Academic literature on the topic 'Salt and ion transport'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Salt and ion transport.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Salt and ion transport"
Dawson, D. C. "Ion Channels and Colonic Salt Transport." Annual Review of Physiology 53, no. 1 (October 1991): 321–40. http://dx.doi.org/10.1146/annurev.ph.53.030191.001541.
Full textZhou, Xuechen, Zhangxin Wang, Razi Epsztein, Cheng Zhan, Wenlu Li, John D. Fortner, Tuan Anh Pham, Jae-Hong Kim, and Menachem Elimelech. "Intrapore energy barriers govern ion transport and selectivity of desalination membranes." Science Advances 6, no. 48 (November 2020): eabd9045. http://dx.doi.org/10.1126/sciadv.abd9045.
Full textSingh, CP, PK Shukla, and SL Agrawal. "Ion transport studies in PVA:NH4CH3COO gel polymer electrolytes." High Performance Polymers 32, no. 2 (March 2020): 208–19. http://dx.doi.org/10.1177/0954008319898242.
Full textMabuchi, Takuya, Koki Nakajima, and Takashi Tokumasu. "Molecular Dynamics Study of Ion Transport in Polymer Electrolytes of All-Solid-State Li-Ion Batteries." Micromachines 12, no. 9 (August 26, 2021): 1012. http://dx.doi.org/10.3390/mi12091012.
Full textWiemhöfer, Hans Dieter, Steffen Jeschke, and Eva Cznotka. "Transport of Ions in Salt-in-Polymer Membranes." Diffusion Foundations 8 (July 2016): 129–55. http://dx.doi.org/10.4028/www.scientific.net/df.8.129.
Full textArroyo, Juan Pablo, Caroline Ronzaud, Dagmara Lagnaz, Olivier Staub, and Gerardo Gamba. "Aldosterone Paradox: Differential Regulation of Ion Transport in Distal Nephron." Physiology 26, no. 2 (April 2011): 115–23. http://dx.doi.org/10.1152/physiol.00049.2010.
Full textLowy, R. J., J. H. Schreiber, and S. A. Ernst. "Vasoactive intestinal peptide stimulates ion transport in avian salt gland." American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 253, no. 6 (December 1, 1987): R801—R808. http://dx.doi.org/10.1152/ajpregu.1987.253.6.r801.
Full textBailey, Ryan T., Saman Tavakoli-Kivi, and Xiaolu Wei. "A salinity module for SWAT to simulate salt ion fate and transport at the watershed scale." Hydrology and Earth System Sciences 23, no. 7 (July 31, 2019): 3155–74. http://dx.doi.org/10.5194/hess-23-3155-2019.
Full textKeith, Jordan R., and Venkat Ganesan. "Ion transport mechanisms in salt‐doped polymerized zwitterionic electrolytes." Journal of Polymer Science 58, no. 4 (January 24, 2020): 578–88. http://dx.doi.org/10.1002/pol.20190099.
Full textSun, Jialin, Shuangnan Li, Huijuan Guo, and Zhenan Hou. "Ion homeostasis and Na+ transport-related gene expression in two cotton (Gossypium hirsutum L.) varieties under saline, alkaline and saline-alkaline stresses." PLOS ONE 16, no. 8 (August 10, 2021): e0256000. http://dx.doi.org/10.1371/journal.pone.0256000.
Full textDissertations / Theses on the topic "Salt and ion transport"
Thomson, Susmita. "Local feedback regulation of salt & water transport across pumping epithelia : experimental & mathematical investigations in the isolated abdominal skin of Bufo marinus." University of Western Australia. Dept. of Physiology, 2003. http://theses.library.uwa.edu.au/adt-WU2003.0022.
Full textAL, HASSAN MOHAMAD. "Comparative analyses of plant responses to drought and salt stress in related taxa: A useful approach to study stress tolerance mechanisms." Doctoral thesis, Universitat Politècnica de València, 2018. http://hdl.handle.net/10251/61985.
