Academic literature on the topic 'Safety Processes'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Safety Processes.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Safety Processes"
Maas, Ulrich, Detlev Markus, and Matthias Olzmann. "Safety-Relevant Ignition Processes." Zeitschrift für Physikalische Chemie 231, no. 10 (October 26, 2017): 1599–602. http://dx.doi.org/10.1515/zpch-2017-5001.
Full textShvartsburg, L. E., N. A. Ivanova, S. A. Ryabov, E. V. Butrimova, S. I. Gvozdkova, O. V. Yagol’nitser, D. I. Kulizade, and V. A. Grechishnikov. "Safety of Machining Processes." Russian Engineering Research 40, no. 12 (December 2020): 1055–57. http://dx.doi.org/10.3103/s1068798x20120175.
Full textMason, Eileen. "Safety Assessment for Chemical Processes." Chemical Health and Safety 8, no. 1 (January 2001): 38. http://dx.doi.org/10.1016/s1074-9098(00)00181-7.
Full textGrossel, Stanley S. "Safety Assessment for Chemical Processes." Journal of Loss Prevention in the Process Industries 13, no. 2 (March 2000): 179–80. http://dx.doi.org/10.1016/s0950-4230(99)00073-x.
Full textLaird, Trevor. "Safety of Chemical Processes 11." Organic Process Research & Development 15, no. 6 (November 18, 2011): 1406. http://dx.doi.org/10.1021/op200273h.
Full textCapelli-Schellpfeffer, Mary. "Irreversible Thermodynamic Processes [Electrical Safety." IEEE Industry Applications Magazine 16, no. 3 (May 2010): 8. http://dx.doi.org/10.1109/mias.2010.936533.
Full textEbrahimi, F., T. Virkki-Hatakka, and I. Turunen. "Safety analysis of intensified processes." Chemical Engineering and Processing: Process Intensification 52 (February 2012): 28–33. http://dx.doi.org/10.1016/j.cep.2011.12.004.
Full textRessler, Galen. "Application of System Safety Engineering Processes to Advanced Battery Safety." SAE International Journal of Engines 4, no. 1 (April 12, 2011): 1921–27. http://dx.doi.org/10.4271/2011-01-1369.
Full textGarrick, Renee, and Rishikesh Morey. "Dialysis Facility Safety: Processes and Opportunities." Seminars in Dialysis 28, no. 5 (June 14, 2015): 514–24. http://dx.doi.org/10.1111/sdi.12395.
Full textCaseley, Paul, Graham Clark, John Murdoch, and Antony Powell. "2.6.4 Measurement of System Safety Processes." INCOSE International Symposium 13, no. 1 (July 2003): 846–53. http://dx.doi.org/10.1002/j.2334-5837.2003.tb02664.x.
Full textDissertations / Theses on the topic "Safety Processes"
Lucic, Ivan. "Risk and safety in engineering processes." Thesis, City University London, 2010. http://openaccess.city.ac.uk/8719/.
Full textKamtekar, Darshana M. "Implementation of functional safety in a robotic manufacturing cell using IEC 61508 standard and Siemens technology /." Online version of thesis, 2009. http://hdl.handle.net/1850/11174.
Full textCastellanos, Ardila Julieth Patricia. "Facilitating Automated Compliance Checking of Processes against Safety Standards." Licentiate thesis, Mälardalens högskola, Inbyggda system, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-42752.
Full textAMASS
Huang, Haitao. "Quantitative analysis of chemical processes for safety and flexibility." Thesis, Imperial College London, 2003. http://hdl.handle.net/10044/1/7476.
Full textMattsson, Olle. "Quantified safety modeling of autonomous systems with hierarchical semi-Markov processes." Thesis, KTH, Optimeringslära och systemteori, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-276959.
