To see the other types of publications on this topic, follow the link: Salt tolerance in plants.

Dissertations / Theses on the topic 'Salt tolerance in plants'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Salt tolerance in plants.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Ibrahim, Kadhim Mohammad. "Production of variation in salt tolerance in ornamental plants." Thesis, University of Liverpool, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.305403.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Johnson, D. W., S. E. Smith, and A. K. Dobrenz. "Improved Regrowth Salt Tolerance in Alfalfa." College of Agriculture, University of Arizona (Tucson, AZ), 1989. http://hdl.handle.net/10150/201009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Collins, R. P. "The role of calcium and potassium in salinity tolerance in Brassica rapa L. cv. RCBr seed." Thesis, Coventry University, 2012. http://curve.coventry.ac.uk/open/items/e0d653ff-7d6b-4827-9467-dc8bcb6ff621/1.

Full text
Abstract:
The possibility of manipulating calcium (Ca2+) and potassium (K+) levels in seeds of Brassica rapa by altering parent plant nutrition and investigating the potential for increased salinity tolerance during germination, given that considerable amounts of literature imply that greater amounts of available exogenous Ca2+ and K+ can ameliorate the effects of salinity on both whole plant growth and germination, was evaluated. The investigation consisted of four growth trials. Two preliminary growth trials suggested that seed ion manipulation was possible without affecting the overall growth and vigour of the plant. After developing suitable high and low Ca2+ and K+ nutrient solutions for growth, a trial was carried out in a growth room and greenhouse, with various substrates and the seed of a certain size category was collected for subsequent ion and salinity tolerance analysis. Seed Ca2+ and K+ was significantly affected by growth substrate and nutrient solution and data showed that a significant negative regression relationship existed between seed Ca2+, K+ and Ca2+ + K+ levels and salinity tolerance. Further experimentation using hydroponic culture attempted to remove any possible effects of substrate and also to compare size categories of seed with a view to elucidating localisation of Ca2+ and K+. Seed Ca2+ was found to be significantly altered by nutrient solution in the two different sizes tested and higher Ca2+ nutrient solution was found to increase salinity tolerance in daughter seed. One significant negative regression correlation between salinity tolerance and seed K+ concentration existed in smaller seed, but disregarding seed size in a regression analysis of seed ion content and salinity tolerance, a significant negative relationship existed between seed Ca2+, K+ and Ca2++ K+. The results, especially in terms of Ca2+ nutrition, contradict much previous research that suggests increased salinity tolerance at germination can arise with the increased presence of Ca2+ and/or K+. Salinity tolerance was greater in seeds of larger size across all nutritional treatments and the smaller size range exhibited increased Ca2+ and K+ per μg seed. Ca2+ concentration in smaller seeds with greater surface area:volume ratios provided a clue to the potential localisation of Ca2+. Cross sectional staining showed that a greater proportion of seed Ca2+ may reside in the coat. This was confirmed by analysis which showed an approximate 50% split of total extractable seed Ca2+, regardless of size, between coat and embryo within a seed; the majority of which, per μg, resides in the coat. Further work looked at the relative solubility of the Ca2+ and K+ in these tissues and whole seed to look at the potential bioavailability of Ca2+ during germination from various parts of the seed. Most water soluble Ca2+ exists in the embryo and most insoluble Ca2+ exists in the coat, but coat Ca2+ was found to be ionically exchangeable and therefore bioavailable. K+ appeared mostly water soluble in embryo and coat. In line with previous whole plant research in this species, most Ca2+ is readily water soluble or ionically exchangeable in form and the possible negative effects of how increasing bioavailable Ca2+ may reduce salinity tolerance was discussed.
APA, Harvard, Vancouver, ISO, and other styles
4

Saleh, Livia [Verfasser]. "Chloride transport and salt tolerance mechanisms in plants / Livia Saleh." Kiel : Universitätsbibliothek Kiel, 2011. http://d-nb.info/1036243052/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

McKimmie, Tim, and Albert Dobrenz. "Salt Tolerance During Seedling Establishment in Alfalfa." College of Agriculture, University of Arizona (Tucson, AZ), 1987. http://hdl.handle.net/10150/203790.

Full text
Abstract:
Deposition of salts from irrigation water is an increasing concern for Arizona farmers and agronomists. Selection for salt tolerance during the seedling stage has been undertaken over the past three years. Yield tests were conducted in greenhouses and a significant increase in dry matter production was shown in the selected material.
APA, Harvard, Vancouver, ISO, and other styles
6

Dobrenz, Albert, David Robinson, and Steve Smith. "Improving the Germination Salt Tolerance of Alfalfa." College of Agriculture, University of Arizona (Tucson, AZ), 1986. http://hdl.handle.net/10150/200482.

Full text
Abstract:
The development of alfalfa that can germinate at extremely high NaC1 levels will improve early emergence and establishment of this important forage crop in saline soils. We have identified plants in the eighth cycle of selection that germinated at -3.0 MPa (30,000 ppm). Seed from these plants displayed a 40% better germination at -2.1 MPa (21,000 ppm) than the previous cycle. Germination at higher salt concentrations were not different between the two germplasm sources.
APA, Harvard, Vancouver, ISO, and other styles
7

McKimmie, Tim, and Albert Dobrenz. "Alfalfa Salt Tolerance from Germination to Establishment." College of Agriculture, University of Arizona (Tucson, AZ), 1986. http://hdl.handle.net/10150/200538.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

McKimmie, Timothy Irving 1948. "CHARACTERIZATION OF SALT TOLERANCE IN ALFALFA (MEDICAGO SATIVA L.)." Thesis, The University of Arizona, 1986. http://hdl.handle.net/10150/276348.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Andrade, Maria Isabel. "PHYSIOLOGY OF SALT TOLERANCE IN GUAR, CYAMOPSIS TETRAGONOLOBA (L.) TAUB." Thesis, The University of Arizona, 1985. http://hdl.handle.net/10150/275416.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lenis, Julian Mario. "Physiological traits underlying differences in salt tolerance among glycine species." Diss., Columbia, Mo. : University of Missouri-Columbia, 2008. http://hdl.handle.net/10355/5646.

Full text
Abstract:
Thesis (M.S.)--University of Missouri-Columbia, 2008.
The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file (viewed on August 13, 2009) Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
11

McKimmie, T., and A. K. Dobrenz. "Variability in Salt Tolerance within a Population of Alflafa." College of Agriculture, University of Arizona (Tucson, AZ), 1989. http://hdl.handle.net/10150/201029.

Full text
Abstract:
Genetic variability must exist for a selection program to be successful. Alfalfa seedlings were selected for salt tolerance after six weeks growth at 7500 ppm NaCl. The selection criteria considered plant height and survival. Variability for each factor within a population of alfalfa was shown. Both criteria were important and facilitated selection from those parents which contributed most to the salt tolerance of the population.
APA, Harvard, Vancouver, ISO, and other styles
12

McKimmie, T., A. K. Dobrenz, and P. L. Malchow. "Progress in the Development of Salt Tolerance in Alfalfa." College of Agriculture, University of Arizona (Tucson, AZ), 1989. http://hdl.handle.net/10150/201010.