Full text[ES] Resumen Introducción La salinidad y la sequía son las condiciones de estrés ambiental más importantes, que reducen los rendimientos de los cultivos en todo el mundo y que limitan la distribución de las plantas silvestres en la naturaleza. La salinidad del suelo, especialmente la salinización secundaria causada por prácticas antropogénicas, como la irrigación prolongada, conducen a pérdidas importantes de rendimiento agrícola, especialmente en las regiones áridas y semiáridas. La sequía, provocada por la reducción de contenido de agua en el suelo, se produce debido a alteraciones en el ciclo del agua en la naturaleza, principalmente cuando la evapotranspiración excede la precipitación en un área determinada, hasta el punto que las reservas de agua del suelo ya no pueden soportar el crecimiento de la planta. La sequía y el estrés salino desencadenan la activación de una serie de mecanismos básicos de respuesta, que incluyen entre otros el control del transporte, la exclusión y la compartimentación de iones, así como la acumulación de solutos compatibles ('osmolitos'), y la activación de sistemas antioxidantes. Estos mecanismos están conservados en todas las plantas, tolerantes y sensibles a estrés por igual, y no confieren necesariamente tolerancia. Para descifrar estos mecanismos y conseguir una mejor comprensión de la contribución de diferentes respuestas a estrés a la tolerancia al estrés en una especie dada, hemos llevado a cabo estudios comparativos sobre las respuestas a la sequía y la salinidad, en un número de taxones relacionados genéticamente con diferentes potenciales de tolerancia. Metodología El enfoque experimental se basó principalmente en i) establecer la tolerancia relativa al estrés hídrico y al estrés salino en las especies estudiadas, a partir de su distribución en la naturaleza (en el caso de especies silvestres) y atendiendo a la inhibición relativa de su crecimiento en presencia de estrés, y ii) correlacionar cambios en los niveles de 'marcadores bioquímicos de estrés' asociados a vías específicas de respuesta (transporte de iones, acumulación de osmolitos ...) inducidos por los tratamientos de estrés, con la tolerancia relativa a estrés de las plantas, previamente establecido. Esta estrategia ha resultado ser apropiada para distinguir meras respuestas generales a estrés de los mecanismos relevantes para la tolerancia a estrés de las especies y cultivares investigados. El trabajo también arroja luz sobre otros aspectos afectados por el estrés salino, específicamente en relación con la germinación y el éxito reproductivo, o cambios anatómicos en las plantas tratadas con sal. También se estudiaron los patrones de expresión del gen NHX1, que codifica un antiportador vacuolar Na+/H+, en las especies de Plantago, como un primer paso en la caracterización completa de este transportador de iones, que parece desempeñar un papel importante en los mecanismos de tolerancia a sal en este género. Conclusión Los resultados obtenidos en este trabajo contribuyen a una mejor comprensión de los mecanismos generales de tolerancia al estrés en plantas, y proporcionan ideas claras sobre los mecanismos que confieren tolerancia, en concreto, a la sequía y al estrés salino, en algunas especies silvestres y cultivadas. Este trabajo también arroja más luz sobre las respuestas a estrés altamente eficientes en halófitas, plantas que podrían ser vistas como la respuesta de la naturaleza a las condiciones ambientales adversas antes mencionadas, a través de la evolución y la adaptación. Por lo tanto, las halófitas pueden ser consideradas como una fuente adecuada - infrautilizada en la actualidad, en nuestra opinión - de conocimiento, recursos genéticos y herramientas biotecnológicas para la necesaria mejora de la tolerancia al estrés en plantas cultivadas.
