Journal articles on the topic 'Saccharomyces cerevisiae, healthy aging'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Saccharomyces cerevisiae, healthy aging.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Su, Wei-Hsuan, Omar Ocegueda, Catherine Choi, Jessica Smith, Kelsey Lee, Yihan Wan, Jacqueline Yao, and Sam Schriner. "SPERMIDINE TOXICITY IN MITOCHONDRIAL DNA-DEFICIENT SACCHAROMYCES CEREVISIAE." Innovation in Aging 6, Supplement_1 (November 1, 2022): 444–45. http://dx.doi.org/10.1093/geroni/igac059.1740.
Full textWang, Shaoyu. "Leveraging budding yeast Saccharomyces cerevisiae for discovering aging modulation substances for functional food." Functional Foods in Health and Disease 9, no. 5 (May 30, 2019): 297. http://dx.doi.org/10.31989/ffhd.v9i5.575.
Full textStępień, Karolina, Dominik Wojdyła, Katarzyna Nowak, and Mateusz Mołoń. "Impact of curcumin on replicative and chronological aging in the Saccharomyces cerevisiae yeast." Biogerontology 21, no. 1 (October 28, 2019): 109–23. http://dx.doi.org/10.1007/s10522-019-09846-x.
Full textOgita, Akira, Wakae Murata, Marina Hasegawa, Ken Yamauchi, Akiko Sakai, Yoshihiro Yamaguchi, Toshio Tanaka, and Ken-ichi Fujita. "PROLONGATION OF HUMAN LIFESPAN BY IMMATURE PEAR EXTRACT MEDIATED SIRTUIN-RELATED GENE EXPRESSION." Innovation in Aging 3, Supplement_1 (November 2019): S97. http://dx.doi.org/10.1093/geroni/igz038.365.
Full textKitanovic, Ana, and Stefan Wölfl. "Fructose-1,6-bisphosphatase mediates cellular responses to DNA damage and aging in Saccharomyces cerevisiae." Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 594, no. 1-2 (February 2006): 135–47. http://dx.doi.org/10.1016/j.mrfmmm.2005.08.005.
Full textRomano, Patrizia, Giacomo Braschi, Gabriella Siesto, Francesca Patrignani, and Rosalba Lanciotti. "Role of Yeasts on the Sensory Component of Wines." Foods 11, no. 13 (June 28, 2022): 1921. http://dx.doi.org/10.3390/foods11131921.
Full textLiu, Gang, Lei Yu, Yordan Martínez, Wenkai Ren, Hengjia Ni, Naif Abdullah Al-Dhabi, Veeramuthu Duraipandiyan, and Yulong Yin. "Dietary Saccharomyces cerevisiae Cell Wall Extract Supplementation Alleviates Oxidative Stress and Modulates Serum Amino Acids Profiles in Weaned Piglets." Oxidative Medicine and Cellular Longevity 2017 (2017): 1–7. http://dx.doi.org/10.1155/2017/3967439.
Full textSilva, Rayssa H. da, Renata F. Barabasz, Monica C. Sustakowski, Odair J. Kuhn, Jeferson C. Carvalho, Willian dos Reis, José R. Stangarlin, and Vinícius H. D. de Oliveira. "Microbiolization of Seeds and Aerial Application With Yeasts for Disease Control in Wheat." Journal of Agricultural Science 12, no. 10 (September 15, 2020): 307. http://dx.doi.org/10.5539/jas.v12n10p307.
Full textHarris, Rachel E., and Troy A. A. Harkness. "Abstract B024: Increasing cellular longevity in budding yeast by activating the Anaphase Promoting Complex." Cancer Research 83, no. 2_Supplement_1 (January 15, 2023): B024. http://dx.doi.org/10.1158/1538-7445.agca22-b024.
Full textAl Bataineh, Mohammad Tahseen, Ayman Alzaatreh, Rima Hajjo, Bayan Hassan Banimfreg, and Nihar Ranjan Dash. "Compositional changes in human gut microbiota reveal a putative role of intestinal mycobiota in metabolic and biological decline during aging." Nutrition and Healthy Aging 6, no. 4 (April 13, 2022): 269–83. http://dx.doi.org/10.3233/nha-210130.
Full textNamkoong, Jin, Dale Kern, and Helen Knaggs. "Assessment of Human Skin Gene Expression by Different Blends of Plant Extracts with Implications to Periorbital Skin Aging." International Journal of Molecular Sciences 19, no. 11 (October 26, 2018): 3349. http://dx.doi.org/10.3390/ijms19113349.