Full text
Abstract:
Increasing crop salt tolerance can mean higher yields on irrigated farmland and salt -affected soils. Three cycles of selection were made for growth of alfalfa seedlings under 7500 ppm NaCl. Comparison of parent and selected populations was made for yield and germination under saline conditions. Yield of the last cycle was significantly improved. Germination of the last two cycles was higher than that of the parent and cycle 1.
APA, Harvard, Vancouver, ISO, and other styles
13

Attumi, Al-Arbe M. "A study of salt tolerance in Arabidopsis thaliana and Hordeum vulgare." Connect to e-thesis, 2007. http://theses.gla.ac.uk/114/.

Full text
Abstract:
Thesis (Ph.D.) - University of Glasgow, 2007.
Ph.D. thesis submitted to the Division of Biochemistry and Molecular Biology, Biomedical and Life Sciences (IBLS), University of Glasgow, 2007. Includes bibliographical references. Print version also available.
APA, Harvard, Vancouver, ISO, and other styles
14

Robinson, David Lowell 1955. "RECURRENT SELECTION FOR GERMINATION SALT TOLERANCE IN ALFALFA (SALINITY, FORAGES, BREEDING)." Thesis, The University of Arizona, 1986. http://hdl.handle.net/10150/277015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Poteet, David, David Robinson, Steve Smith, and Albert Dobrenz. "Genetic Gains and Stability for Germination Salt Tolerance in Alfalfa." College of Agriculture, University of Arizona (Tucson, AZ), 1987. http://hdl.handle.net/10150/203789.

Full text
Abstract:
Improving the germination salt tolerance of alfalfa will help this crop endure both increasingly saline irrigation water and salt build -up in the soil. Seven previous cycles of selection for salt tolerance at germination plus the parental line, Mesa-Sirsa, were evaluated for percentage germination under various levels of NaCI solutions. Germination improved linearly from the earliest to the latest cycle of selection. Germination salt tolerance can be improved through recurrent selection techniques.
APA, Harvard, Vancouver, ISO, and other styles
16

Selcuk, Feyza. "Evaluation Of Salt Tolerance In Sto Transformed Arabidopsis Thaliana And Nicotiana Tabacum Plants." Phd thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/3/12604751/index.pdf.

Full text
Abstract:
Salinity is one of the limiting factors of crop development. Together with causing water loss from plant tissues, salinity also leads to ion toxicity. Under salt stress, increase in Ca+2 concentration in cytosol can decrease the deleterious effects of stress. The binding of Ca+2 to calmodulin initiates a signaling cascade involving the activation of certain transcription factors like STO and STZ. This signal transduction pathway regulates transport of proteins that control net Na+ influx across the plasma membrane and compartmentalization into the vacuole. Previously Arabidopsis STO was identified as a repressor of the yeast calcineurin mutation. Genetical and molecular characterization of STO
a putative transcription factor that takes role in salt stress tolerance can provide a better understanding in the mechanism of salt tolerance and development of resistance in higher plants. The aim of the present study was to amplify and clone the Arabidopsis thaliana sto gene in plant transformation vectors and use them for the transformation of Nicotiana tabacum and Arabidopsis thaliana plants via Agrobacterium tumefaciens mediated gene transfer systems. T0 and T1 progeny of transgenic plants carrying sto were analysed for the stable integration of transgenes, segregetion patterns, expression of the gene and their tolerance to salt stress. The results of the study showed that all transgenic Nicotiana tabacum lines are differentially expressing a transcript that is lacking in control plants and most transgenic lines exhibited higher germination percentages and fresh weights, lower MDA contents under salt stress. On the other hand overexpression of sto in Arabidopsis plants did not provide an advantage to transgenic plants under salt stress, however the anti-sense expression of sto caused decreased germination percentages even under normal conditions. According to the sto expression analysis of wild type Arabidopsis plants, sto was shown to be induced under certain stress conditions like cold and sucrose, whereas it remained constant in salt treatment. External application of plant growth regulators had no clear effect on sto expression, with the exception of slight induction of expression with ABA and ethylene treatments.
APA, Harvard, Vancouver, ISO, and other styles
17

Asfaw, Kinfemichael Geressu [Verfasser], and P. [Akademischer Betreuer] Nick. "Chemical Engineering of Plants for Salt Tolerance / Kinfemichael Geressu Asfaw ; Betreuer: P. Nick." Karlsruhe : KIT-Bibliothek, 2020. http://d-nb.info/1212512502/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Selçuk, Feyza. "Evaluation of salt tolerance in sto transformed arabidopsis thaliana and nicotiana tabacum plants." Ankara : METU, 2004. http://etd.lib.metu.edu.tr/upload/12604751/index.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Menzi, Pateka. "Gallic acid modulates salt stress tolerance in soybean plants by regulating antioxidant capacity." University of the Western Cape, 2017. http://hdl.handle.net/11394/5905.

Full text
Abstract:
Magister Scientiae - MSc (Biotechnology)
Soybean [Glycine max L (mer)] is one of the top commodity crops in the world including South Africa (de Beer and Prinsloo, 2013). These small yet important podded legumes are a great source of protein and are used in many forms.
APA, Harvard, Vancouver, ISO, and other styles
20

Sessoms, Holly Nicol. "Water use potential and salt tolerance of riparian species in saline-sodic environments." Thesis, Montana State University, 2004. http://etd.lib.montana.edu/etd/2004/sessoms/SessomsH0805.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Jattan, Sarabjit Singh. "Studies on growth and salinity tolerance in Acacia nilotica Dalbergia sissoo and Prosopis juliflora." Thesis, University of Oxford, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.315722.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Ayala, Chairez Felix. "Physiology of salt tolerance in Salicornia bigelovii Torr." Diss., The University of Arizona, 1994. http://hdl.handle.net/10150/186621.

Full text
Abstract:
Growth of most crop plants (glycophytes) is reduced in saline environments. A few plant species (euhalophytes) not only tolerate, but require salt, and grow optimally in salinities between 100 and 200 mM NaCl. The halophyte Salicornia bigelovii Torr. shows optimal growth in 200 mM NaCl and reduced growth in low saline conditions. In spite of years of research, mechanisms that confer salt tolerance to some plants and sensitivity to others are poorly understood. This research was undertaken to obtain physiological information in an attempt to determine why S. bigelovii requires salt to reach maximum growth. Salicornia seedlings were grown in the greenhouse in aerated nutrient solutions with 5, 200 or 600 mM NaCl. Plants grown in 200 mM NaCl showed optimal growth. Fresh and dry weight of the plants were reduced when grown in 5 and 600 mM NaCl. The main differences in plants grown in 5 and 600 mM NaCl had to do with ion accumulation. These differences in ion accumulation suggested that salt tolerance in Salicornia was established by regulation of ion transport. This was confirmed by studying two primary transport systems in plants grown in 5 or 200 mM NaCl. These transport systems are the H⁺-ATPases on the plasma membrane (PM-ATPase) and the tonoplast (V-ATPase). Higher PM-ATPase (55%) activities were observed in 200 mM NaCl grown plants. Increases in growth and in PM-ATPase activity in Salicornia shoots after exposure to salinity were highly correlated. V-ATPase activity was significantly stimulated in vivo and in vitro (26 and 46%) after exposure to 200 mM NaCl, and this stimulation was Na⁺-specific. Increased V-ATPase activity was consistent with an increased Na⁺ accumulation (45%) compared to plants grown in 5 mM NaCl. Na⁺-stimulation of ATPases may confer salt tolerance in Salicornia by providing the driving force for regulation of intracellular Na⁺ levels. The ATPases provide an increased H⁺ electrochemical gradient across membranes that may be used by the Na⁺/H⁺ exchangers on the plasma membrane and tonoplast. In addition, H⁺ transport across the plasma membrane leads to acidification of the apoplast that is required for cell wall extension and growth. These transport systems need to work in concert for optimal growth and salt tolerance.
APA, Harvard, Vancouver, ISO, and other styles
23

LEDBETTER, CRAIG ALLEN. "HERITABILITY OF SALT TOLERANCE DURING GERMINATION AND EMERGENCE IN SHORT STAPLE COTTON (GOSSYPIUM HIRSUTUM L.)." Diss., The University of Arizona, 1986. http://hdl.handle.net/10150/183961.