[CA] Resum Introducció La salinitat i la sequera són les condicions d'estrès ambiental més importants, que redueixen els rendiments dels cultius a tot el món i que limiten la distribució de les plantes silvestres en la naturalesa. La salinitat del sòl, especialment la salinització secundària causada per pràctiques antropogèniques, com la irrigació perllongada, condueixen a pèrdues importants de rendiment agrícola, especialment en les regions àrides i semiàrides. La sequera, provocada per la reducció de contingut d'aigua en el sòl, es produeix a causa d'alteracions en el cicle de l'aigua en la naturalesa, principalment quan la evapotranspiració excedeix la precipitació en un àrea determinada, fins al punt que les reserves d'aigua del sòl ja no poden suportar el creixement de la planta. La sequera i l'estrès salí desencadenen l'activació d'una sèrie de mecanismes bàsics de resposta, que inclouen entre uns altres el control del transport, l'exclusió i la compartimentació d'ions, així com l'acumulació de soluts compatibles ('osmolits'), i l'activació de sistemes antioxidants. Aquests mecanismes estan conservats en totes les plantes, tolerants i sensibles a estrès per igual, i no confereixen necessàriament tolerància. Per a desxifrar aquests mecanismes i aconseguir una millor comprensió de la contribució de diferents respostes a estrès a la tolerància a l'estrès en una espècie donada, hem dut a terme estudis comparatius sobre les respostes a la sequera i la salinitat, en un nombre de taxons relacionats genèticament amb diferents potencials de tolerància. Metodologia L'enfocament experimental es va basar principalment en i) establir la tolerància relativa a l'estrès hídric i a l'estrès salí en les espècies estudiades, a partir de la seua distribució en la naturalesa (en el cas d'espècies silvestres) i atenent a la inhibició relativa de el seu creixement en presència d'estrès, i ii) correlacionar canvis en els nivells de 'marcadors bioquímics d'estrès' associats a vies específiques de resposta (transport d'ions, acumulació d'osmolits ...) induïts pels tractaments d'estrès, amb la tolerància relativa a estrès de les plantes, prèviament establert. Aquesta estratègia ha resultat ser apropiada per a distingir meres respostes generals a estrès dels mecanismes rellevants per a la tolerància a estrès de les espècies i conreus investigats. El treball també llança llum sobre altres aspectes afectats per l'estrès salí, específicament en relació amb la germinació i l'èxit reproductiu, o canvis anatòmics en les plantes tractades amb sal. També es van estudiar els patrons d'expressió del gen NHX1, que codifica un anti-portador vacuolar Na+/H+, en les espècies de Plantago, com un primer pas en la caracterització completa d'aquest transportador d'ions, que sembla exercir un paper important en els mecanismes de tolerància a sal en aquest gènere. Conclusió Els resultats obtinguts en aquest treball contribueixen a una millor comprensió dels mecanismes generals de tolerància a l'estrès en plantes, i proporcionen idees clares sobre els mecanismes que confereixen tolerància, en concret, a la sequera i a l'estrès salí, en algunes espècies silvestres i conreades. Aquest treball també llança més llum sobre les respostes a estrès altament eficients en halòfites, plantes que podrien ser vistes com la resposta de la naturalesa a les condicions ambientals adverses abans esmentades, a través de l'evolució i l'adaptació. Per tant, les halòfites poden ser considerades com una font adequada - infrautilitzada en l'actualitat, en la nostra opinió - de coneixement, recursos genètics i eines biotecnològiques per a la necessària millora de la tolerància a l'estrès en plantes conreades.
Al Hassan, M. (2016). Comparative analyses of plant responses to drought and salt stress in related taxa: A useful approach to study stress tolerance mechanisms [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/61985
TESIS
Kader, Md Abdul. "Salt stress in rice : adaptive mechanisms for cytosolic sodium homeostasis /." Ultuna : Dept. of Plant Biology and Forest Genetics, Swedish University of Agricultural Sciences, 2006. http://epsilon.slu.se/200657.pdf.
Full textBerhaut, Christopher Logan. "Propriétés de transport des sels de lithium LiTDI et LiFSI : application à la formulation d'électrolytes optimisés pour batteries Li-ion." Thesis, Tours, 2016. http://www.theses.fr/2016TOUR4017/document.
