Dissertations / Theses on the topic 'Satellite Soil Moisture Retrievals'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 31 dissertations / theses for your research on the topic 'Satellite Soil Moisture Retrievals.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Piles, Guillem Maria. "Multiscale soil moisture retrievals from microwave remote sensing observations." Doctoral thesis, Universitat Politècnica de Catalunya, 2010. http://hdl.handle.net/10803/77910.
Full textSoil moisture is a key state variable of the Earth's system; it is the main variable that links the Earth's water, energy and carbon cycles. Accurate observations of the Earth's changing soil moisture are needed to achieve sustainable land and water management, and to enhance weather and climate forecasting skill, flood prediction and drought monitoring. This Thesis focuses on measuring the Earth's surface soil moisture from space at global and regional scales. Theoretical and experimental studies have proven that L-band passive remote sensing is optimal for soil moisture sensing due to its all-weather capabilities and the direct relationship between soil emissivity and soil water content under most vegetation covers. However, achieving a temporal and spatial resolution that could satisfy land applications has been a challenge to passive microwave remote sensing in the last decades, since real aperture radiometers would need a large rotating antenna, which is difficult to implement on a spacecraft. Currently, there are three main approaches to solving this problem: (i) the use of an L-band synthetic aperture radiometer, which is the solution implemented in the ESA Soil Moisture and Ocean Salinity (SMOS) mission, launched in November 2009; (ii) the use of a large lightweight radiometer and a radar operating at L-band, which is the solution adopted by the NASA Soil Moisture Active Passive (SMAP) mission, scheduled for launch in 2014; (iii) the development of pixel disaggregation techniques that could enhance the spatial resolution of the radiometric observations. The first part of this work focuses on the analysis of the SMOS soil moisture inversion algorithm, which is crucial to retrieve accurate soil moisture estimations from SMOS measurements. Different retrieval configurations have been examined using simulated SMOS data, considering (i) the option of adding a priori information from parameters dominating the land emission at L-band —soil moisture, roughness, and temperature, vegetation albedo and opacity— with different associated uncertainties and (ii) the use of vertical and horizontal polarizations separately, or the first Stokes parameter. An optimal retrieval configuration for SMOS is suggested. The spatial resolution of SMOS and SMAP radiometers (~ 40-50 km) is adequate for global applications, but is a limiting factor to its application in regional studies, where a resolution of 1-10 km is needed. The second part of this Thesis contains three novel downscaling approaches for SMOS and SMAP: • A deconvolution scheme for the improvement of the spatial resolution of SMOS observations has been developed, and results of its application to simulated SMOS data and airborne field experimental data show that it is feasible to improve the product of the spatial resolution and the radiometric sensitivity of the observations by 49% over land pixels and by 30% over sea pixels. • A downscaling algorithm for improving the spatial resolution of SMOS-derived soil moisture estimates using higher resolution MODIS visible/infrared data is presented. Results of its application to some of the first SMOS images show the spatial variability of SMOS-derived soil moisture observations is effectively captured at the spatial resolutions of 32, 16, and 8 km. • A change detection approach for combining SMAP radar and radiometer observations into a 10 km soil moisture product has been developed and validated using SMAP-like observations and airborne field experimental data. This work has been developed within the preparatory activities of SMOS and SMAP, the two first-ever satellites dedicated to monitoring the temporal and spatial variation on the Earth's soil moisture. The results presented contribute to get the most out of these vital observations, that will further our understanding of the Earth's water cycle, and will lead to a better water resources management.
Kolassa, Jana. "Soil moisture retrieval from multi-instrument satellite observations." Paris 6, 2013. http://www.theses.fr/2013PA066392.
Full textIn this thesis, a neural network based retrieval algorithm has been developed to compute surface soil moisture from a combination of microwave, infrared and visible satellite obser- vations. A global estimate of monthly mean soil moisture values has been computed for the period 1993-2000 and is provided on an equal-area grid with an equatorial resolution of 0. 25◦. This soil moisture estimate has been evaluated against modelled, remotely sensed and in situ observations and was found to perform well on different spatial and temporal scales. An information content showed that each of the various satellite observations con- tributes information about a different soil moisture variation, with the active microwave data being more sensitive to the temporal evolution and the thermal infrared data better capturing the spatial patterns. Furthermore, a synergy analysis revealed that the combina- tion of all observations permits a reduction of the retrieval uncertainty by more than 18% and that the neural network methodology optimally exploits the synergy of observations compared to other approaches. A joint analysis of various remotely sensed datasets of ter- restrial water cycle components demonstrated the coherence of the retrieved soil moisture with other retrieval products and with global hydrological processes. This underlined its potential to be used for observation-based studies of the terrestrial water cycle. Finally, it has been shown that the proposed neural network methodology also provides an effective tool to evaluate Earth System Models on both a variable and a process basis
Kong, Xin. "Near-surface soil moisture retrieval at field and regional scales in UK : coupling of field measurements, a dynamic model and satellite imagery." Thesis, University of East Anglia, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.429801.
Full textSoriano, Melissa. "Estimation of soil moisture in the southern united states in 2003 using multi-satellite remote sensing measurements." Fairfax, VA : George Mason University, 2008. http://hdl.handle.net/1920/3361.