Full text
Abstract:
Soil salinity is a serious problem for farmers in irrigated agriculture. Soil salts cause reduced stands and yields because of toxic ion and osmotic problems for surviving seedlings. The tolerance to sodium chloride during germination and emergence was studied in three commercial cultivars of short staple cotton (Gossypium hirsutum L.). It is this stage of the life cycle that cotton is most sensitive to salts in the soil solution. The objectives of this study were to increase the tolerance to sodium chloride during germination and emergence and to determine the narrow sense heritability of this factor. Parental cultivars initially demonstrated 15% emergence at -1.2 MPa NaCl. Surviving salt tolerant plants were planted in the field and seeds from these plants were used as the germplasm for the next cycle of salt tolerance selection. Experiments were conducted to determine the relative salt tolerance of all plants at -1.2, -1.4, -1.6, and -1.8 MPa NaCl. Emergence of salt tolerant accessions from the first cycle of selection ranged from 3.1 to 25.8% in the first relative salt tolerance experiment. The average emergence of all accessions taken over all four salinity levels was 8.9% for first cycle plants. After a second cycle of selection for salt tolerance, the average emergence percentage increased to 13.0% over the four salinity levels. Emergence ranged from 0.7 to 32.6% in the second relative salt tolerance experiment. Narrow sense heritability of sodium chloride tolerance during germination and emergence was estimated at 0.38 using data from the first and second relative salt tolerance experiments.
APA, Harvard, Vancouver, ISO, and other styles
24

Dobrenz, A. K., D. C. Poteet, R. B. Miller, and S. E. Smith. "Carbohydrates in Germination Salt Tolerant and Non-Salt Tolerant Alfalfa Seed." College of Agriculture, University of Arizona (Tucson, AZ), 1990. http://hdl.handle.net/10150/201015.

Full text
Abstract:
Alfalfa which is extremely salt tolerant during germination has been developed by researchers at the University of Arizona Carbohydrates were analyzed in the original parental gemiplasm 'Mesa- Sirsa' and Cycle₅Syn₂ and Cycle₈Syn₂ seed to determine why this seed could germinate in extremely saline conditions. Raffinose and sucrose were both significantly higher in the salt -tolerant germplasm compared to the parental germplasm; however, the magnitude increase of these free sugars was not sufficient to explain the increased ability of the seed to absorb water in a stress environment. The galactomannan content was not different among the alfalfa germplasms.
APA, Harvard, Vancouver, ISO, and other styles
25

Chaudhary, M. T. "Salt tolerance and toxicity in NaCl-selected and nonselected cells and regenerated plants of Medicago media." Thesis, Swansea University, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.636234.

Full text
Abstract:
Batch suspension cultures of Lucerne (Medicago media cv Rambler), initiated directly from surface-sterilized leaflet explants, were used to produce cell lines tolerant to 200, 250 and 300 mol m-3 NaCl by successive subculture into media of progressively higher salinity. The degree of salt tolerance of the cell lines was highly dependent on the concentration of Ca++ in the growth medium. The plants of M media regenerated from salt-adapted cell suspension culture were significantly more tolerant to NaCl than the unselected Rambler plants, another cultivar of M. media and 5 cultivars of M. sativa. Cells re-cultured from leaflets of the regenerated plants retained increased salt tolerance. The salt-tolerant plants showed enhanced Na+ and Cl- exclusion and were able to maintain lower Na+/K+ ratios in the shoots when compared with the unselected cultivars. Ca++ gave some amelioration of salt toxicity but the salt-tolerant plants did not differ from the susceptible plants in this respect. Comparing 250 mol m-3 NaCl selected and unselected Rambler plants, a multiple regression equation has bee computed accounting for 90% of the observed variation, that relates the growth of the plants to Na+/K+ ratios and Cl- concentrations of roots and shoots and their interactions. The NaCl-selected cell line showed even greater tolerance to Na2SO4 or K2SO4 but rather poor tolerance to KCl. Na+ concentrations were significantly lower in the selected cell line than the unselected cell line under salt stress. The salt-tolerant cell lines showed higher K+ , lower Na+/K+ ratios and higher proline concentration than the unselected cell line. Experiments carried out with Na2SO4 and K2SO4 suggest that the toxic effect is due to the accumulation of Cl-. The addition of osmoprotectants in the external growth medium supported the growth of the NaCl-selected cell lines under 400 mol m-3 NaCl stress.
APA, Harvard, Vancouver, ISO, and other styles
26

Morita, Tateo 1958. "Effect of inbreeding on germination salt tolerance in alfalfa." Thesis, The University of Arizona, 1987. http://hdl.handle.net/10150/276644.

Full text
Abstract:
The performance of an alfalfa (Medicago sativa L.) population has been improved by recurrent selection for germination salt tolerance. However, recurrent selection may lead to increased inbreeding. Since alfalfa is subject to severe inbreeding depression, accumulation of inbreeding during the selection process may negatively affect performance. This experiment was designed to determine the effects of inbreeding on germination performance in alfalfa under saline and non-saline conditions. The germination performance of seed having three different levels of inbreeding as examined. No adverse effects of inbreeding were observed in non-saline conditions. Consistent (but nonsignificant) declining trends were observed in germination percentage in saline conditions as the level of inbreeding increased. Proportionately larger declines were observed between generations in germination speed and early seedling vigor. These results suggest heterozygosity in alfalfa may be maintained simultaneously while recurrent selection for germination salt tolerance is conducted. Moreover, reducing inbreeding during recurrent selection for germination salt tolerance may be more successful if germination speed index or early seeding vigor are used for the measurement.
APA, Harvard, Vancouver, ISO, and other styles
27

Badenhorst, Petrus Cornelius. "Identification of molecular markers for Thinopyrum distichum chromosomes contributing to salt tolerance." Thesis, Stellenbosch : Stellenbosch University, 2000. http://hdl.handle.net/10019.1/51794.