Full textMost of the Li-ion batteries used in electrical devices contain a solution of LiPF6 in alkylcarbonate solvents with the risk of releasing PF5 at elevated temperatures and HF in the presence of water. Several salts are candidates for the replacement of LiPF6, including those based on fluorosulfonylamides and Hückel anions. This work concerns the study of physicochemical and transport properties of lithium 4,5-dicyano-2- (trifluoromethyl)imidazolide (LiTDI) and lithium bis(fluorosulfonyl)amide (LiFSI) based electrolytes and their use in Li-ion battery. First it was revealed that LiTDI is only weakly dissociated in alkylcarbonate mixtures used in Li-ion batteries such as EC/DMC limiting its conductivity. To overcome this disadvantage, a study of the solvation phenomena and of ionic association within the electrolytes was conducted. This study led to a ternary mixture of solvents (EC/GBL/MP) in which LiTDI is more dissociated. This new solvent mixture improves both the transport properties and the thermal stability of the LiTDI based electrolyte without compromising its chemical and electrochemical stability. Finally, the new LiTDI in EC/GBL/MP electrolyte was tested in NMC/graphite batteries under normal (C/10 rate and room temperature) and severe (10C rate and temperatures varying from - 20 ° C to 60 °C) operating conditions. The aluminium corrosion problem encountered by LiFSI based electrolytes was taken into account and a LiTDI/LiFSI salt mixture based electrolyte showing promising results was presented. The findings of this thesis show that LiTDI or LiFSI can be used as lithium salts in electrolytes for Li-ion batteries
Guerrero, Galan Maria del Carmen. "Impact of the ectomycorrhizal symbiosis for plant adaptation to nutritional and salt stress : characterization and role of potassium channels in the model fungus Hebeloma cylindrosporum." Thesis, Montpellier, 2017. http://www.theses.fr/2017MONTT142.
Full textThe ectomycorrhizal symbiosis, widespread in temperate and boreal ecosystems, is based in nutritional exchanges between the host plant and soil-borne fungi. This mutualism improves plant mineral and water nutrition of woody plants through mechanisms that are still largely unknown. This manuscript presents the whole set of membrane transport systems of the ectomycorrhizal fungus Hebeloma cylindrosporum identified from the sequenced genome, with an emphasis on the genes that are up-regulated in symbiosis with its natural host, the maritime pine (Pinus pinaster). These data will help to focalize future research on symbiosis-induced genes. The fungus H. cylindrosporum enhances the potassium (K+) nutrition of P. pinaster under starvation. This study has focused on three ion channels that could transfer the K+ to the plant. These channels belong to the fungal-specific TOK (Tandem-pore Outward-rectifying K+) family and have been characterized using several approaches. In silico analyses have positioned them in two subfamilies, giving them the names HcTOK1, HcTOK2.1 and HcTOK2.2. Their functional activity has been characterized by heterologous expression for two-electrode voltage-clamp measurements and yeast complementation. Localization has been studied by in situ hybridization in mycorrhiza and by expression of gene-eGFP constructs in yeast and H. cylindrosporum. The physiological role of these channels has been tested in pure culture and symbiosis with transgenic fungal lines overexpressing the HcTOK channels. Furthermore, the effects of H. cylindrosporum and K+ nutrition have been tested in P. pinaster seedlings subjected to salt stress. First, the tolerance to salinity of the fungus was analysed in pure culture with different compounds to identify the most toxic component. Second, the fungus was cultured in different NaCl and K+ conditions to know whether it kept the homeostasis and to check the expression of K+ transport systems. Finally, P. pinaster seedlings were cultured inoculated or not in two different K+ nutrition and four salinity conditions. Altogether, analysis of the three HcTOK channels revealed specificities of the TOK1- and TOK2-type and suggested that HcTOK2.2 might be a main player for the K+ transfer from the fungus towards the plant. H. cylindrosporum seems to play a role in the tolerance to salt stress of the maritime pine by reducing the Na+ transfer to the plant and improving K+ nutrition
Sayah, Simon. "Impact de la formulation d'électrolytes sur les performances d'une électrode négative nanocomposite silicium-étain pour batteries Li-ion." Thesis, Tours, 2017. http://www.theses.fr/2017TOUR4025/document.