Full textMołoń, Mateusz, Karolina Stępień, Patrycja Kielar, Bela Vasileva, Bonka Lozanska, Dessislava Staneva, Penyo Ivanov, et al. "Actin-Related Protein 4 and Linker Histone Sustain Yeast Replicative Ageing." Cells 11, no. 17 (September 3, 2022): 2754. http://dx.doi.org/10.3390/cells11172754.
Full textLewis, Kim. "Programmed Death in Bacteria." Microbiology and Molecular Biology Reviews 64, no. 3 (September 1, 2000): 503–14. http://dx.doi.org/10.1128/mmbr.64.3.503-514.2000.
Full textHolbrook, M. A., and J. R. Menninger. "Erythromycin Slows Aging of Saccharomyces cerevisiae." Journals of Gerontology Series A: Biological Sciences and Medical Sciences 57, no. 1 (January 1, 2002): B29—B36. http://dx.doi.org/10.1093/gerona/57.1.b29.
Full textKennedy, Brian K., and Leonard Guarente. "Genetic analysis of aging in Saccharomyces cerevisiae." Trends in Genetics 12, no. 9 (September 1996): 355–59. http://dx.doi.org/10.1016/s0168-9525(96)80018-7.
Full textCohen, Aviv, Esther Weindling, Efrat Rabinovich, Iftach Nachman, Shai Fuchs, Silvia Chuartzman, Lihi Gal, Maya Schuldiner, and Shoshana Bar-Nun. "Water-Transfer Slows Aging in Saccharomyces cerevisiae." PLOS ONE 11, no. 2 (February 10, 2016): e0148650. http://dx.doi.org/10.1371/journal.pone.0148650.
Full textLongo, Valter D., Gerald S. Shadel, Matt Kaeberlein, and Brian Kennedy. "Replicative and Chronological Aging in Saccharomyces cerevisiae." Cell Metabolism 16, no. 1 (July 2012): 18–31. http://dx.doi.org/10.1016/j.cmet.2012.06.002.
Full textPeters, Theodore W., Matthew J. Rardin, Gregg Czerwieniec, Uday S. Evani, Pedro Reis-Rodrigues, Gordon J. Lithgow, Sean D. Mooney, Bradford W. Gibson, and Robert E. Hughes. "Tor1 regulates protein solubility in Saccharomyces cerevisiae." Molecular Biology of the Cell 23, no. 24 (December 15, 2012): 4679–88. http://dx.doi.org/10.1091/mbc.e12-08-0620.
Full textD'Mello, N. P., and S. M. Jazwinski. "Telomere length constancy during aging of Saccharomyces cerevisiae." Journal of Bacteriology 173, no. 21 (1991): 6709–13. http://dx.doi.org/10.1128/jb.173.21.6709-6713.1991.
Full textChen, Xiao-Fen, Fei-Long Meng, and Jin-Qiu Zhou. "Telomere Recombination Accelerates Cellular Aging in Saccharomyces cerevisiae." PLoS Genetics 5, no. 6 (June 26, 2009): e1000535. http://dx.doi.org/10.1371/journal.pgen.1000535.
Full textBlomme, Arnaud, Allan Mac'Cord, Francis E. Sluse, and Gregory Mathy. "Proteomic evolution of Saccharomyces cerevisiae during chronological aging." Biochimica et Biophysica Acta (BBA) - Bioenergetics 1797 (July 2010): 58. http://dx.doi.org/10.1016/j.bbabio.2010.04.189.
Full textJazwinski, S. M. "Aging and senescence of the budding yeast Saccharomyces cerevisiae." Molecular Microbiology 4, no. 3 (March 1990): 337–43. http://dx.doi.org/10.1111/j.1365-2958.1990.tb00601.x.
Full textSetiyoningrum, F., G. Priadi, and F. Afiati. "Chemical properties of solo black garlic fermented by Saccharomyces cerevisiae." IOP Conference Series: Earth and Environmental Science 976, no. 1 (February 1, 2022): 012044. http://dx.doi.org/10.1088/1755-1315/976/1/012044.
Full textMcCleary, David F., and Jasper Rine. "Nutritional Control of Chronological Aging and Heterochromatin in Saccharomyces cerevisiae." Genetics 205, no. 3 (January 6, 2017): 1179–93. http://dx.doi.org/10.1534/genetics.116.196485.
Full textSorokin, Maksim, Dmitry Knorre, and Fedor Severin. "Early manifestations of replicative aging in the yeast Saccharomyces cerevisiae." Microbial Cell 1, no. 1 (January 6, 2014): 37–42. http://dx.doi.org/10.15698/mic2014.01.122.