Full text
Abstract:
Thesis (MSc.)--University of Stellenbosch, 2000.
ENGLISH ABSTRACT: The detrimental effect of soil salinity on crop production is a growmg problem worldwide (Tanji, 1990b). The degree to which plants can tolerate high concentrations of salt in their rooting medium is under genetic control with different genetic and physiological mechanisms contributing to salt tolerance at different developmental stages (Epstein & Rains, 1987). Only limited variation exists for salt tolerance in the cultivated cereals. This has prompted attempts to select tolerant progeny following hybridisation of cultivated species and wild, salt-tolerant species. Thinopyrum distichum, an indigenous wheatgrass that is naturally adapted to saline environments (McGuire & Dvorak, 1981), was crossed with triticale (x Triticosecale) in an attempt to transfer its salt tolerance and other hardiness characteristics (Marais & Marais, 1998). The aims of this study were to (i) identify Thinopyrum chromosomes carrying genes for salt tolerance and to identify molecular markers for these chromosomes, (ii) identify a number of diverse monosomic and disomie addition plants. Bulked segregant analysis (BSA), in combination with AFLP, RAPD and DAF marker analysis was implemented to screen for polymorphisms associated with salt tolerance. Five putative AFLP markers and two RAPD markers were detected using bulks composed of salt tolerant plants and bulks composed of salt sensitive plants. The distribution of the markers in these bulks suggests that more than one Thinopyrum chromosome carry genes for salt tolerance. Salt tolerant monosomic and disomie addition plants were characterised for AFLP, RAPD and DAF polymorphisms in an attempt to find markers associated with the chromosome(s) conditioning salt tolerance. One salt tolerant monosomic and one disomie addition plant was identified. One AFLP and two RAPD markers were identified for the Thinopyrum chromosome( s) present in the monosomic addition plant, while three AFLP and three RAPD markers were identified for the disomie addition plant. An attempt was also made to identify diverse chromosome addition plants having complete or near complete triticale genomes plus an additional random Thinopyrum chromosome. Plants with 2n = 43 /44 were identified and characterised for molecular markers (AFLP and RAPD). Cluster analysis was used to group the putative monosomic or disomie addition plants according to the specific Thinopyrum chromosomes they retained. Seventeen AFLP and RAPD markers could be used to group the 24 putative addition plants into six broadly similar groups with different additional Thinopyrum chromosomes. While the members of each group are likely to carry the same additional Thinopyrum chromosomes, this may not necessarily be the case as the interpretation of the marker results is complicated by heterogeneity among plants with regard to the triticale background chromosomes they possess. It is also likely that chromosome translocations occurred during backerossing which may further complicate data. Nonetheless, it is now possible to select disomie addition plants from each group that are likely to represent different Thinopyrum chromosomes. The data will also be useful in future attempts to find further addition plants carrying the remaining Thinopyrum chromosomes.
AFRIKAANSE OPSOMMING: Die skadelike effek van grond versouting op gewasproduksie neem wêreldwyd toe (Tanji, 1990b). Die mate waartoe plante hoë konsentrasies sout in die wortelstelsel kan hanteer is onder genetiese beheer en verskillende genetiese en fisiologiese meganismes dra by tot die soutverdraagsaamheid tydens verskillende ontwikkelingstadia (Epstein & Rains, 1987). Slegs beperkte variasie bestaan vir soutverdraagsaamheid in verboude grane. Dit het aanleiding gegee tot pogings om soutverdraagsame nageslag te selekteer na hibridisasie van verboude spesies en wilde, soutverdraagsame spesies. Thinopyrum distichum, 'n inheemse koringgras, wat aangepas is by brak omgewings (McGuire & Dvorak, 1981), is met korog (x Triticosecale) gekruis in 'n poging om die gene vir soutverdraagsaamheid en ander gehardheidseienskappe oor te dra (Marais & Marais, 1998). Die oogmerke van hierdie studie was om (i) Thinopyrum chromosome te identifiseer wat gene bevat vir soutverdraagsaamheid en molekulêre merkers te vind vir hierdie chromosome, (ii) 'n aantal diverse monosomiese en disomiese addisieplante te identifiseer. Bulksegregaatanalise (BSA), gekombineer met AFLP-, RAPD- en DAF-merkeranalise, is gebruik om polimorfismes geassosieerd met soutverdraagsaamheid op te spoor. Vyf moontlike AFLPmerkers en twee RAPD-merkers is geïdentifiseer met gebruik van bulks bestaande uit soutverdraagsame plante en bulks bestaande uit soutgevoelige plante. Die verspreiding van die merkers in soutverdraagsame bulks dui daarop dat meer as een Thinopyrum chromosoom bydra tot soutverdraagsaamheid. Soutverdraagsame, monosomiese en disomiese addisieplante is gekarakteriseer vir AFLP- en RAPD-polimorfismes in 'n verdere poging om merkers te vind vir chromosome betrokke by soutverdraagsaamheid. Een soutverdraagsame monosomiese en een disomiese addisieplant is geïdentifiseer. Een AFLP- en twee RAPD-merkers is geïdentifiseer vir die Thinopyrum chromosoom(e) teenwoordig in die monosomiese addisieplant, terwyl drie AFLP- en drie RAPDmerkers geïdentifiseer is vir die disomiese addisieplant. 'n Poging is ook gemaak om diverse addisieplante te identifiseer met 'n volledige koroggenoom plus 'n addisionele Thinopyrum chromosoom. Plante met 2n = 43 / 44 is geïdentifiseer en gekarakteriseer met molekulêre merkers (AFLP en RAPD). Tros-analise is gebruik om die vermoedelik monosomiese of disomiese addisieplante te groepeer volgens die spesifieke Thinopyrum chromosome wat hulle behou het. Sewentien AFLP- en RAPD-merkers is gebruik om die 24 vermoedelike addisieplante in 6 groepe met verskillende Thinopyrum chromosome te groepeer. Alhoewel dit voorkom of die verskillende plante in 'n groep dieselfde addisionele Thinopyrum chromosoom het, is dit nie noodwendig die geval nie aangesien die interpretasie van die merkers bemoeilik word deur die heterogeniteit tussen die plante wat betref die agtergrond korogchromosome wat hulle besit. Dit is ook moontlik dat chromosoom herrangskikkings plaasgevind het gedurende die terugkruisings, wat die data verder kan bemoeilik. Nietemin, dit is nou moontlik om disomiese addisies te selekteer uit elke groep wat moontlik verskillende Thinopyrum chromosome bevat. Die data kan ook gebruik word om in die toekoms verdere addisieplante te identifiseer wat die oorblywende Thinopyrum chromosome bevat.
APA, Harvard, Vancouver, ISO, and other styles
28

Do, Thi-Cam-Van [Verfasser]. "Compost and residues from biogas plant as potting substrates for salt-tolerant and salt-sensitive plants / Thi Cam Van Do." Bonn : Universitäts- und Landesbibliothek Bonn, 2013. http://d-nb.info/104305667X/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Elphick, Carmen Heather. "Na'+ transport and Ca'2'+ signalling in higher plant salt tolerance." Thesis, University of York, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.341845.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Goertz, Steven Harvey. "Salt tolerance of tepary (Phaseolus acutifolius Gray) and navy (P. vulgaris L.) beans at several developmental stages." Diss., The University of Arizona, 1989. http://hdl.handle.net/10150/184646.