Full textThis study focuses on new electrolytes and additives in order to improve the cyclability of a Si0.32Ni0.14Sn0.17Al0.04C0.35 negative composite electrode (Si-Sn) and to obtain a stable electrolyte|electrolyte interface. Indeed, like most silicon-based materials, this high-capacity Si-Sn composite (over 600 mA.hg-1) currently suffers from a short cycle life due to volume expansion during charge-discharge processes leading to the degradation of the SEI. To improve the quality of the interface, two kinds of electrolytes were evaluated: (i) mixtures of alkyl carbonates EC/PC/3DMC in which a lithium salt (LiPF6, LiTFSI, LiFSI or LiDFOB) and additives like SEI builder (vinylene carbonate (VC) or fluoroethylene carbonate (FEC)) were added, (ii) ionic liquids (IL) based on quaternary ammonium (N1114+), imidazolium (EMI+) or pyrrolidinium (PYR+) cation, associated with delocalized charge anions such as bis(trifluoromethanesulfonyl)imide (TFSI-) or bis(fluorosulfonyl)imide (FSI-). The Walden diagram confirms the efficient dissociation of LiFSI and LiPF6 in EC/PC/3DM ensuring ionic conductivities as high as 12 mS.cm-1. Although possessing limited transport properties in such a ternary mixture compared to other salts, LiDFOB forms, without additional additives, an high quality SEI allowing the composite to provide the best performances in half cells (560 mA.hg-1 and 98.4% coulombic efficiency). The use of additive is however necessary to reach the objectives fixed by the ANR research project in terms of coulombic efficiency (>99.5%). In this case, the addition of 2%VC+10%FEC to the ternary mixture is the most interesting composition with LiPF6 as lithium salt. So, the Si-Sn nanocomposite material reaches 550 mA.h.g-1 during 100 cycles at C/5 with 99.8% efficiency. In IL, the best performances are achieved in [EMI][FSI]/LiFSI (1 mol.L-1). The performances of the Si-Sn composite reaches 635 mA.h.g-1 for 100 cycles at C/5 with coulombic efficiency close to 100%, without additives. This electrolyte formulation generates a stable SEI which the mainly mineral composition, is predominantly derived from the reduction products of FSI-
Shen, Kuan-Hsuan. "Modeling ion conduction through salt-doped polymers: Morphology, ion solvation, and ion correlations." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1595422569403378.
Full textDaher, Ibrahim. "Salt transport experiments in fractured media." Thesis, Imperial College London, 2016. http://hdl.handle.net/10044/1/45285.
Full textVenter, Jason Stephen. "Salt River multi modal transport interchange." Master's thesis, University of Cape Town, 2011. http://hdl.handle.net/11427/5580.
Full textIncludes bibliographical references.
South African cities have unique spatial design challenges which can be attributed to our historical and politically charged urban planning practices. Our cities are characterised by modernist town planning principles which have fragmented communities through spatial barriers such as highways, train lines and fences while current development perpetuates urban sprawl. Due to these circumstances many contemporary urban design policies promote densification strategies through transit orientated approaches.In my thesis project, I propose to redesign Salt River Train Station into a multi modal transport interchange. I argue that this multimodal interchange can have an urban developmental and regenerative effect that can address some of the challenges faced in our urban landscape. This design report will attempt to document the processes and explorative methods that I have incorporated during this design process.
Aloy, i. Lleonart Merce. "Leaf ion concentrations and salt tolerance in barley." Thesis, Bangor University, 1994. https://research.bangor.ac.uk/portal/en/theses/leaf-ion-concentrations-and-salt-tolerance-in-barley(b9c4ca87-24dd-424d-b5f6-7c8f24c3a886).html.
Full textBooks on the topic "Salt and ion transport"
Environment, Alberta Alberta. Evaluation of computer models for predicting the fate and transport of salt in soil and groundwater. [Edmonton]: Science and Standards Branch, Alberta Environment, 2003.
Find full textTill, E. Calculation of the radiation transport in rock salt using Monte Carlo methods: Final report (HAW Project). Neuherberg: GSF-Forschungszentrum für Umwelt und Gesundheit, Institut für Strahlenschutz, 1994.
Find full textLawson, Daniel E. Physical processes and natural attenuation alternatives for remediation of white phosphorus contamination, Eagle River Flats, Fort Richardson, Alaska. [Hanover, N.H.]: US Army Corps of Engineers, Cold Regions Research & Engineering Laboratory, 1996.
Find full textScrosati, Bruno. Fast ion transport in solids. Dordrecht: Springer, 1993.
Find full textClauss, Wolfgang, ed. Ion Transport in Vertebrate Colon. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-77118-7.