Full textYiu, G., A. McCord, A. Wise, R. Jindal, J. Hardee, A. Kuo, M. Y. Shimogawa, et al. "Pathways Change in Expression During Replicative Aging in Saccharomyces cerevisiae." Journals of Gerontology Series A: Biological Sciences and Medical Sciences 63, no. 1 (January 1, 2008): 21–34. http://dx.doi.org/10.1093/gerona/63.1.21.
Full textAshrafi, K., D. Sinclair, J. I. Gordon, and L. Guarente. "Passage through stationary phase advances replicative aging in Saccharomyces cerevisiae." Proceedings of the National Academy of Sciences 96, no. 16 (August 3, 1999): 9100–9105. http://dx.doi.org/10.1073/pnas.96.16.9100.
Full textMacCord, Allan, Gregory Mathy, Pierre Leprince, Edwin de Pauw, and Francis E. Sluse. "S14.7 Impact of chronological aging on mitoproteome of Saccharomyces cerevisiae." Biochimica et Biophysica Acta (BBA) - Bioenergetics 1777 (July 2008): S101. http://dx.doi.org/10.1016/j.bbabio.2008.05.395.
Full textBitterman, Kevin J., Oliver Medvedik, and David A. Sinclair. "Longevity Regulation in Saccharomyces cerevisiae: Linking Metabolism, Genome Stability, and Heterochromatin." Microbiology and Molecular Biology Reviews 67, no. 3 (September 2003): 376–99. http://dx.doi.org/10.1128/mmbr.67.3.376-399.2003.
Full textKirchman, Paul A., Sangkyu Kim, Chi-Yung Lai, and S. Michal Jazwinski. "Interorganelle Signaling Is a Determinant of Longevity in Saccharomyces cerevisiae." Genetics 152, no. 1 (May 1, 1999): 179–90. http://dx.doi.org/10.1093/genetics/152.1.179.
Full textVelenosi, Matteo, Pasquale Crupi, Rocco Perniola, Antonio Domenico Marsico, Antonella Salerno, Hervè Alexandre, Nicoletta Archidiacono, Mario Ventura, and Maria Francesca Cardone. "Color Stabilization of Apulian Red Wines through the Sequential Inoculation of Starmerella bacillaris and Saccharomyces cerevisiae." Molecules 26, no. 4 (February 9, 2021): 907. http://dx.doi.org/10.3390/molecules26040907.
Full textBenetti, Fábia, Thanise Antunes Dias, Jorge Alberto Vieira Costa, and Telma Elita Bertolin. "Caloric restriction and Spirulina platensis extract against ferrous ion (Fe2+) in the aging of Saccharomyces cerevisiae cells deleted to the SIR2 gene." Research, Society and Development 9, no. 8 (July 24, 2020): e662986210. http://dx.doi.org/10.33448/rsd-v9i8.6210.
Full textArlia-Ciommo, Anthony, Anna Leonov, Amanda Piano, Veronika Svistkova, and Vladimir Titorenko. "Cell-autonomous mechanisms of chronological aging in the yeast Saccharomyces cerevisiae." Microbial Cell 1, no. 6 (June 2, 2014): 163–78. http://dx.doi.org/10.15698/mic2014.06.152.
Full textLefevre, Sophie D., Carlo W. Roermund, Ronald J. A. Wanders, Marten Veenhuis, and Ida J. Klei. "The significance of peroxisome function in chronological aging of Saccharomyces cerevisiae." Aging Cell 12, no. 5 (July 8, 2013): 784–93. http://dx.doi.org/10.1111/acel.12113.
Full textKaya, Alaattin, Alexei V. Lobanov, and Vadim N. Gladyshev. "Evidence that mutation accumulation does not cause aging in Saccharomyces cerevisiae." Aging Cell 14, no. 3 (February 22, 2015): 366–71. http://dx.doi.org/10.1111/acel.12290.
Full textvan der Laan, Kiran J., Julie Naulleau, Viraj G. Damle, Alina Sigaeva, Nicolas Jamot, Felipe P. Perona-Martinez, Mayeul Chipaux, and Romana Schirhagl. "Toward Using Fluorescent Nanodiamonds To Study Chronological Aging in Saccharomyces cerevisiae." Analytical Chemistry 90, no. 22 (October 22, 2018): 13506–13. http://dx.doi.org/10.1021/acs.analchem.8b03431.