Full text
Abstract:
Two accessions of tepary (phaseolus acutifolius Gray var. latifolius) and navy (P. vulgaris L. 'Fleetwood') beans were studied for salt tolerance at several• developmental stages. Genotypes were germinated at 0.0 through -2.5 MPa NaCl at 25°C and 35°C for nine days. Tepary accessions had higher germination percentages and rates than navy for ≤ - 2.0 MPa at 250C and ≤ - 1.5 MPa at 35°C. Fresh weights of root plus hypocotyl decreased severely with the first increment of NaCl (-0.5 MPa) for all genotypes. Fresh weight of navy was reduced more at 35°C than at 25°C. Genotypes were stressed in vermiculite-filled trays with 0.0 through -1.5 MPa NaCl for 14 days. Final growth stage and rates of emergence were reduced at salinities ~ -0.6 MPa NaCl, and were higher in tepary than navy at -1.2 MPa. Tepary beans tended to maintain higher water and osmotic potentials, and at -0.9 MPa had less reduction in leaf area than navy beans. Fresh weights, dry weights and root:shoot ratios declined in all genotypes with increasing salinities. Plants grown hydroponically were stressed with -0.10, -0.25, and -0.50 MPa NaCl during either vegetative or reproductive stages. Navy had equal or greater fresh and dry weights of leaf, stem, and pods at -0.10 MPa, but tepary beans had equal or greater weights at the highest salinity relative to navy. Tepary had the greatest pod weight with -0.50 MPa NaCl applied during the reproductive stage. Carbon exchange rates (CER) were lower in navy than one or both tepary beans at some sampling times. Tepary beans tended to have higher leaf water and osmotic potentials than did navy. Transpiration and stomatal resistance values were similar in all genotypes, while leaf temperatures were different in white tepary versus navy. Tepary beans yielded higher than navy when grown in low and high salinity fields. Transpiration rates, leaf water and osmotic potentials, and CERs were similar or higher, while stomatal resistance and leaf temperatures were similar or lower in tepary than in navy. Plant height and stand count also were measured. Tepary was more salt tolerant than navy, exhibiting greater tolerance to NaCl at every growth stage.
APA, Harvard, Vancouver, ISO, and other styles
31

Liu, Jiping. "Characterization and molecular cloning of sos3: A gene important for salt tolerance and potassium nutrition in higher plants." Diss., The University of Arizona, 1999. http://hdl.handle.net/10150/283921.

Full text
Abstract:
The major goal of my dissertation research was to use genetic approaches to identify and characterize the components (genes) that are important for salt tolerance in Arabidopsis. Identification and characterization of such genes might provide insights into why these genes are important, and how these genes function in salt response and salt tolerance in higher plants. During my dissertation research, the sos3-1 mutant was isolated and characterized. The mutant plants are hypersensitive to Na⁺ and unable to grow with low K⁺. Increased Ca²⁺ levels can partially suppress the growth defect of the mutant plants under salt stress and fully restore their growth under low K⁺. These results suggest that SOS3 may be a Ca²⁺-mediated regulator that controls K⁺ and Na+ homeostasis in Arabidopsis. The SOS3 gene was cloned by map-based cloning techniques. SOS3 encodes a protein sharing significant sequence similarity with the B subunit of calcineurin from yeast and neuronal calcium sensor from animals. SOS3 contains three putative EF-hand calcium binding domains and a putative myristoylation motif at its NH₂-terminus. SOS3 binds calcium and is myristoylated in vitro. A mutation in SOS3 that destroys the conserved myristoylation motif abolishes SOS3 myristoylation, but not its calcium binding in vitro. Furthermore, the defect in Ca²⁺ binding of the sos3 does not affect its myristoylation. These results indicate the independence of calcium binding and myristoylation of SOS3. Mutant sos3-1 has a nine-base-pair deletion in the second conserved EF-hand Ca²⁺ binding domain, which leads to misfunction. of sos3 in vivo. To determine if myristoylation is also important for SOS3, the wild-type SOS3 cDNA and the SOS3 cDNA with a disrupted conserved myristoylation sequence were tested for their capability to complement the sos3-1. It was found that an intact conserved myristoylation sequence is essential for SOS3 function. These results indicate that both calcium binding and myristoylation are essential for the function of SOS3.
APA, Harvard, Vancouver, ISO, and other styles
32

Miranda, Casey R. "Effects of Recycled Water On Landscape Plants." DigitalCommons@CalPoly, 2010. https://digitalcommons.calpoly.edu/theses/354.

Full text
Abstract:
ABSTRACT EFFECTS OF RECYCLED WATER ON LANDSCAPE PLANTS Casey Ray Miranda Recycled water is water that has been previously used, has suffered a loss of quality, and has been properly treated for redistribution (Wu et al. 2001). The use of recycled water as an alternative to fresh water in the landscape can have positive and negative effects. Experimentation on 40 different plant species during a 32 week period (2 phases of 16 weeks), was conducted to analyze the effects of recycled water irrigation on the appearance of landscape plants. Each species of plant was planted into 10 individual number 2 pots and irrigated with recycled water daily. Media and water were tested for nutrients and other constituents. In phase I there were four different species of grasses and grass-like plants, five different perennials, five species of shrubs, and four annuals tested; while phase II tested four species of herbaceous perennials, eight different species of shrubs, six species of groundcovers, and four species of annuals. All tests were conducted at the Paso Robles Waste Water Treatment Plant. Of the grasses and grass like species Yucca spp. and Buchloe spp. performed best. Osteospermum fruticosum, Lavandula angustifolia, Rosmarinus officinalis, Phormium tenax, and Pennisetum setaceum had the best appearance of the herbaceous perennials tested. For the shrubs, Coprosma repens, Cistus purpureus, Dodonea viscosa, Eleagnus pungens, Baccharis pilularis, Ceanothus thysiflorus, Thuja orientalis, and Nerium oleander had the best appearance when irrigated with recycled water. The best annuals were Senecio cineraria, Antirrhinum majus, Primula spp., Viola spp., and Calendula officinalis. Of the groundcovers Heuchera spp., Lonicera japonica, Vinca major, Hedera helix, and Ceanothus griseus had the best results. From the experiment a list of tolerant and non-tolerant plants was compiled (Appendices 1 and 2). While many plants were capable of developing and growing normally, other plants were sensitive to recycled water irrigation. In order to prevent salt damage to plants and expand the use of recycled water, salt tolerance of landscape plant material must be identified (Niu et.al, 2006).
APA, Harvard, Vancouver, ISO, and other styles
33

Alemayehu, Makonnen. "Germination and emergence salt tolerance of sorghum (Sorghum bicolor L.) as influenced by seed quality and generations." Diss., The University of Arizona, 1989. http://hdl.handle.net/10150/184933.