Full textVita: p. 65. Thesis director: John Qu. Submitted in partial fulfillment of the requirements for the degree of Master of Science in Earth System Science. Title from PDF t.p. (viewed Jan. 11, 2009). Includes bibliographical references (p. 59-64). Also issued in print.
Baban, Serwan M. J. "The derivations of hydrological variables (including soil moisture) from satellite imagery." Thesis, University of East Anglia, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.292298.
Full textHaas, Jan. "Soil moisture modelling using TWI and satellite imagery in the Stockholm region." Thesis, KTH, Geoinformatik och Geodesi, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-49704.
Full textSrivastava, Prashant K. "Soil moisture estimation from SMOS satellite and mesoscale model for hydrological applications." Thesis, University of Bristol, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.617590.
Full textTimoncini, Marta. "Detection of soil moisture under changing vegetation cover using synthetic aperture radar satellite imagery." Thesis, Queen Mary, University of London, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.430133.
Full textZhuo, Lu. "Advances in enhanced compatibility between satellite remote sensing of soil moisture and hydrological modelling." Thesis, University of Bristol, 2016. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.702218.
Full textAl-Shrafany, Deleen Mohammed Saleh. "Soil moisture estimation using satellite remote sensing and numerical weather prediction model for hydrological applications." Thesis, University of Bristol, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.574260.
Full textWang, Yawei [Verfasser], and Ralf [Akademischer Betreuer] Ludwig. "Monitoring soil moisture dynamics and energy fluxes using geostationary satellite data / Yawei Wang ; Betreuer: Ralf Ludwig." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2021. http://d-nb.info/1236544226/34.
Full textAl-Yaari, Amen Mohammed. "Global-scale evaluation of a hydrological variable measured from space : SMOS satellite remote sensing soil moisture products." Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066678/document.
Full textSoil moisture (SM) plays a key role in meteorology, hydrology, and ecology as it controls the evolution of various hydrological and energy balance processes. The community of scientists involved in the field of microwave remote sensing has made considerable efforts to build accurate estimates of surface SM (SSM), and global SSM datasets derived from active and passive microwave instruments have recently become available. Among them, SMOS (Soil Moisture and Ocean Salinity), launched in 2009, was the first ever passive satellite specifically designed to measure the SSM, at L-band (1.4 GHz), at the global scale. Validation of the SMOS SSM datasets over different climatic regions and environmental conditions is extremely important and a necessary step before they can be used. A better knowledge of the skill and uncertainties of the SSM retrievals will help not only to improve the individual products, but also to optimize the fusion schemes required to create long-term multi-sensor products, like the essential climate variable (ECV) SSM product generated within the European Space Agency’s (ESA's) Climate Change Initiative (CCI) program. After the introductory Chapters I to III, this dissertation consists of three main parts. Chap. IV of the dissertation evaluates the passive SMOS level 3 (SMOSL3) SSM products at L-band against the passive AMSR-E SSM at C-band by comparing them with a Land Data Assimilation System estimates (SM-DAS-2) produced by the European Centre for Medium Range Weather Forecasts (ECMWF). This was achieved over the common period 2010-2011 between SMOS and AMSR-E, using classical metrics (Correlation, RMSD, and Bias). In parallel, Chap. V of the dissertation evaluates the passive SMOSL3 products against the active ASCAT SSM at C-band by comparing them with land surface model simulations (MERRA-Land) using classical metrics, advanced statistical methods (triple collocation), and the Hovmöller diagram over the period 2010-2012. These two evaluations indicated that vegetation density (parameterized here by the leaf area index LAI) is a key factor to interpret the consistency between SMOS and the other remotely sensed products. This effect of the vegetation has been quantified for the first time at the global scale for the three microwave sensors. These two chapters also showed that both SMOS and ASCAT (AMSR-E) had complementary performances and, thus, have a potential for datasets fusion into long-term SSM records. In Chap. VI of the dissertation, with the general purpose to extend back the SMOSL3 SSM time series and to produce an homogeneous SM product over 2003-2014 based on SMOS and AMSR-E, we investigated the use of a multiple linear regression model based on bi-polarization (horizontal and vertical) brightness temperatures (TB) observations obtained from AMSR-E (2003 - 2011). The regression coefficients were calibrated using SMOSL3 SSM as a reference over the 2010-2011 period. The resulting merged SSM dataset was evaluated against an AMSR-E SSM retrievals and modelled SSM products (MERRA-Land) over 2007-2009. These first results show that the multi-linear regression method is a robust and simple approach to produce a realistic SSM product in terms of temporal variation and absolute values. In conclusion, this PhD showed that the potential synergy between the passive (AMSR-E and SMOS) and active (ASCAT) microwave systems at global scale is very promising for the development of improved, long-term SSM time series at global scale, such as those pursued by the ESA’s CCI program. It also provides new ideas on the way to merge the different SSM datasets with the aim of producing the CCI (phase 2) long-term series (a coherent "SMOS-AMSR-E" SSM time series for the period 2003 -2014), that will be evaluated further in the framework of on-going ESA projects
AMBAW, GASHAW METEKE. "Satellite based remote sensing of soil moisture for drought detection and monitoring in the Horn of Africa." Doctoral thesis, Politecnico di Torino, 2013. http://hdl.handle.net/11583/2507436.