Full textMatematiska sannolikhetsmodeller används inom kvantifierad säkerhetsteknik för att utvärdera risken för fel eller farliga olyckor i system. Ett vanligt sätt att analysera säkerheten i system som kan modelleras som stokastiska processer med diskreta tillstånd är att använda Markovprocesser. I tidskontinuerliga Markovprocesser är tidsövergången mellan tillstånd exponentialfördelade. Semi-Markov processer utökar denna modelleringsteknik ytterligare genom att tillåta tidsövergångar som är fördelade enligt alla möjliga fördelningar. Detta examensarbete har som mål att utöka modelleringsmöjligheterna med Semi-Markov processer genom att tillåta hierarkiska tillstånd, som därmed ytterligare utmanar antaganden inom Markov-modeller genom att bibehålla minne efter tillståndsövergång. För att uppnå detta föreslås i denna rapport en metod som använder phase-type-fördelningen för att byta ut Markovkedjor med ett enda tillstånd. För att tillämpa metoden visas hur semi-Markov kedjor kan utvärderas med hjälp av Laplace-Stieltjes-transformen. För att kunna ersätta semi-Markov kedjor med samma metod presenteras även en approximationsmetod för att åter igen använda phase-type-fördelningen. Detta görs genom att använda Laplace-Stieltjes-transformen för att generera momenten av tiden till absorption i semi-Markov processer, och anpassa dessa till momenten av en phase-type-fördelning. För att utvärdera metoderna presenteras en del exempel. Analytiska resultat jämförs med Monte-Carlo simulering och inverteringsmetoder för Laplace-transformen. Resultaten används för att visa hur hierarkiska Markov modeller kan ersättas exakt, och hur semi-Markov processer kan approximeras med varierande noggrannhet. En viktig slutsats är att genom att tillåta hierarkisk modellering är det möjligt att utvärdera säkerheten i system som kräver mer realistiska modeller, då detta öppnar upp för mer komplexitet.
Kaalen, Stefan. "Semi-Markov processes for calculating the safety of autonomous vehicles." Thesis, KTH, Matematisk statistik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-252331.
Full textFlertalet tillverkare av vägfordon jobbar idag på att utveckla autonoma fordon. Ett ämne ofta på agendan i diskussionen om att integrera autonoma fordon på vägarna är säkerhet. Det finns i sammanhanget ingen klar bild över hur säkerhet ska kvantifieras. Som ett bidrag till denna diskussion föreslås här att beskriva varje potentiellt farlig situation av ett fordon som en Semi-Markov process (SMP). En metod presenteras för att via beräkning av funktionssäkerheten nyttja semi-Markov representationen för att beräkna sannolikheten för att en farlig situation ska uppstå. Metoden nyttjar Laplace-Stieltjes transformen för att förenkla uttrycket för funktionssäkerheten och beräknar transformen av funktionssäkerheten exakt. Numeriska algoritmer för den inversa transformen appliceras sedan för att beräkna funktionssäkerheten upp till en viss feltolerans. Metoden valideras genom alternativa tekniker och appliceras sedan på ett system för autonom styrning baserat på ett riktigt exempel från industrin. En fördelaktig utveckling av metoden som presenteras här skulle vara att involvera ett ramverk för hur varje potentiellt farlig situation ska representeras som en SMP.
Thörn, Jonathan. "Test Framework Quality Assurance: Augmenting Agile Processes with Safety Standards." Thesis, Mälardalens högskola, Akademin för innovation, design och teknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-48188.
Full textMcEwen, Timothy Ryan. "Creating Safety in the Diagnostic Testing Processes of Family Medical Practices." Wright State University / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=wright1243428996.
Full textStephen, Cynthia. "Impediments to Effective Safety Risk Assessment of Safety Critical Systems: An Insight into SRM Processes and Expert Aggregation." Thesis, Virginia Tech, 2020. http://hdl.handle.net/10919/99144.