Full text
Abstract:
Artificially aged and non-aged seeds of 22 grain sorghum (Sorghum bicolor L.) F₁ hybrids and their F₂ and F₃ generations were evaluated for germination salt tolerance. Six of the hybrids, along with their F₂ and F₃ generations, were tested for emergence salt tolerance. Effects of seed production environments on germination salt tolerance were also studied using F₂ generations of 12 sorghum hybrids produced under full-season irrigation, limited irrigation, and double-cropping conditions. Germination tests were conducted in a growth chamber, on trays, while the emergence test was conducted in a greenhouse in flats filled with sand. The experiments were conducted under non-saline and saline conditions in randomized complete block designs. Artificial seed aging resulted in significant reductions in germination percentages under both non-saline and saline environments. The overall mean reduction in germination caused by seed aging was more than twice as much under salinity stress as under the non-stress conditions (48 vs. 17%), indicating differential effects of salinity on different quality seeds. Entries that appeared to be resistant to seed aging also had higher germination percentages under salinity stress. Seed production environment influenced germination performance in both non-saline and saline environments. The overall mean germination percentages of sorghum seeds produced under three different field environments were significantly different from one another. Significant differences were observed in germination and emergence percentages within F₁, F₂, and F₃ generations. Except for the F₁ entries, however, emergence index differences within the F₂ and F₃ generations were not significant. Correlations between germination and emergence percentages in the non-saline and saline treatments were generally nonsignificant. This suggests that germination and emergence responses of sorghum may vary under different salinity levels and different environments.
APA, Harvard, Vancouver, ISO, and other styles
34

Scott, A. M. "Salinity and the growth of Crithmum maritimum and Lavatera arborea." Thesis, Lancaster University, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.371066.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Smith, Steve, and Albert Dobrenz. "Improved Alt Tolerance in Alfalfa: Past Success and Prospects for the Future." College of Agriculture, University of Arizona (Tucson, AZ), 1986. http://hdl.handle.net/10150/200537.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Visser, Hendrik Johannes. "Molekulere merking van Thinopyrum distichum chromosome betrokke by soutverdraagsaamheid en die karakterisering van trigeneriese (Triticum/Secale/Thinopyrum) sekondêre hibriede." Thesis, Stellenbosch : Stellenbosch University, 2008. http://hdl.handle.net/10019.1/2570.

Full text
Abstract:
Thesis (MSc (Genetics))--Stellenbosch University, 2008.
Thinopyrum distichum (2n = 4x = 28; J1dJ1dJ2dJ2d) is a hardy, salt-tolerant maritime wheatgrass indigenous to southern Africa. In order to transfer its salt-tolerance to cultivated cereals, the Thinopyrum chromosomes involved must first be characterized with molecular markers. Thinopyrum distichum chromosomes 2J1d, 3J1d, 4J1d and 5J1d have previously been found to be major determinants of salt-tolerance. A genotype panel consisting of two triticale/Th. distichum allopolyploids, two Th. distichum/2*triticale doubled-haploids, eight triticale addition-lines (for chromosomes 2J1d; 2J1dβ; 3J1d; 3J1dL; 4J1d; 4J2d; 5J1d and 7J2d, respectively) and two triticale translocation-lines (involving chromosome arms 3J1dS and 3J1dL, respectively) were used for fluorescence-based, semi-automated AFLP-analyses and to a lesser extent for EST-SSR microsatellite marker-development, to identify molecular markers specific to the critical Th. distichum chromosomes. Thirteen EST-SSR primer pairs produced four putative Th. distichum-specific microsatellite-markers, one of which was specific for critical chromosome 5J1d. AFLP-analysis with 60 selective EcoRI/MseI and 18 Sse8387I/MseI primer combinations produced 159 AFLP-fragments specific for Th. distichum. These included seven putative markers for chromosome 2J1d, 15 for 3J1d, one marker for 4J1d and two for 5J1d. A salt-tolerance experiment was done to determine which chromosome 2J1d and 3J1d regions may carry genes for salt-tolerance. Plants were selected that had a monosomic addition of a chromosome 2J1d variant (either the complete chromosome or a modified version referred to as 2J1dβ) in addition to one of four chromosome 3J1d variants (the complete 3J1d chromosome; a 3J1dL-telosome; a 3J1dS-translocation or a 3J1dL-translocation). The results suggested that Th. distichum chromosome-arms 2J1dL and 3J1dS are probably involved in salt-tolerance. A group of 93 trigeneric (Triticum/Secale/Thinopyrum) F2 secondary hybrids were then analyzed in order to: (i) Evaluate some (ten) of the newly developed putative AFLP-markers; and (ii) attempt to find translocations, telosomes or substitutions involving the critical Thinopyrum chromosomes. Five (50 %) of the ten putative AFLP-markers could be reproduced, but only four proved to be chromosome-specific. It was also possible to assign hese four markers to chromosome arms: E32M49.118 (2J1dS); E41M49.103 (2J1dS); E35M49.137 (3J1d); and E41M49.188 (3J1dL). The selective primer combination that produced marker E41M49.103 (2J1dS), also amplified a fragment of the same size on chromosome 4J1d. These markers will be useful for further mapping and selection of the salt-tolerance genes. The fact that only four of the ten putative AFLP-markers evaluated proved to be repeatable implies that the remaining untested markers need to be confirmed against larger genotype panels as well. Probable reasons for the relatively low frequency of markers that turned out to be reliable are discussed. The marker-association study also revealed that visual examination of all electropherograms produced by AFLP-fragment analysis is necessary to correctly identify all AFLP-fragments. Use of the AFLP- and STS-/SCAR-markers in conjunction with the group of 93 F2 secondary hybrids showed that 18 of these probably carried a 3J1dL-translocation. Several hybrids possibly had translocations involving the 4J1d and 5J1d chromosomes. However, these results need to be confirmed. Various hybrids also appeared to have critical Th. distichum substitutions, although this still requires further confirmation. The identified plant material could prove useful for further characterization of salt-tolerance in Thinopyrum, and its eventual utilization in cereal crops.
APA, Harvard, Vancouver, ISO, and other styles
37

Aysin, Ferhunde. "Transformation Of Nicotiana Tabacum Plants With Na+/h+ Antiporter (atnhx1) Gene Isolated From Arabidopsis Thaliana For Evaluation Of Salt Tolerance." Master's thesis, METU, 2006. http://etd.lib.metu.edu.tr/upload/3/12608910/index.pdf.

Full text
Abstract:
Large, membrane-bound vacuoles of plant cells are suitable organelles for the compartmentation of ions. These vacuoles contain Na+/H+ antiporters for movement of Na+ within the organelle in exchange for H+. They provide an efficient mechanism to prevent the occurance of detrimental outcomes of Na+ accumulation in the cytosol. Identification of AtNHX1 gene that confers resistance to salinity by expressing a Na+/H+ antiport pump facilitates the understanding of the salt stress tolerance mechanisms of plants. The aim of the present study was to isolate and clone the Arabidopsis thaliana AtNHX1 coding sequence for transformation of Nicotiana tabacum plants via Agrobacterium tumefaciens mediated gene transfer. For this purpose, total RNA was isolated from Arabidopsis thaliana plants and cDNA synthesis was performed. AtNHX1 (1614bp) was amplified by using cDNA of Arabidopsis via specific primers. The amplified PCR product was verified by sequencing. AtNHX1 coding sequence was cloned into the plant transformation vector pCVB1 and 10 independent putative transgenic tobacco plants were obtained via Agrobacterium tumefaciens mediated gene transfer sysytem. Transfer of selected 8 putative transgenic plants to soil provided the regeneration of T1 seeds. Germination of the seeds under different salt treatments (0, 50, 100, 150, 200, 250 mM NaCl) was observed for evaluating the salt tolerance of transformed plants. The 82% and 60% of the transgenic T1 seeds were germinated on 150 mM NaCl and 200 mM NaCl containing media, respectively. In contrast the germination percentage of wild type tobacco seeds under 150 mM NaCl and 200 mM NaCl concentrations were 39% and 21%, respectively. The germination rate of the transgenic T1 seeds were significantly higher (p=0,001) when compared to the control seeds especially under high salt stress conditions (150 and 200 mM NaCl). Taken all together, our results demonstrated that the germination efficiencies and growth of the plants transformed with AtNHX1 were higher than the wild type tobacco plants under high salt concentrations.
APA, Harvard, Vancouver, ISO, and other styles
38