Full textDall'Amico, Johanna Therese. "Multiscale analysis of soil moisture using satellite and aircraft microwave remote sensing, in situ measurements and numerical modelling." Diss., lmu, 2012. http://nbn-resolving.de/urn:nbn:de:bvb:19-146263.
Full textDall'Amico, Johanna Therese [Verfasser], and Wolfram [Akademischer Betreuer] Mauser. "Multiscale analysis of soil moisture using satellite and aircraft microwave remote sensing, in situ measurements and numerical modelling / Johanna Therese dall'Amico. Betreuer: Wolfram Mauser." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2012. http://d-nb.info/1025047079/34.
Full textWalden, Aleksi. "SMOS satellite hardware anomaly prediction methods based on Earth radiation environment data sets." Thesis, Luleå tekniska universitet, Rymdteknik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-59789.
Full textPerez, Luis G. "Development of a Methodology that Couples Satellite Remote Sensing Measurements to Spatial-Temporal Distribution of Soil Moisture in the Vadose Zone of the Everglades National Park." FIU Digital Commons, 2014. http://digitalcommons.fiu.edu/etd/1663.
Full textFatras, Christophe. "Etude de la rétrodiffusion altimétrique pour la caractérisation des surfaces et de l'humidité des sols en Afrique de l'Ouest." Thesis, Toulouse 3, 2015. http://www.theses.fr/2015TOU30106/document.
Full textThe radar altimetry interferometry satellite SWOT, which is to be launched in 2020, should provide for the first time a global coverage of a close-to-nadir radar altimeter in a few days using the Ka-band. Yet, the use of such a frequency band for continental hydrology is still poorly documented. In particular, the contrast of the backscattering coefficient over soils and over water bodies for nadir and close-to-nadir angles is a major issue. This is the reason for this work. First, the study of the backscattering coefficients from C- and Ku- band altimeters and scatterometers over West Africa has shown that there is a link between the surface soil moistureand the backscattering coefficient. In semi-arid regions, this link is seen through a rise of the backscattering coefficients during the rainy season compared to the dry season. The analysis with ancillary data such as the surface soil moisture and the precipitation estimations has also shown that nadir-looking radars detect more precisely the changes in surface soil moisture compared to side-looking radars. Still with the purpose to better understand the Ka-band surface scattering, poorly documented, two measurement campaigns were led, on the one hand over water surface with controlled roughness, on the other hand over bare soils with monitored roughness and surface soil moisture. In parallel, an altimetry backscattering simulation program has been developed to analyze the effect of a low number of variables on realistic grounds, with the aim of simulating the backscattering coefficient variations. These measurements and simulations were then compared with time series from the satellite altimeter AltiKa, which has been launched in 2013 and works at Ka-band, over different sites representaing the bioclimatic areas of West Africa. It led to a high sensitivity of the Ka-band to changes in the surface soil moisture. It has also been shown that backscattering coefficients at nadir-looking angle from AltiKa over grounds and over water bodies can be similar
Gibon, François. "Etude de la dynamique spatio-temporelle de l'humidité du sol : Applications du satellite SMOS au suivi de rendement agricole en Afrique de l'Ouest et à la correction des produits satellitaires de pluies." Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAU013/document.
Full textSoil moisture was declared Essential Climate Variable (ECV) in 2010 by the European Space Agency (ESA) in support of the work of the Intergovernmental Panel on Climate Change (IPCC). In vulnerable areas such as West Africa (poorly irrigated and subsistence agriculture, extreme temperatures and high variability of rainfall), the added value of informations on soil moisture is important, especially in a changing climate. The first part of this thesis concerns the representation of root-zone soil moisture on a large scale using the triptych in-situ measurements / remote sensing / modeling. These 3 methods each have limitations: (i) the low density of in-situ networks (3 measurement sites throughout West Africa), (ii) SMOS estimates only at the surface (0-5 cm) and (iii) the uncertainties of the real-time precipitation forcing used in surface models. In order to reduce these limitations, an assimilation method (particle filter) of SMOS data has been implemented in an empirical surface model (API) and compared to AMMA-CATCH in-situ measurements. The results show an improvement of the humidities modeled after assimilation. The second part concerns the impact of soil moisture variations on millet yields. A statistical relationship was first determined from yield data measured in 10 villages around Niamey. The results show that the 20-day soil moisture anomalies at the beginning of July and the end of August - mid September (reproductive period and grain filling period), at a depth of about 30 cm, explain the variations in yield measured at R2=0.77. This relationship was then applied to the Nigerien scale from FAO yield data and in-depth moisture maps developed in the first part of the thesis. The results show a correlation at R2=0.62 over the years 1998-2015. Then, the method was apply to 3 other sahelian countries, showing a agreement of 0.77. The last part of this work concerns the exploitation of the residuals of the assimilation scheme in order to reduce the uncertainties on the precipitations. The satellite precipitation products CMORPH, TRMM and PERSIANN, in their real-time version, were compared to rain gauges before and after assimilation. The result of this study shows a marked improvement in the estimated precipitations intensities. The method was then applied to a precipitation product used at the AGRHYMET regional center for agricultural monitoring, the TAMSAT product.This thesis work has led to further research into the potential of satellite moisture data for agronomic applications. The perspectives of this work mainly concern: (i) the use of other sensors (SMAP, ASCAT, AMSR) to increase the frequency of the observations of humidity in the assimilation, (ii) on methods of disaggregation of the coefficients for the correction of precipitation at higher spatial resolution and (iii) the use of multispectral data (vegetation indices, soil temperature, ...) for a better monitoring of yields
Couturier, Stéphane. "Evaluation des erreurs de cartes de végétation avec une approche par ensembles flous et avec la simulation d'images satellite." Toulouse 3, 2007. https://tel.archives-ouvertes.fr/tel-00193828.