Full textMaster of Science
Safety risk assessment forms an important part of the design and development of Safety Critical Systems. Safety Critical Systems are those systems whose failure could potentially result in the loss of human life. Commonly in these systems, standards and policies have been developed to prescribe processes for safety risk assessment. These standards provide guidelines, references and structure to personnel involved in the risk assessment process. However, in some of these standards, the prescribed methods for safety decision making were found to be deficient in some respects. Two such deficiencies have been addressed in this thesis. First, when different safety metrics are required to be combined to provide information for a safety related decision, the current practices of the safety risk assessment do not yield consistent recommendations. Second, in the safety risk assessment process, often multiple experts are consulted to provide their judgment on the criticality of a potential safety risk of the system. The standards and policies that are currently being used, do not provide clear instructions on how to synthesize the judgements of multiple experts. This lack of clear guidelines could potentially lead to an incorrect final judgement on the criticality of the risk and ultimately result in choosing an improper method to reduce the safety risk. This thesis addresses both these concerns present in safety risk assessment process of Safety Critical Systems. For the problem of combining safety metrics, three approaches have been proposed. Two of the proposed approaches make use of normative decision analysis practices and therefore the recommendations reached using these methods will be consistent with the safety objective of the decision maker. The third approach makes use of a traditional concept called -Pareto Analysis which provides a visual method to analyze the advantages and drawbacks of a given safety concern for a system. For problems in combining the judgements of multiple experts a variety of methods was studied. The methods include group consensus and mathematical techniques and the implications of using these methods in safety risk assessment was discussed. The FAA and the U.S. Navy's standard documents and policies were used to frame the discussions. This thesis has two main contributions. First, it evaluates the use of Normative Decision Analysis methods in safety decision process of Safety Critical Systems. It provides guidelines to decision makers on how to meaningfully use and/or combine different safety metrics in the decision process. Second, it identifies the best practices and methods of aggregating expert assessments pertaining to safety decision making.
Van, der Merwe Jacobus Johannes. "An assessment of the safety culture in a manufacturing plant." Thesis, Stellenbosch : Stellenbosch University, 2015. http://hdl.handle.net/10019.1/97365.
Full textENGLISH ABSTRACT: Manufacturing plants should strive towards achieving and maintaining good safety records. It is however difficult for plants to identify specific safety problem areas that can be improved on. One way to identify specific safety areas that needs improvement is by conducting a safety culture survey. A manufacturing plant within South Africa realised the need to improve on its safety performance. However, it was not clear which aspects of its work and safety related practices were at risk. Management therefore decided to obtain an assessment of the safety culture profile of the plant. The assessment was done by way of a plant-wide safety culture survey. The safety culture questionnaire was developed, as part of this research, through an in-house consultation process. This process resulted in identifying 16 different safety-related themes. With the help of literature, these themes were further explored to design the questionnaire. The identified safety themes were measured during the survey and results obtained for each of the plant’s identified safety practices. The survey also provided an overall mean score of the plant’s safety culture, providing management with a better understanding of where they stand in their safety improvement journey. The plant’s equipment, materials and tools; overall rules and regulations; environment, health and safety suggestions; rewards and reinforcement; and management involvement practices was identified as practices that require an immediate response. The plant’s incident reporting and investigation, discipline and training safety practices were identified as less urgent risks.
Books on the topic "Safety Processes"
Steinbach, Jörg. Safety assessment for chemical processes. Weinheim: Wiley-VCH, 1999.
Find full textLucic, Ivan. Risk and safety in engineering processes. Newcastle upon Tyne: Cambridge Scholars Publishing, 2015.
Find full textLimnios, N. Semi-Markov Processes and Reliability. Boston, MA: Birkhäuser Boston, 2001.
Find full textElectrical and instrumentation safety for chemical processes. New York: Van Nostrand Reinhold, 1991.
Find full textBuschart, Richard J. Electrical and Instrumentation Safety for Chemical Processes. Boston, MA: Springer US, 1992.
Find full textAccredited Standards Committee Z49, Safety in Welding and Cutting. Safety in welding, cutting, and allied processes. Miami, Fla: The Society, 1999.
Find full textAccredited Standards Committee Z49, Safety in Welding and Cutting. Safety in welding, cutting, and allied processes. Miami, Fla: The Society, 1994.
Find full textBuschart, Richard J. Electrical and Instrumentation Safety for Chemical Processes. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4684-6620-1.
