Salloum, Yazan. "Innate lymphoid cell-produced interleukin-26 modulates proliferation and DNA damage in intestinal epithelial cells." Electronic Thesis or Diss., Université Paris sciences et lettres, 2024. http://www.theses.fr/2024UPSLS015.
Full textInterleukin-26 (IL-26) was identified as a risk factor for inflammatory bowel disease (IBD) in humans and was shown to be overexpressed in IBD lesions. However, the in vivo functions of IL-26 are not fully understood due to its absence in rodents. Since the zebrafish has an orthologue of IL-26, we are utilizing this model to study IL-26 role in gut homeostasis.We generated the first in vivo loss-of-function model to study IL-26, and found that the gut microbiota modulates IL-26 expression in the larval gut. By performing RNA-seq on dissected guts, we revealed that IL-26 modulates pathways related to cell cycle, DNA replication, and DNA repair. We confirmed that IL-26 inhibits cell proliferation in the gut. Next, we plan to identify the cell types targeted by the antiproliferative function of IL-26 and to explore the conservation of this function in mammals.In order to understand the function of IL-26 in gut inflammation, we injected a bacterial extract into the gut of WT larvae and observed that IL-26 is transiently but highly induced post-injection. We further plan to investigate the consequences of this induction, including its effects on proliferation and DNA damage in gut epithelial progenitors, as well as the role of innate lymphoid cells as the cell source of IL-26.In addition, we confirmed the conservation of IL-26 intrinsic bactericidal activity in zebrafish, and will explore the in vivo impact of this activity using IL-26 receptor knockout.In summary, this project exploits the zebrafish to address questions about the functions of IL-26 that are not possible to answer using other animal models. This study could help unravel a circuit between microbiota, Innate lymphoid cells, and intestinal epithelial cells to preserve homeostasis in the gut through IL-26. A better characterization of the role of IL-26 in maintaining gut homeostasis is critical for understanding the aetiology of IBD and may aid in the development of therapeutic targets for this disorder
Conference papers on the topic "Sc-RNA seq"
Zhang, Tim, Amirali Amirsoleimani, Jason K. Eshraghian, Mostafa Rahimi Azghadi, Roman Genov, and Yu Xia. "SSCAE: A Neuromorphic SNN Autoencoder for sc-RNA-seq Dimensionality Reduction." In 2023 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2023. http://dx.doi.org/10.1109/iscas46773.2023.10181994.
Full text