Full textIn highly bio-diverse regions, characterized by dynamic landscapes, detailed land use and land cover maps are commonly generated through the classification of remote sensing imagery. Yet, frameworks for the estimation of errors on maps have focused on mainly temperate zones, in highly industrialized countries. We propose a new method for the accuracy assessment of maps and a new method for the systematic estimation of ambiguities on satellite imagery. The first method comprises a novel sampling scheme and a fuzzy sets based framework whereby degrees of positional and thematic tolerance are user defined. The second method is based on structural and optical measurements and the simulation of satellite imagery with the Discrete Anisotropic Radiative Transfer (DART) model. The first method was successfully tested on the Mexican National Forest Inventory map of year 2000 and the second method was successfully tested on real IKONOS imagery of forest cover types on flat and rugged terrain
Teixeira, Raul Fritz Bechtel. "InferÃncia do Estado Geral da Umidade Superficial do Solo Pelo Ãndice de Seca Temperatura-VegetaÃÃo e por Imagens do SatÃlite NOAA-17: AplicaÃÃes no SemiÃrido do CearÃ." Universidade Federal do CearÃ, 2010. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=5770.
Full textA observaÃÃo da superfÃcie terrestre por meio de satÃlites em Ãrbita de nosso planeta tornou-se corriqueira no mundo contemporÃneo. As inferÃncias de variÃveis ambientais diversas feitas a partir de imagens e dados fornecidos por satÃlites cada vez mais aumentam em qualidade e aplicabilidade de maneira que um nÃmero crescente de hidrologistas, meteorologistas, climatologistas e outros profissionais e leigos em geral fazem uso intensivo delas em estudos e pesquisas, em polÃticas governamentais ou na tomada de decisÃo. Uma dessas variÃveis à a umidade superficial do solo, que representa uma importante componente do ciclo hidrolÃgico terrestre, essencial em vÃrios processos naturais ambientais e cujo conhecimento à importante no gerenciamento dos recursos hÃdricos e terrestres, gerenciamento agrÃcola e na modelagem do meio ambiente e agrÃcola. As informaÃÃes derivadas de satÃlites, apesar de ainda apresentarem algumas limitaÃÃes tÃcnicas, podem facilitar bastante o monitoramento ambiental ao se tornarem, muitas vezes, mais Ãgeis e mais econÃmicas do que mediÃÃes locais in situ. Em paÃses em desenvolvimento e de limitados recursos financeiros, tais como o nosso, a informaÃÃo por satÃlites cresce em valor. No Estado do CearÃ, isso desponta ainda mais em virtude das suas dificuldades econÃmicas e sociais. Em vista disso, à proposta, neste trabalho, a aplicaÃÃo nesse estado do Nordeste de um mÃtodo de inferÃncia, por satÃlite, do estado geral da umidade superficial do solo expresso pelo Ãndice de Seca Temperatura-VegetaÃÃo (ISTV), que à indicativo do grau da umidade, estando a ela relacionado. Esse Ãndice à obtido a partir da combinaÃÃo de informaÃÃes da Temperatura da SuperfÃcie Continental (TSC) e do Ãndice de VegetaÃÃo por DiferenÃa Normalizada (IVDN), inferidos por meio de imagens no visÃvel e no infravermelho que podem ser fornecidas por satÃlites meteorolÃgicos operacionais, de Ãrbita polar, tais como os da sÃrie NOAA (National Oceanic and Atmospheric Administration, EUA). No mÃtodo, foi escolhido, da literatura cientÃfica, um algoritmo de cÃlculo da TSC que apresenta certa facilidade de uso, sendo diretamente dependente da FraÃÃo de Cobertura de VegetaÃÃo (FCV) e que pode fornecer boas inferÃncias dessa temperatura. Nesse algoritmo, foram testadas, de forma inÃdita, algumas diferentes formulaÃÃes da FCV encontradas na literatura especializada, representando uma delas o estado da arte no assunto. Foram usadas imagens provenientes do satÃlite NOAA-17, recepcionadas na FUNCEME, e um software especÃfico, dessa FundaÃÃo, para se processar as imagens e implementar a metodologia abordada. Alguns testes foram feitos para duas regiÃes relativamente pequenas do semiÃrido cearense, com destaque para uma delas englobando a Bacia Experimental de Aiuaba (BEA), comparando-se as informaÃÃes do satÃlite NOAA-17 com dados in situ (provenientes de sondas no solo) e com dados advindos dos satÃlites ambientais Terra (dados de TSC, disponÃveis na Internet) e Aqua (dados de umidade superficial do solo). Procurou-se mostrar as diferenÃas qualitativas entre os mapeamentos obtidos, de umidade superficial do solo, e entre estes e os oferecidos pela modelagem em geral. Os resultados encontrados mostraram-se promissores para a utilizaÃÃo no territÃrio cearense do ISTV (no modelo trapezoidal) por meio de satÃlites NOAA, com o algoritmo de Kerr para o cÃlculo da TSC e com a FCV dada pelo Scaled Difference Vegetation Index (SDVI), com o fim de se estimar o estado geral da umidade superficial do solo sobre grandes Ãreas. Entretanto, recomenda-se mais validaÃÃo local posterior do mÃtodo usado, para detecÃÃo de possÃveis erros ou limitaÃÃes nÃo vislumbradas nestes primeiros testes, visando sua definitiva aplicaÃÃo operacional no Cearà e mesmo no semiÃrido do Nordeste.