Full textScrosati, B., A. Magistris, C. M. Mari, and G. Mariotto, eds. Fast Ion Transport in Solids. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1916-0.
Full textElectrogenic ion pumps. Sunderland, Mass., U.S.A: Sinauer Associates, 1991.
Find full textW, Wilson John. Nonperturbative methods in HZE ion transport. Hampton, Va: Langley Research Center, 1993.
Find full textFink, Dietmar. Transport Processes in Ion-Irradiated Polymers. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-10608-2.
Full textFink, Dietmar. Transport Processes in Ion-Irradiated Polymers. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004.
Find full textBook chapters on the topic "Salt and ion transport"
Yun, Ping, and Sergey Shabala. "Ion Transport in Salt Glands and Bladders in Halophyte Species." In Handbook of Halophytes, 1–19. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-17854-3_76-1.
Full textYun, Ping, and Sergey Shabala. "Ion Transport in Salt Glands and Bladders in Halophyte Species." In Handbook of Halophytes, 1859–76. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-57635-6_76.
Full textDjanaguiraman, Maduraimuthu, and P. V. Vara Prasad. "Effects of Salinity on Ion Transport, Water Relations and Oxidative Damage." In Ecophysiology and Responses of Plants under Salt Stress, 89–114. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-4747-4_3.
Full textSchlatter, E., and R. Greger. "NaCl Transport in Salt Glands." In NaCl Transport in Epithelia, 273–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73285-0_7.
Full textDuPont, F. M. "Salt-Induced Changes in Ion Transport: Regulation of Primary Pumps and Secondary Transporters." In Transport and Receptor Proteins of Plant Membranes, 91–100. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3442-6_8.
Full textSerrano, Ramón. "Yeast Halotolerance Genes: Crucial Ion Transport and Metabolic Reactions in Salt Tolerance." In Biochemical and Cellular Mechanisms of Stress Tolerance in Plants, 371–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-79133-8_23.
Full textTomlinson, S. M., C. R. A. Catlow, and J. H. Harding. "Defect Clustering In Rock-Salt Structured Transition Metal Oxides." In Transport in Nonstoichiometric Compounds, 539–50. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4613-2519-2_41.
Full textYates, S. R., R. Zhang, P. J. Shouse, and M. Th van Genuchten. "Use of Geostatistics in the Description of Salt-Affected Lands." In Water Flow and Solute Transport in Soils, 283–304. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-77947-3_18.
Full textStassart, J. M. "Ionic composition and metabolic changes in salt stressed roots." In Structural and Functional Aspects of Transport in Roots, 247–49. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-0891-8_46.
Full textHebert, Steven C., and Thomas E. Andreoli. "The Effects of ADH on Salt and Water Transport in the Mammalian Nephron." In Membrane Transport Processes in Organized Systems, 317–27. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4684-5404-8_15.
Full textConference papers on the topic "Salt and ion transport"
Duan, Chuanhua, and Arun Majumdar. "Ion Transport in 2-NM Nanochannels." In ASME 2009 7th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2009. http://dx.doi.org/10.1115/icnmm2009-82190.
Full textHijikata, Takatoshi, and Tadafumi Koyama. "Transport of High-Temperature Molten Salt Slurry for Pyro-Reprocessing." In 17th International Conference on Nuclear Engineering. ASMEDC, 2009. http://dx.doi.org/10.1115/icone17-75379.
Full textRahimi, Arman, T. Metzger, A. Kharaghani, and E. Tsotsas. "Discrete modeling of ion transport and crystallization in layered porous media during drying." In 21st International Drying Symposium. Valencia: Universitat Politècnica València, 2018. http://dx.doi.org/10.4995/ids2018.2018.7415.
Full textBalasubramanian, Ganesh, Mehdi Ghommem, Muhammad R. Hajj, William P. Wong, Jennifer A. Tomlin, and Ishwar K. Puri. "Thermochemical Energy Storage Using Salt Hydrates." In ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-39779.
Full textKelly, Bruce, Henry Price, Doug Brosseau, and David Kearney. "Adopting Nitrate/Nitrite Salt Mixtures as the Heat Transport Fluid in Parabolic Trough Power Plants." In ASME 2007 Energy Sustainability Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/es2007-36172.