McKimmie, T., and A. K. Dobrenz. "Developing Salt Tolerant Alfalfa Beyond the Germination Stage." College of Agriculture, University of Arizona (Tucson, AZ), 1985. http://hdl.handle.net/10150/200494.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Sagers, Joseph. "Salt Tolerance of Forage Kochia, Gardner's Saltbush, and Halogeton: Studies in Hydroponic Culture." DigitalCommons@USU, 2016. https://digitalcommons.usu.edu/etd/5130.

Full text
Abstract:
Halogeton (Halogeton glomeratus) is a halophytic, invasive species that displaces Gardner’s saltbush (Atriplex gardneri) on saline rangelands. Forage kochia (Bassia prostrata) is a potential species to rehabilitate these ecosystems. This study compared the salinity tolerance of these species and tall wheatgrass (Thinopyrum ponticum) and alfalfa (Medicago sativa). Plants were evaluated for 28 days in hydroponics where they were maintained at 0, 150, 200, 300, 400, 600, and 800 mM NaCl. Shoot growth and ion accumulation were determined. Alfalfa and tall wheatgrass were severely affected by salt with both species’ shoot mass just 32% of control at 150 mM NaCl. Alfalfa did not survive above 300 mM NaCl, while, tall wheatgrass did not survive at salt levels above 400 mM NaCl. In contrast, forage kochia survived to 600 mM, but produced little shoot mass at that level. Halogeton exhibited ‘halophytic’ shoot growth, reaching maximum mass at 141 mM, and not less mass than the control until salinity reached 400 mM. Gardner’s saltbush did not show a dramatic decrease in dry mass produced until it reached salt levels of 600 and 800 mM NaCl. Forage kochia yielded high amounts of dry mass in the absence of salt, but also managed to survive up to 600 mM NaCl. Salt tolerance ranking (GR50 = 50% reduction in shoot mass) was Gardner’s saltbush=halogeton>forage kochia> alfalfa>tall wheatgrass. Both halogeton and Gardner’s saltbush actively accumulated sodium in shoots, indicating that Na+ was the principle ion in osmotic adjustment. In contrast, forage kochia exhibited a linear increase (e.g. passive uptake) in Na+ accumulation as salinity increased. This study confirmed that halogeton is a halophytic species and thus well adapted to salt-desert shrubland ecosystems. Gardner’s saltbush, also a halophyte, was equally salt tolerant, suggesting other factors are responsible for halogeton displacement of Gardner’s saltbush. Forage kochia is a halophytic species that can survive salinity equal to seawater, but is not as salt tolerant as Gardner’s saltbush and halogeton.
APA, Harvard, Vancouver, ISO, and other styles
40

Gadeh, H. M. "The effect of compost and priming on the salt tolerance of bread wheat (Triticum aestivum L. cv. S-24 and cv. Slambo) during germination and early seedling establishment." Thesis, Coventry University, 2013. http://curve.coventry.ac.uk/open/items/f0bd31e5-d16c-4435-993a-ab1ec64d7bc3/1.

Full text
Abstract:
Soil salinity and the arid climate in Libya are major constraints in agriculture and predominantly in foodstuff production which are limiting wheat production and yield. The effect of pre-sowing seed treatments with 50 mM of KCl, NaCl, CaCl2, and distilled water as hydropriming on germination and early seedling growth in two wheat (Triticum aestivum L.) cultivars S-24 (tolerant) and Slambo (untested before) under 0, 100, 200 and 300 mM NaCl concentrations was examined. CaCl2 was the only priming treatment that significantly improved the germination percentage, germination rate, and mean germination time in both cultivars under almost all NaCl concentrations. Thus, priming with CaCl2 was selected for further experiments. In the greenhouse, seeds primed with 50 mM of CaCl2 also improved the emergence percentage, emergence rate, shoot and root length, and fresh and dry weight of shoots and roots of both cultivars under all NaCl concentration except at 300 mM where the emergence was completely inhibited. The response of wheat cultivars to three compost treatments including cow manure compost (CC), greenwaste compost (GC) and 50:50 mixture (mix) between them and sand at percentage inclusions of 10 and 30 % by weight under 0, 100, 200, and 300 mM of NaCl was also investigated. Among all compost treatments, 30% GC and 30% mix were the best treatment and improved almost all growth parameters under salt stress, and 30% GC was also the only treatment that had any emergence at 300 mM NaCl. 30% GC and 30% mix were selected for further experiments. The effect of the combination of the selected priming agent (CaCl2) and the best two compost treatments (30% GC and 30% mix) on the emergence and early seedling growth of both cultivars was tested. The results showed that all the treatments enhanced plant growth parameters including seedling ion uptake in both cultivars, with preference to primed seeds sown in 30% GC. The treatments had the following order of the performance of both cultivars under salt stress. Primed seeds sown in 30% GC > unprimed seeds sown in 30% GC > primed seeds sown in 30% mix > unprimed seeds sown in 30% mix. This enhancement is possibly due to the provision of Ca2+ and / or the improvement in the availability of water as both of them were improved by the application of priming and compost.
APA, Harvard, Vancouver, ISO, and other styles
41

Tsang, Amy H. Y. "The role of mycorrhizal fungi in salt tolerance of five sand dune plant species." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape16/PQDD_0019/MQ28677.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Reffruschinni, K., D. Poteet, A. Dobrenz, and J. Cox. "Salinity X Temperature Interactions on Germination Salt Tolerant Alfalfa." College of Agriculture, University of Arizona (Tucson, AZ), 1988. http://hdl.handle.net/10150/200833.

Full text
Abstract:
Continued irrigation with saline water on Arizona's already salty farm lands will increase the need for crops that are able to maintain yields under stress. We investigated responses of gemùnation salt- tolerant alfalfa (Medicago sativa L.) to salt and temperature stress interactions in comparison to Mesa - Sirsa. Significant interactions were found for the populations, salts and temperatures and their effects on percent germination. The germination salt - tolerant cycles proved to be more cold and heat tolerant under salt stress then Mesa - Sirsa.
APA, Harvard, Vancouver, ISO, and other styles
43

Li-Yong, Zhang. "In vitro selection of salt tolerant cell lines and plants from Amaranthus species." Thesis, Coventry University, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.282734.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Moharram, Hisham Nagaty 1961. "Effects of form and concentration of nitrogen fertilizer on the salt tolerance of 'Tifway' bermudagrass." Thesis, The University of Arizona, 1991. http://hdl.handle.net/10150/277942.