Dinnat, Emmanuel. "De la determination de la salinite de surface des oceans a partir de mesures radiometriques hyperfrequences en bande L." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2003. http://tel.archives-ouvertes.fr/tel-00003277.
Full textAubert, Maëlle. "Caractérisation de l’état de surface des sols nus agricoles par imagerie radar TerraSAR-X." Electronic Thesis or Diss., Paris, AgroParisTech, 2012. http://www.theses.fr/2012AGPT0047.
Full textIn the context of sustainable development, soil and water resources management is a key issue from not only the environmental point of view, but also from a socioeconomic perspective. Soil moisture, roughness, composition, and slaking crusts are some key variables used to understand and model natural hazards, such as erosion, drought and floods. For agricultural bare soils (most subject to runoff), numerous studies have already shown the potential of C-band RADAR data for the mapping of soil moisture and roughness. However, the application of these methods in operational settings remained limited.In this context, the first objective of this thesis was to analyse the sensitivity of X-band TerraSAR-X sensors to soil surface characteristics (SSC) at high spatial and temporal resolutions. Different TerraSAR-X configurations were evaluated and results were used to define the optimal instrumental configuration for the characterization of each SSC parameter. The comparison of TerraSAR-X sensor sensitivity with equivalent levels recorded with the C-band sensor showed that the TerraSAR-X sensor is undoubtedly the most suitable of the two when estimating and mapping soil moisture at a fine scale (50 m²).The second objective of this work was to develop a method to estimate and map soil moisture levels of agricultural bare soil. To achieve this goal, methods that are commonly used to retrieve soil moisture from C-band, have been tested on X-band data. The accuracy of soil moisture estimations using an empirical algorithm was determined, and validated successfully over numerous study sites. A mapping process based uniquely on TerraSAR-X data, both for bare soil detection and for the estimation of soil moisture content, was developed. This innovative chain of « automatic and autonomous» mapping processing steps should enable the utilization of TerraSAR-X data for the mapping of soil moisture levels in operational conditions
Martin, Adrien. "Analyse des mesures radiométriques en bande-L au-dessus de l'océan : Campagnes CAROLS." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2013. http://tel.archives-ouvertes.fr/tel-00850877.
Full textWu, Chih-Lin, and 吳芝伶. "Estimating Soil Moisture Distribution Using MODIS Satellite Imagery." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/8987mw.
Full text國立屏東科技大學
森林系所
105
Soil moisture is an important feature of hydrological circle that affect the tree growth and vegetation distribution. For this reason, estimation of soil moisture dynamics and distribution patterns of forest land with a long period can provide important information for forest management as well as a reference basis. However, the data which from meteorological station in-situ or field surveys can’t represent dynamic of soil moisture and spatial distribution. Taiwan region was selected as the study area. The satellite images of MODIS were collected from 2008, 2010, 2012, 2014, and 2016, each year were divided into Spring (March to May), Summer (June to August), Autumn (September to October), Winter (November to January), so we had 20 periods images in total. Land surface temperature (LST) and Normalized difference vegetation index (NDVI) were used to estimate Temperature vegetation dryness index (TVDI), which represented the soil moisture index of dryness in this study. After the verification of precipitation and terrain on temporal and space, it is feasible that TVDI could represent soil moisture. Soil moisture of ecological zones in Taiwan was estimated by TVDI. The results showed that the spatial patterns of TVDI in the ecological zones of Taiwan were included the tropical dry forest that is the driest area in order to the low vegetation cover and the moistest area is temperature mountain system. The others ecological zone, the orders of soil moister degree were subtropical mountain systems, tropical moist deciduous forest, tropical rain forest and the tropical moisture deciduous forest that located in Eastern Hengchun Peninsula and the lowland of Kaohsiung.
Tuttle, Samuel Everett. "Interrelationships between soil moisture and precipitation large scales, inferred from satellite observations." Thesis, 2015. https://hdl.handle.net/2144/14060.
Full textYuan, Pei-yao, and 袁培堯. "Using MODIS and AMSR-E Satellite Data to Estimate Land Surface Soil Moisture." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/39769473699525102148.