Full textLean safety: Transforming your safety program with lean management. Boca Raton, Fla: Productivity Press, 2010.
Find full textThompson, W. A. Point process models with applications to safety and reliability. London: Chapman and Hall, 1988.
Find full textBook chapters on the topic "Safety Processes"
Hungerbühler, Konrad, Justin M. Boucher, Cecilia Pereira, Thomas Roiss, and Martin Scheringer. "Thermal Process Safety." In Chemical Products and Processes, 199–217. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-62422-4_8.
Full textCipriano, Mary L., Marian Downing, and Brian R. Petuch. "Biosafety Considerations for Large-Scale Processes." In Biological Safety, 597–617. Washington, DC, USA: ASM Press, 2016. http://dx.doi.org/10.1128/9781555819637.ch32.
Full textRenn, O., and M. Dreyer. "The Processes Evaluation and Management." In Food Safety Governance, 71–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-69309-3_6.
Full textSilva, Titus De. "SP 016 Safety and Wellbeing." In Integrating Business Management Processes, 336–38. New York, NY : Routledge, 2020.: Productivity Press, 2020. http://dx.doi.org/10.4324/9781003042846-85.
Full textSavkovic-Stevanovic, Jelenka. "Process Safety in Chemical Processes." In Process Plant Equipment, 489–584. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118162569.ch19.
Full textWolf, Marilyn, and Dimitrios Serpanos. "Safety and Security Design Processes." In Safe and Secure Cyber-Physical Systems and Internet-of-Things Systems, 11–33. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-25808-5_2.
Full textBuschart, Richard J. "Electrical Safety in Chemical Processes." In Electrical and Instrumentation Safety for Chemical Processes, 71–147. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4684-6620-1_6.
Full textBuschart, Richard J. "Safety in Maintenance." In Electrical and Instrumentation Safety for Chemical Processes, 194–200. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4684-6620-1_10.
Full textBuschart, Richard J. "Process Control Safety." In Electrical and Instrumentation Safety for Chemical Processes, 159–79. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4684-6620-1_8.
Full textBiswas, Samarendra Kumar, Umesh Mathur, and Swapan Kumar Hazra. "Fundamentals of Fire Processes." In Fundamentals of Process Safety Engineering, 77–103. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003107873-3.
Full textConference papers on the topic "Safety Processes"
Anderson, Tom, Tim Ingram, Matthew Linsley, and Rachel Parratt. "Process Safety: Meaningful Processes That Need Mindful People." In SPE Offshore Europe Conference and Exhibition. Society of Petroleum Engineers, 2015. http://dx.doi.org/10.2118/175459-ms.
Full textSimon, Etienne L., Johannes C. Coetzee, Keith R. J. Browne, Eben Wiid, and Theodore Williams. "SALT integrated safety management system." In Observatory Operations: Strategies, Processes, and Systems VII, edited by Alison B. Peck, Chris R. Benn, and Robert L. Seaman. SPIE, 2018. http://dx.doi.org/10.1117/12.2313471.
Full textFreschi, Fabio, Luca Giaccone, and Massimo Mitolo. "Electrical safety in arc welding processes." In 2016 IEEE Industry Applications Society Annual Meeting. IEEE, 2016. http://dx.doi.org/10.1109/ias.2016.7731954.
Full textóurek, Józef, Mariusz Zieja, Jarosław Ziółkowski, and Anna Borucka. "Vehicle Operation Process Analysis using the Markov Processes." In Proceedings of the 29th European Safety and Reliability Conference (ESREL). Singapore: Research Publishing Services, 2019. http://dx.doi.org/10.3850/978-981-11-2724-3_0652-cd.
Full textMain, Bruce W., and Kristen J. McMurphy. "Safety Through Design: The State of the Art in Safety Processes." In International Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1999. http://dx.doi.org/10.4271/1999-01-0421.
Full textLukens, William Oran. "Continuously Improving Safety Processes for Energy Interests." In SPE International Conference on Health, Safety and Environment in Oil and Gas Exploration and Production. Society of Petroleum Engineers, 2000. http://dx.doi.org/10.2118/61052-ms.