Full textHijikata, Takatoshi, and Tadafumi Koyama. "Development of High Temperature Transport Technologies for Molten Salt and Liquid Cadmium in Pyrometallurgical Reprocessing." In 16th International Conference on Nuclear Engineering. ASMEDC, 2008. http://dx.doi.org/10.1115/icone16-48355.
Full textCanova, David P., Mark P. Fischer, Ryan Pollyea, and Rick Jayne. "ADVECTIVE HEAT TRANSPORT AND THE SALT CHIMNEY EFFECT: A NUMERICAL ANALYSIS." In GSA Annual Meeting in Denver, Colorado, USA - 2016. Geological Society of America, 2016. http://dx.doi.org/10.1130/abs/2016am-281487.
Full textClifton, Rebecca L., Carlos A. Rios Perez, Rachel Naylor, and Carlos Hidrovo. "Characterization of Ion Transport and -Sorption in a Carbon Based Porous Electrode for Desalination Purposes." In ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels collocated with the ASME 2012 Heat Transfer Summer Conference and the ASME 2012 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/icnmm2012-73183.
Full textQin, Hao, Chenglong Wang, Suizheng Qiu, Dalin Zhang, Wenxi Tian, and Guanghui Su. "Tritium Transport Characteristics Analysis in Molten Salt Reactor Under Transient Conditions." In 2018 26th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/icone26-81728.
Full textLuo, X. L., Z. L. Gu, J. Chai, X. Z. Meng, Z. Lu, and B. X. Zhu. "Investigation on Moisture and Salt Transport in Heterogeneous Porous Media of Relics-Soil in Archaeology Museum." In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-39488.
Full textReports on the topic "Salt and ion transport"
Jordan, Amy B., Hakim Boukhalfa, Florie Andre Caporuscio, and Philip H. Stauffer. Brine Transport Experiments in Granular Salt. Office of Scientific and Technical Information (OSTI), June 2016. http://dx.doi.org/10.2172/1257087.
Full textHwang, Y., W. W. L. Lee, P. L. Chambre, and T. H. Pigford. Mass transport in salt repositories: Steady-state transport through interbeds. Office of Scientific and Technical Information (OSTI), March 1989. http://dx.doi.org/10.2172/5497096.
Full textTaiz, L. [Tonoplast transport and salt tolerance in plants]. Office of Scientific and Technical Information (OSTI), January 1993. http://dx.doi.org/10.2172/6653558.
Full textTaiz, L. [Tonoplast transport and salt tolerance in plants]. Progress report. Office of Scientific and Technical Information (OSTI), April 1993. http://dx.doi.org/10.2172/10141769.
Full textHwang, Y., W. W. L. Lee, P. L. Chambre, and T. H. Pigford. Mass transport in salt repositories: Transient diffusion into interbeds. Office of Scientific and Technical Information (OSTI), May 1989. http://dx.doi.org/10.2172/5384909.
Full textBulusu, Subrahmanyam. Northern Indian Ocean Salt Transport (NIOST): Estimation of Fresh and Salt Water Transports in the Indian Ocean using Remote Sensing, Hydrographic Observations and HYCOM Simulations. Fort Belvoir, VA: Defense Technical Information Center, September 2013. http://dx.doi.org/10.21236/ada598535.
Full textWelch, T. D. Tank Waste Transport Stability: Summaries of Hanford Slurry and Salt-Solution Studies in FY 2000. Office of Scientific and Technical Information (OSTI), July 2002. http://dx.doi.org/10.2172/814393.
Full textPattrick Calderoni. An experimental test plan for the characterization of molten salt thermochemical properties in heat transport systems. Office of Scientific and Technical Information (OSTI), September 2010. http://dx.doi.org/10.2172/1000534.
Full textHo, D. D. M., and R. M. Kulsrud. Ion transport in stellarators. Office of Scientific and Technical Information (OSTI), September 1985. http://dx.doi.org/10.2172/5142094.
Full textFondeur, F. F. Crystalline Silicotitanate Ion Exchange Support for Salt-Alternatives. Office of Scientific and Technical Information (OSTI), February 2001. http://dx.doi.org/10.2172/775072.
Full text