Full text國立中央大學
土木工程研究所
100
Soil moisture is an important factor for the exchange of water between the land surface and plant transpiration. It has tremendous effects on agriculture, the environment and climate. It is hard to evaluate long term land surface dryness by field investigation or ground survey. Using remote sensing technology can get soil moisture information extensively. The Advanced Microwave Scanning Radiometer for EOS (AMSR-E) provide global soil moisture product, the spatial resolution is 25km. The spatial resolution is not good enough to satisfy the demand for agricultural planning or drought monitoring. In the literary, using Moderate Resolution Imaging Spectroradiometer (MODIS) satellite image to observe land surface water content is feasible. A land surface drought index called Normalized Multi-Band Drought Index (NMDI) based on two short wave infrared (SWIR) channel in MODIS as the soil moisture sensitive band, is used for estimating land surface soil moisture, and the spatial resolution is up to 1km. The main objective of this study is to estimate soil moisture conditions of the Central American region using MODIS and AMSR-E data in 2010 and 2011 dry season.
De, Santis Domenico, Franco Furgiuele, and Daniela Biondi. "Assimilation of satellite soil moisture in hydrological modeling: assessment of observations preprocessing and error characterization methods." Thesis, 2019. http://hdl.handle.net/10955/1752.
Full textIl contenuto d’acqua nel suolo svolge un ruolo fondamentale all’interno di numerosi processi che avvengono sulla superficie terrestre, ed in particolare di quelli che fanno parte del ciclo idrologico. In tal senso il contenuto d’acqua nel suolo rappresenta una variabile chiave anche nell’ambito della generazione dei deflussi nei bacini idrografici per effetto degli eventi pluviometrici, e la corretta caratterizzazione della sua evoluzione temporale risulta estremamente funzionale ad una efficace previsione degli eventi di piena. Dato il ruolo di estremo interesse occupato nell’evoluzione dei processi non solo idrologici ma anche ad esempio climatici e agricoli, crescente attenzione è stata dedicata alla modellazione del contenuto d’acqua nel suolo ai diversi fini applicativi, nonché al monitoraggio strumentale della grandezza, che avviene sia in situ, a scala sostanzialmente puntuale con sensori caratterizzati da elevata accuratezza e risoluzione temporale, che da remoto. Con riferimento al secondo caso, il monitoraggio da satellite ha avuto notevoli sviluppi negli ultimi anni, arrivando a fornire informazioni su scala globale che si distinguono per risoluzioni spaziali e temporali sempre più spinte, anche se riferite ai soli primi centimetri di suolo. Queste tre opzioni per la descrizione dell’andamento del contenuto d’acqua nel suolo devono essere viste come complementari, in virtù delle loro diverse peculiarità, nonché delle limitazioni e degli errori che le caratterizzano. In tal senso, un’interessante opportunità è costituita dalle tecniche di data assimilation sviluppate per integrare in maniera ottimale, sulla base delle relative incertezze, le osservazioni con le previsioni da modello. Una potenziale applicazione è l’assimilazione delle osservazioni da satellite all’interno dei modelli afflussi-deflussi, al fine di migliorare le stime delle variabili di stato che rappresentano il contenuto d’acqua nel suolo, e da queste la simulazione delle portate fluviali. Numerosi studi sono stati svolti sul tema, con risultati spesso contrastanti, evidenziando un grande potenziale per questo genere di applicazione, ma anche la necessità di approfondire le numerose scelte procedurali tipicamente richieste in un lavoro di data assimilation. Le tecniche di data assimilation comunemente usate forniscono soluzioni ottime per problemi con precise ipotesi di base (ad esempio l’assenza di errori sistematici), attraverso il confronto fra osservazioni e stime da modello (che devono essere eventualmente ‘mappate’ qualora rappresentino grandezze diverse, ad esempio contenuto d’acqua riferito a diversi volumi/spessori di suolo) basato sulle relative varianze d’errore. Numerose soluzioni sono state proposte per affrontare i vari steps richiesti dal data assimilation, che si sono dimostrati avere un ruolo decisivo sui risultati finali. Le soluzioni proposte riguardano tanto i modelli, ad esempio attraverso una migliorata rappresentazione delle incertezze di stima o con modifiche alla struttura che siano funzionali all’assimilazione delle osservazioni satellitari, che le osservazioni. Le operazioni condotte sulle osservazioni ai fini della successiva integrazione in modelli previsionali hanno costituito il tema principale di questo lavoro. Generalmente, nelle fasi che precedono l’assimilazione delle misure da satellite di contenuto d’acqua nel suolo sono analizzate le seguenti questioni: la verifica della qualità delle osservazioni satellitari, la differenza fra gli spessori di terreno indagato dal sensore e riprodotto nel modello, la correzione delle differenze sistematiche fra i dataset di osservazioni e simulazioni da modello, la caratterizzazione delle varianze degli errori random. Procedure di quality check sono messe a punto per scartare osservazioni ritenute troppo poco attendibili; in tal senso sono fondamentali gli indicatori inclusi nei dataset satellitari, che, fornendo ad esempio informazioni sulle condizioni ambientali durante la misura o feedback dall’algoritmo di stima, consentono una caratterizzazione della qualità del dato. Il setup delle procedure di quality check è funzione ovviamente dell’applicazione finale, tenendo conto degli effetti derivanti tanto dall’utilizzo di un dato