Full textFabrizio, Paola, Luisa Battistella, Raffaello Vardavas, Cristina Gattazzo, Lee-Loung Liou, Alberto Diaspro, Janis W. Dossen, Edith Butler Gralla, and Valter D. Longo. "Superoxide is a mediator of an altruistic aging program in Saccharomyces cerevisiae." Journal of Cell Biology 166, no. 7 (September 27, 2004): 1055–67. http://dx.doi.org/10.1083/jcb.200404002.
Full textHa, Cheol Woong, and Won-Ki Huh. "The implication of Sir2 in replicative aging and senescence in Saccharomyces cerevisiae." Aging 3, no. 3 (March 13, 2011): 319–24. http://dx.doi.org/10.18632/aging.100299.
Full textBALOGU, TOCHUKWU VINCENT`. "YEAST DYNAMICS AND PHYSIOCHEMICAL EVALUATION OF CARROT WINE PRODUCED WITH Saccharomyces cerevisiae." Fungal Territory 3, no. 3 (August 13, 2020): 27–29. http://dx.doi.org/10.36547/ft.2020.3.3.27-29.
Full textBiliński, Tomasz, and Grzegorz Bartosz. "Hypothesis: cell volume limits cell divisions." Acta Biochimica Polonica 53, no. 4 (November 14, 2006): 833–35. http://dx.doi.org/10.18388/abp.2006_3313.
Full textYang, Emily J., and Liza A. Pon. "Enrichment of aging yeast cells and budding polarity assay in Saccharomyces cerevisiae." STAR Protocols 3, no. 3 (September 2022): 101599. http://dx.doi.org/10.1016/j.xpro.2022.101599.
Full textSamokhvalov, Victor, Vladimir Ignatov, and Marie Kondrashova. "Reserve carbohydrates maintain the viability of Saccharomyces cerevisiae cells during chronological aging." Mechanisms of Ageing and Development 125, no. 3 (March 2004): 229–35. http://dx.doi.org/10.1016/j.mad.2003.12.006.
Full textJakubowski, Witold, Tomasz Biliński, and Grzegorz Bartosz. "Oxidative stress during aging of stationary cultures of the yeast Saccharomyces cerevisiae." Free Radical Biology and Medicine 28, no. 5 (March 2000): 659–64. http://dx.doi.org/10.1016/s0891-5849(99)00266-x.
Full textO'Laughlin, Richard, Meng Jin, Yang Li, Lorraine Pillus, Lev S. Tsimring, Jeff Hasty, and Nan Hao. "Advances in quantitative biology methods for studying replicative aging in Saccharomyces cerevisiae." Translational Medicine of Aging 4 (2020): 151–60. http://dx.doi.org/10.1016/j.tma.2019.09.002.
Full textTahara, Erich B., Fernanda M. Cunha, Thiago O. Basso, Bianca E. Della Bianca, Andreas K. Gombert, and Alicia J. Kowaltowski. "Calorie Restriction Hysteretically Primes Aging Saccharomyces cerevisiae toward More Effective Oxidative Metabolism." PLoS ONE 8, no. 2 (February 11, 2013): e56388. http://dx.doi.org/10.1371/journal.pone.0056388.
Full textMolon, Mateusz, and Renata Zadrag-Tecza. "Effect of temperature on replicative aging of the budding yeast Saccharomyces cerevisiae." Biogerontology 17, no. 2 (October 20, 2015): 347–57. http://dx.doi.org/10.1007/s10522-015-9619-3.
Full textGrzelak, Agnieszka, Ewa Macierzyńska, and Grzegorz Bartosz. "Accumulation of oxidative damage during replicative aging of the yeast Saccharomyces cerevisiae." Experimental Gerontology 41, no. 9 (September 2006): 813–18. http://dx.doi.org/10.1016/j.exger.2006.06.049.
Full textMotizuki, Mitsuyoshi, and Kunio Tsurugi. "The effect of aging on protein synthesis in the yeast Saccharomyces cerevisiae." Mechanisms of Ageing and Development 64, no. 3 (July 1992): 235–45. http://dx.doi.org/10.1016/0047-6374(92)90081-n.
Full textKhandaker, AM, and A. Koc. "Deletion of mitochondrial inorganic pyrophosphatase gene extends life span in haploid yeast (Saccharomyces cerevisiae)." Journal of Biodiversity Conservation and Bioresource Management 3, no. 2 (April 25, 2018): 69–76. http://dx.doi.org/10.3329/jbcbm.v3i2.36030.
Full textBhattacharya, Somanon, Tejas Bouklas, and Bettina C. Fries. "Replicative Aging in Pathogenic Fungi." Journal of Fungi 7, no. 1 (December 25, 2020): 6. http://dx.doi.org/10.3390/jof7010006.
Full text