Full textVilela, Jessyka, Jaelson Castro, Luiz Eduardo G. Martins, and Tony Gorschek. "Assessment of Safety Processes in Requirements Engineering." In 2018 IEEE 26th International Requirements Engineering Conference (RE). IEEE, 2018. http://dx.doi.org/10.1109/re.2018.00-25.
Full textWisniewski, Rafael, Christoffer Sloth, Manuela Bujorianu, and Nir Piterman. "Safety Verification of Piecewise-Deterministic Markov Processes." In HSCC'16: 19th International Conference on Hybrid Systems: Computation and Control. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2883817.2883836.
Full text"Developing Decision-Making Algorithm for Unmanned Vessel Navigation Using Markov Processes." In Maritime Safety International Conference. Clausius Scientific Press, 2019. http://dx.doi.org/10.23977/mastic.023.
Full textFickeisen, Frank C. "Improving the Effectiveness of Airplane Certification Analysis Processes." In Advances In Aviation Safety Conference & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2001. http://dx.doi.org/10.4271/2001-01-2664.
Full textReports on the topic "Safety Processes"
Sparkman, D. Techniques, processes, and measures for software safety and reliability. Version 3.0. Office of Scientific and Technical Information (OSTI), May 1992. http://dx.doi.org/10.2172/6801101.
Full textRichard W. Johnson, Richard R. Schultz, Patrick J. Roache, Ismail B. Celik, William D. Pointer, and Yassin A. Hassan. Processes and Procedures for Application of CFD to Nuclear Reactor Safety Analysis. Office of Scientific and Technical Information (OSTI), September 2006. http://dx.doi.org/10.2172/911721.
Full textButcher, Tom, and R. R. Seitz. SAFETY FUNCTIONS AND FEATURES, EVENTS AND PROCESSES FOR THE E-AREA PERFORMANCE ASSESSMENT. Office of Scientific and Technical Information (OSTI), February 2020. http://dx.doi.org/10.2172/1602973.
Full textLeishear, Robert A., Si Y. Lee, Michael R. Poirier, Timothy J. Steeper, Robert C. Ervin, Billy J. Giddings, David B. Stefanko, Keith D. Harp, Mark D. Fowley, and William B. Van Pelt. CFD [computational fluid dynamics] And Safety Factors. Computer modeling of complex processes needs old-fashioned experiments to stay in touch with reality. Office of Scientific and Technical Information (OSTI), October 2012. http://dx.doi.org/10.2172/1052822.
Full textVasanth K, Pooja, and Dwaipayan Banerjee. Operations SOP: How to Organise COVID Vaccination for 200-Person Educational Institutions / Small Organisations. Indian Institute for Human Settlements, 2021. http://dx.doi.org/10.24943/opssop.072021.
Full textAyres, D. A. Chemical process safety at fuel cycle facilities. Office of Scientific and Technical Information (OSTI), August 1997. http://dx.doi.org/10.2172/515582.
Full textTarko, Andrew P., Mario Romero, Cristhian Lizarazo, and Paul Pineda. Statistical Analysis of Safety Improvements and Integration into Project Design Process. Purdue University, 2020. http://dx.doi.org/10.5703/1288284317121.
Full textBowles Tomaszewski, Amanda. Defining the Process for a Criticality Safety Evaluation. Office of Scientific and Technical Information (OSTI), September 2020. http://dx.doi.org/10.2172/1659150.
Full textJayaweera, Indira S., David S. Ross, Theodore Mill, and Paul Penwell. Hydrothermolysis of Energetic Materials: Safety and Continuous Process Parameters. Fort Belvoir, VA: Defense Technical Information Center, June 1998. http://dx.doi.org/10.21236/ada359044.
Full textVAN KATWIJK, C. Seismic Test Specification for Safety Class CVD Process Hood Components. Office of Scientific and Technical Information (OSTI), June 2000. http://dx.doi.org/10.2172/803963.
Full text