poco accurato che dalla sua eliminazione. Un altro aspetto di cui tenere conto riguarda la profondità di suolo in cui è rilevato il dato di contenuto d’acqua da satellite, limitata a pochi centimetri, laddove i volumi di controllo dei modelli sono generalmente maggiori. A tal fine, la struttura di alcuni modelli è stata modificata inserendo uno strato superficiale di spessore ridotto. Una soluzione di uso comune (talvolta anche nel caso di modelli multilayer) è la propagazione dell’informazione superficiale allo spessore di interesse attraverso un filtro esponenziale, che restituisce un indice indicato come SWI (soil water index). La semplicità di questo approccio, basato su un unico parametro, ne ha determinato un’ampia diffusione in vari ambiti applicativi, e dataset globali di contenuto d’acqua da satellite ottenuti con questo metodo sono attualmente in distribuzione. L’eventuale presenza di differenze sistematiche fra il dato da satellite in corso di processamento e la stima da modello deve essere poi corretta, andando ad inficiare in caso contrario le prestazioni del generico sistema di data assimilation, finalizzato alla sola riduzione degli errori random. Diversi approcci sono al riguardo disponibili; quelli di uso predominante risultano indirizzati al matching delle caratteristiche complessive dei due dataset (ad esempio in termini di varianza). Tuttavia, quando la correzione risulta preliminare al data assimilation, pare più appropriato l’uso di tecniche che cerchino di tenere conto della struttura di errore dei due dataset, in modo da effettuare il matching della sola parte informativa (anche nota come segnale), separando quindi i contributi legati all’errore. Sull’osservazione così preprocessata si effettua, quindi, una stima della varianza degli errori random, che contribuirà a determinare il suo peso quando sarà combinata con la previsione ‘a priori’ del modello. Una inadeguata caratterizzazione in questa fase impedisce di giungere al valore di ‘analisi’ ottimale, caratterizzato cioè da varianza di errore minima, e può portare anche al peggioramento delle performance iniziali del modello. Anche per questo step sono stati suggeriti diversi approcci, fra cui quello di uso consolidato è denominato Triple Collocation (TC), e si basa sull’utilizzo di tre dataset indipendenti per i quali si assume la stazionarietà della varianza di errore. Un metodo alternativo, in grado di fornire una stima tempovariabile della grandezza qui indagata, è la propagazione analitica degli errori (EP, error propagation) associati agli input e ai parametri attraverso le equazioni del modello da cui deriva l’osservazione (la misura da satellite del contenuto d’acqua non è in alcun caso diretta ma prevede il processamento delle grandezze effettivamente misurate dai sensori di bordo). Questo secondo approccio tuttavia non garantisce stime in magnitudo plausibili come la TC, non tenendo conto del contributo degli errori dovuti alla struttura del modello. L’analisi delle operazioni di preprocessing e caratterizzazione degli errori delle osservazioni da satellite di contenuto d’acqua nel suolo è stata principalmente svolta attraverso lo sviluppo di due applicazioni. Nella prima applicazione sono trattati i temi del quality check delle osservazioni satellitari e, soprattutto, del trasferimento dell’osservazione superficiale di contenuto d’acqua da satellite a spessori di suolo di maggiore interesse applicativo, usando l’approccio del filtro esponenziale di largo uso in letteratura, in un contesto di verifica della capacità della stima derivata da dati satellitari di riprodurre l’andamento osservato in situ del contenuto d’acqua su strati di spessore maggiore. L’aspetto innovativo introdotto nel lavoro di tesi è costituito dalla messa a punto di uno schema di propagazione degli errori originale, finalizzato alla caratterizzazione per via analitica dell’andamento temporale delle varianze degli errori random del SWI. Le equazioni di propagazione degli errori sono state ricavate e poste in una pratica forma ricorsiva, consentendo di tenere in conto fattori che notoriamente introducono inaccuratezze negli output del filtro esponenziale. Con l’approccio proposto diventa, infatti, possibile propagare le varianze d’errore tempovariabili disponibili in alcuni dataset satellitari di contenuto d’acqua superficiale, nonché valutare gli effetti sul SWI in termini di varianza di errore legati alla disponibilità temporale di misure in input e all’incertezza nel parametro del filtro. Una valutazione preliminare della procedura di propagazione degli errori proposta è stata effettuata verificando l’effettiva corrispondenza fra varianza d’errore del SWI stimata ed effettivi scostamenti rispetto a misure in situ di riferimento; contestualmente sono state anche testate diverse configurazioni della procedura di quality check usando gli indicatori disponibili per il prodotto satellitare usato. Nella seconda applicazione sono trattati i temi della correzione delle differenze sistematiche fra i dataset di osservazioni e simulazioni da modello, e della caratterizzazione delle varianze degli errori random nelle osservazioni, ai fini della valutazione degli effetti dell’assimilazione di misure satellitari di contenuto d’acqua del suolo sulle performance di modelli afflussi-deflussi. Lo studio, svolto durante un soggiorno di ricerca presso il gruppo di Idrologia del CNR-IRPI di Perugia ed in particolare con i ricercatori Luca Brocca e Christian Massari, presenta diversi aspetti innovativi, il primo dei quali è costituito dall’elevato numero (diverse centinaia) di bacini di studio, distribuiti nel continente europeo e complessivamente rappresentativi di diverse condizioni climatiche e fisiografiche, laddove i lavori precedenti su queste tematiche coinvolgevano generalmente aree geografiche ridotte e/o un numero contenuto di bacini. Il dataset di partenza, inclusivo di valori di portata, precipitazione, temperatura e osservazioni satellitari di contenuto d’acqua nel suolo per quasi 900 bacini, è stato costruito dal gruppo di Idrologia del CNR-IRPI. Un secondo aspetto d’interesse riguarda l’aver considerato, oltre ad osservazioni da sensori di tipo sia attivo che passivo provenienti da diverse missioni spaziali, diverse scelte procedurali per le fasi di rimozione delle differenze sistematiche e di caratterizzazione degli errori delle osservazioni. Nel complesso, sebbene le metodologie utilizzate costituiscano delle pratiche riconosciute e usate in questi ambiti, l’utilizzo di procedure comuni per un così largo numero di bacini rappresenta un’applicazione raramente riscontrata in letteratura che ha come principale pregio quello di consentire di superare le soggettività introdotte con la scelta di soluzioni sito-specifiche sovente fatte in precedenti studi su scala più ridotta e talvolta orientate all’ottimizzazione dei risultati finali della procedura di data assimilation. Un terzo tema analizzato, oggetto di attenzione recente nella letteratura del settore, è legato alla presenza di bias di tipo ‘moltiplicativo’ nelle serie temporali di contenuto d’acqua nel suolo da modello e derivate da satellite, ancora presenti in seguito alla fase di rimozione delle differenze sistematiche, e al suo effetto sugli output di portata ottenuti assimilando l’osservazione. Con riferimento all’obiettivo generale del miglioramento della previsione idrologica, in questa applicazione i benefici dell’assimilazione dei dati da satellite sono apparsi variabili, confermando in qualche modo i risultati contrastanti presenti in letteratura. Quale contributo a questo dibattito, lo studio fornisce indicazioni sulla bontà dell’assimilazione di diversi prodotti satellitari in diverse aree geografiche e sotto diverse condizioni preliminari (ad esempio differenti regimi climatici ma anche differenti accuratezze degli input pluviometrici disponibili), e sugli effetti dei diversi approcci metodologici usati per le operazioni preliminari all’assimilazione nel modello. La tesi è strutturata come segue. Il capitolo 1 è costituito da una breve introduzione alle tematiche del lavoro, mentre il capitolo 2 ha per oggetto il contenuto d’acqua del suolo (definizioni, fattori e processi che ne determinano le dinamiche spaziali e temporali, cenni al ruolo nelle varie applicazioni incluse quelle idrologiche) e le caratteristiche dei vari approcci con cui ne viene descritta l’evoluzione (modellazione, misure in situ e da remoto). Il capitolo 3 è incentrato sul data assimilation, fornendo una panoramica dei diversi approcci, una sintesi di risultati ed evidenze relativi all’assimilazione delle misure di contenuto d’acqua nel suolo, e la formulazione matematica dei metodi più comunemente utilizzati per tale scopo. Nel capitolo 4 è fornito un inquadramento teorico su problematiche e metodologie relative alle operazioni di preprocessing e di caratterizzazione degli errori delle osservazioni. Nei capitoli 5 e 6 sono mostrate nel dettaglio le due applicazioni sopra descritte che costituiscono l’aspetto peculiare di questa tesi.
Università della Calabria
Raga, González Raül. "Landsat 8 satellite data-based estimation of soil moisture in McMurdo Dry Valleys, Antarctica." Master's thesis, 2021. http://hdl.handle.net/10362/113892.
Full textSoil moisture is the total amount of water present in the upper 10 cm of soil and it represents the water in land surface which resides in the pores of the soil which is not in river, lakes or groundwater and which depends of the weather conditions, soil type and associated vegetation, among others. Soil moisture assessments are important to understand the hydrological cycles and biophysical processes caused by global climate changes (Finn et al., 2011). Usually, soil moisture has been mapped with airborne microwave radiometers (Klemas et al., 2014) to measure the water retained in the spaces between soil particles. Its importance is due to the microorganism metabolic activity, regulation of the soil temperature and carriage of nutrients, among others. Soil moisture typically takes the form of small ice crystals, vapour, or small parts of liquid water in cold desert soils (Campbell & Claridge, 1982). Antarctic soils are composed by basically no organic and very low moisture content (Campbell and Claridge, 1987). Antarctica is a sensitive area to balance the global climate and its changes and its soil ecosystems are strongly regulated by variables of the abiotic environment and due to this, a research measures the incidence and spatial occurrence of the layer freezing to know how regional climate change could affect the energy exchange of this layer and its invertebrate communities (Wlostowski et al., 2017). Also, knowing how the dynamic of the surface varies in polar regions is transcendent to predict the impact of climate change in global sea-level rise in the future (Quincey & Luckman, 2009).
Filippucci, Paolo. "High-resolution remote sensing for rainfall and river discharge estimation." Doctoral thesis, 2022. http://hdl.handle.net/2158/1275871.
Full textFaust, Susan M. "Application of satellite and ground data bases to determine the influence of vegetation and soil moisture on surface temperature and outgoing longwave radiation." 1994. http://catalog.hathitrust.org/api/volumes/oclc/32948452.html.
Full textTypescript. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 42-43).