Full text
Abstract:
Many factors influence the salt tolerance of plants. This study investigated the effects of form and concentration of nitrogen fertilizer on the salt tolerance of 'Tifway' bermudagrass grown under four salinity levels in a nutrient solution. The design was a 4 x 2 x 2 factorial in an RCB design. The four salinity levels were 0 (1.6 to 3.6), 10, 22, and 42 dS m⁻¹. Nitrogen was applied in the NH₄⁺ and NO₃⁻ form and at 52.5 and 210.0 mg N L⁻¹ of nutrient solution. The results indicated that NH₄⁺ improved the salt tolerance of 'Tifway' bermudagrass in terms of aesthetic value (color and leaf firing), osmotic adjustment (free amino acid content), and tolerance of specific ion effects (Na, Ca, and the Na:K ratio). The 210.0 mg N L⁻¹ concentration improved the root:shoot ratio of 'Tifway' bermudagrass and reduced salt ion accumulation in shoots.
APA, Harvard, Vancouver, ISO, and other styles
45

Sindhu, K. "In vitro selection and whole-plant studies of salt and drought tolerance in Elettaria cardamomum." Thesis, Liverpool John Moores University, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.337854.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Smith, Steve, Debra Conta, and Albert Dobrenz. "Performance of Germination Salt Tolerant Alfalfa on a Non-Saline Site." College of Agriculture, University of Arizona (Tucson, AZ), 1987. http://hdl.handle.net/10150/203791.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Slail, Nabeel Younis 1963. "INFLUENCE OF SODIUM-CHLORIDE ON TRANSPIRATION AND PLANT GROWTH OF TWO TOMATO CULTIVARS." Thesis, The University of Arizona, 1987. http://hdl.handle.net/10150/276516.

Full text
Abstract:
Seedlings were grown at five salinity levels in Hoagland's solution for 4 weeks. Transpiration, leaf diffusive resistance, leaf temperature and plant growth of the tomato (Lycopersicon esculentum Mill.) cultivars 'VF 145B' and 'VF 10' were examined at different levels of NaCl ranging from 0 to -12 bars. Salinity-reduced transpiration increased leaf diffusive resistance and increased leaf temperature for both cultivars. Shoot length, root length, shoot and root weight and leaf area were all lower for the two cultivars at increasing salinity levels. However, the two cultivars responded differently to salinity, with VF 10 showing better growth at the control and the -4 bar treatment than VF 145 B. At -9 and -12 bar treatment, the reverse was true. Selection of tomato for salt resistance should not be based on vigorous growth at non-saline conditions because different genes may control the salt tolerance ability of the plants at high salinity levels.
APA, Harvard, Vancouver, ISO, and other styles
48

Yan-Xiu, Zhao. "The isolation, culture and genetic manipulation of protoplasts from salt and drought tolerant leguminous plants." Thesis, Coventry University, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.332788.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Vernon, Daniel Marc. "Molecular biology of salt tolerance in the facultative halophyte Mesembryanthemum crystallinum: Identification and regulation of stress-responsive mRNAs." Diss., The University of Arizona, 1992. http://hdl.handle.net/10150/185921.

Full text
Abstract:
As sessile organisms, plants are subject to numerous environmental insults. Of these, salinity is one of the most widespread and important in terms of limiting plant distribution and productivity. Molecular studies have established that plants challenged by high salinity respond by increasing expression of specific genes. A functional role for the products of such genes in stress tolerance has not been established, however, and little is known about the biochemical mechanisms that allow plants to tolerate osmotic stress. Mesembryanthemum crystallinum is a facultative halophyte capable of adjusting to and surviving in highly saline conditions. I have generated and screened a subtracted cDNA library to identify mRNAs that accumulate during this plant's adaptation to salt stress. Three mRNAs were identified that increased in abundance in leaf tissue of salt stressed plants. Patterns of induction for these mRNAs differed. The most dramatically-induced mRNA, Imt1, was characterized in depth. Imt1 expression was induced in leaves and, transiently, in roots. Nuclear run-on assays indicated that the gene is transcriptionally regulated. In several respects, the expression of Imt1 differed from that of other salinity-responsive genes involved in photosynthetic metabolism in M. crystallinum: The mRNA was induced by salinity and low temperature, but not by drought, and its induction by stress was not influenced by plant age. Imt1 encoded a predicted polypeptide of Mr 40,250 which exhibited sequence similarity to several hydroxymethyl transferases. The IMT1 protein was expressed in E. coli and identified by functional assay as a myo-inositol methyl transferase that catalyzes the first step in the biosynthesis of the cyclic sugar alcohol pinitol. The presence of high levels of sugar alcohols has been correlated with osmotolerance in a wide range of organisms, and the stress-initiated transcriptional induction of IMT1 expression in a facultative halophyte provides the strongest support to date for the importance of sugar alcohols in establishing tolerance to osmotic stress in higher plants. The ability of this methyl transferase to generate a putative osmoprotectant from a ubiquitous plant substrate makes it an attractive candidate enzyme for the creation of stress-resistant transgenic plants.
APA, Harvard, Vancouver, ISO, and other styles
50

Al-Bahrany, Abdulaziz Maatook 1960. "Physiological and biochemical responses of short staple cotton (Gossypium hirsutum L.) to salt stress." Diss., The University of Arizona, 1989. http://hdl.handle.net/10150/184634.

Full text
Abstract:
Three cotton (Gossypium hirsutum L.) germplasms (DP62, 84027, and 84033) were used to investigate the physiology of salt tolerance. Lines 84027 and 84033 were developed from the parental line DP62 and showed superior vigor under varying NaCl conditions (0.5 to 2.0 M) during germination and emergence. Proline levels increased in the leaves of all germplasms in response to increasing salinity. Varietal differences in proline levels did not reflect their variation in salt tolerance. Several physiological characteristics were also evaluated under non-saline condition in the greenhouse. There were no significant differences among germplasm sources for all parameters measured. However, salinity reduced transpiration rate, increased leaf diffusive resistance and leaf temperature for all lines. Ribosomal-RNA levels in all germplasms were evaluated after seeds were stressed for 24 hrs in various concentrations of NaCl and then germinated under normal conditions for 72 hrs. Ribosomal-RNA levels were inversely related to salt concentrations. Line 84033 followed by line 84027 had highest ribosomal-RNA content than the parental line DP62 when averaged over the four salt concentrations. Sodium content (ppm/g FW) and Cl⁻ content (ppm/g FW) were evaluated in microsomal and cell walls fractions as well as a cytoplasmic fraction which consisted of vacuoles, mitochondria, and plastids. The Cl⁻ ion exhibited a greater consistency in a concentration shift from one fraction to another as a function of time than did the Na⁺ ion. As a result, there may be a correlation between the drop in ribosomal-RNA and the amount of Cl⁻ in the microsomal fraction. Other parameters measured in the germinating seed were soluble protein (globulin), insoluble proteins (prolamin and glutelin) and fiber percentage. Variations within the germplasms were shown to exist. This study shows that even among lines that have been selected for salt tolerance from a single variety, the possibility exists that each of these lines may have a different mechanism to cope with salt stress.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography