To see the other types of publications on this topic, follow the link: Saccharomyces cerevisiae, cell cycle, Snf1.

Dissertations / Theses on the topic 'Saccharomyces cerevisiae, cell cycle, Snf1'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Saccharomyces cerevisiae, cell cycle, Snf1.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

BUSNELLI, SARA. "Protein Kinase Snf1/AMPK: a new regulator of G1/S transition in Saccharomyces cerevisiae." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2013. http://hdl.handle.net/10281/40994.

Full text
Abstract:
The AMP-activated protein kinase (AMPK) family is a group of Serine/Threonine kinases highly conserved in eukaryotes, from yeast and insects to plants and mammals. Their primary role is the integration of signals regarding nutrient availability and environmental stresses, ensuring the adaptation to those conditions and cell survival (Hardie G., 2007; Ghillebert R. et al., 2011). As its homologue AMPK, in Saccharomyces cerevisiae Snf1 exists as a heterotrimeric complex. Core of this enzyme is the catalytic α subunit (Snf1), made up of a canonical catalytic domain in its N-terminus and of an aut
APA, Harvard, Vancouver, ISO, and other styles
2

NICASTRO, RAFFAELE. "Role of Snf1/AMPK as regulator of cell cycle, signal transduction and metabolism in Saccharomyces cerevisiae." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2015. http://hdl.handle.net/10281/68465.

Full text
Abstract:
Snf1 è una serina/treonina chinasi necessaria per il lievito S. cerevisiae per la crescita in condizioni di limitazione di nutrienti e per l’utilizzo di fonti di carbonio alternative al glucosio. Nel nostro laboratorio è stato precedentemente dimostrato che la mancanza di Snf1 causa un difetto nella transizione G1/S del ciclo cellulare e un difetto nell’espressione dei geni di fase G1 anche in condizioni di sufficienza nutrizionale (2% glucosio). È stato quindi approfondito il coinvolgimento di Snf1 in tre importanti processi cellulari: ciclo, trasduzione del segnale e metabolismo. Per dimos
APA, Harvard, Vancouver, ISO, and other styles
3

Kiser, Gretchen Louise. "Cell cycle checkpoint control in budding yeast Saccharomyces cerevisiae." Diss., The University of Arizona, 1995. http://hdl.handle.net/10150/187074.

Full text
Abstract:
Multiple checkpoint controls ensure that later cellular events are not initiated until previous cellular events have been successfully completed. Our laboratory studies the checkpoint at the G2/M boundary that ensures the integrity of chromosome transmission by blocking mitosis until DNA synthesis and repair is completed. The checkpoint-dependent cell division arrest is one of several prominent responses to DNA damage, which also includes transcriptional induction of damage-inducible genes and DNA repair. I undertook three projects that explore several aspects of the damage response: (1) I fur
APA, Harvard, Vancouver, ISO, and other styles
4

Gooding, Christopher Michael. "Mitochondrial DNA replication and transmission in Saccharomyces cerevisiae." Thesis, University of Hertfordshire, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.303447.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chotai, Dipti. "Cell cycle regulated expression of the DBF2 gene in Saccharomyces cerevisiae." Thesis, University of Hertfordshire, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.359005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bahman, A. M. "Studies on the CDC7 gene product of Saccharomyces cerevisiae." Thesis, University of Manchester, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.233154.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mapa, Claudine E. "Identification of Deubiquitinating Enzymes that Control the Cell Cycle in Saccharomyces cerevisiae." eScholarship@UMMS, 2018. https://escholarship.umassmed.edu/gsbs_diss/1004.

Full text
Abstract:
A large fraction of the proteome displays cell cycle-dependent expression, which is important for cells to accurately grow and divide. Cyclical protein expression requires protein degradation via the ubiquitin proteasome system (UPS), and several ubiquitin ligases (E3) have established roles in this regulation. Less is understood about the roles of deubiquitinating enzymes (DUB), which antagonize E3 activity. A few DUBs have been shown to interact with and deubiquitinate cell cycle-regulatory E3s and their protein substrates, suggesting DUBs play key roles in cell cycle control. However, in vi
APA, Harvard, Vancouver, ISO, and other styles
8

Mitteau, Romain. "Régulation par la phosphorylation d’un module Rho GTPase dans la levure Saccharomyces cerevisiae." Thesis, Bordeaux 2, 2013. http://www.theses.fr/2013BOR22084/document.

Full text
Abstract:
Le cycle cellulaire eucaryote est caractérisé par des changements abrupts et dynamiques de la polarité cellulaire lorsque les chromosomes sont dupliqués et ségrégés. Ces évènements nécessitent une coordination entre la machinerie du cycle cellulaire et les régulateurs de la polarité. Les mécanismes qui contrôlent cette coordination ne sont pas totalement compris. Dans la levure S. cerevisiae, comme dans d’autres organismes eucaryotes, la GTPase Cdc42 joue un rôle important dans la régulation de la polarité cellulaire. En effet ses régulateurs constituent un module GTPase qui subit une phosphor
APA, Harvard, Vancouver, ISO, and other styles
9

Schaefer, Jonathan Brook. "Regulation of G1 exit by the Swi6p transcription factor /." Thesis, Connect to this title online; UW restricted, 2007. http://hdl.handle.net/1773/5080.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dieckhoff, Patrick. "Protein modification and degradation in the cell cycle of the yeast Saccharomyces cerevisiae." Doctoral thesis, [S.l. : s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=972638644.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Pic-Taylor, Aline. "The regulation of the cell division cycle by forkhead proteins in Saccharomyces cerevisiae." Thesis, University of Newcastle Upon Tyne, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.341787.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Miller, Kristi E. "Negative Regulation of Polarity Establishment in Saccharomyces cerevisiae." The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1555329407450767.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Harris, M. R. "G1/S transcriptional regulation in Saccharomyces cerevisiae integrates cell cycle progression and genome stability." Thesis, University College London (University of London), 2014. http://discovery.ucl.ac.uk/1419003/.

Full text
Abstract:
Saccharomyces cerevisiae provides an ideal model to study the regulation of cell cycle commitment due to the high conservation of signalling pathways and regulatory modules through to higher eukaryotes. My work investigates the interplay of cell cycle progression and arrest via the action of transcription factor regulation. Cell cycle commitment is controlled by the cyclin-dependent activation of transcription factor complexes, MBF and SBF. Here I describe the dynamics of SBF and MBF using new polyclonal anti-sera against the three key components Mbp1, Swi4 and Swi6, and their interaction with
APA, Harvard, Vancouver, ISO, and other styles
14

Venning, Bruce Martyn. "Cloning and characterization of an osmotically dependent suppressor of the cdc4 mutation of Saccharomyces cerevisiae." Thesis, University of Manchester, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.257467.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Atkins, Benjamin David. "Inhibition of Cdc42 during mitotic exit is required for cytokinesis in Saccharomyces cerevisiae." Thesis, Harvard University, 2014. http://dissertations.umi.com/gsas.harvard:11257.

Full text
Abstract:
Rho GTPases are highly conserved regulators of cell polarity and the actin cytoskeleton. The role of the Rho GTPase Cdc42 and its regulation during cell division is not well understood. Using biochemical and imaging approaches in budding yeast, I demonstrate that Cdc42 activation peaks during the G1/S transition and during anaphase, but drops during mitotic exit and cytokinesis. Cdc5/Polo kinase is an important upstream cell cycle regulator that suppresses Cdc42 activity. Failure to downregulate Cdc42 during mitotic exit prevents the normal localization of key cytokinesis regulators - Iqg1 and
APA, Harvard, Vancouver, ISO, and other styles
16

Calzone, Laurence. "Temporal organization of the budding yeast cell cycle: general principles and detailed simulations." Diss., Virginia Tech, 2003. http://hdl.handle.net/10919/11070.

Full text
Abstract:
The budding yeast cell cycle has attracted attention from many experimentalists over the years for its simplicity and amenability to genetic manipulation. Moreover, the regulatory components described in budding yeast, Saccharomyces cerevisiae, are conserved in higher eukaryotes. The budding yeast cell cycle is governed by a complex network of chemical reactions controlling the activity of the cyclin-dependent kinases (CDKs), proteins that drive the major events of the cell cycle. The presence of these proteins is required for the transition from G1 to S phase (Start) whereas their absence
APA, Harvard, Vancouver, ISO, and other styles
17

Adrover, Nadal Miguel Angel. "Qualitative and quantitative study of the effect of osmotress on cell cycle of Saccharomyces cerevisiae." Doctoral thesis, Universitat Pompeu Fabra, 2009. http://hdl.handle.net/10803/7211.

Full text
Abstract:
Control of cell cycle by Stress Activated Protein Kinases (SAPKs) is an essential aspect for adaptation to extracellular stimuli. In Saccharomyces cerevisiae, the activation of the Hog1 SAPK, results in a delayed transcription of the G1 cyclins CLN1,2 and the stabilization of the B-type cyclin inhibitor SIC1, therefore postponing entry into S phase. The results displayed here, show, by a combination of mathematical modelling and quantitative in vivo experiments, that, before Start, the control of G1-S transition is mainly exerted by inhibiting expression of cyclins, both G1 (CLN1,2) and S phas
APA, Harvard, Vancouver, ISO, and other styles
18

Doris, Kathryn S. "The regulation of the cell division cycle in response to oxidative stress in Saccharomyces cerevisiae." Thesis, University of Newcastle Upon Tyne, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.493072.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

O'Callaghan, Peter. "The regulation of the cell division cycle of Saccharomyces cerevisiae by the oxidative stress response." Thesis, University of Newcastle Upon Tyne, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.413942.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Pala, Prashna Jatindra. "Biochemical and biophysical characterisation of the Saccharomyces cerevisiae cell-cycle transcription factors, SBF and MBF." Thesis, University College London (University of London), 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.271258.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Andalis, Alexis Albert 1973. "Polyploidy in Saccharomyces cerevisiae leads to the loss of cell cycle control in stationary phase." Thesis, Massachusetts Institute of Technology, 2003. http://hdl.handle.net/1721.1/29783.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Biology, 2003.<br>Includes bibliographical references.<br>Advances in genome sequencing and comparative genomics have uncovered ancient duplications in the genomes of many extant organisms. Evidence for large regional duplications is observed in eukaryotic organisms that include yeast, plants, fish, and humans. Furthermore, phylogenetic analysis of paralogous duplications within these organisms provides support for a single duplication event of the entire genome. The prevalence of genomic duplications lends credence to proposals
APA, Harvard, Vancouver, ISO, and other styles
22

Liu, Natalie, Charles W. Putnam, and Jesse D. Martinez. "Modeling Cell Cycle Effects of Human 14-3-3 Tumor Promoting Proteins in Saccharomyces Cerevisiae." Thesis, The University of Arizona, 2012. http://hdl.handle.net/10150/244407.

Full text
Abstract:
In this study, we used budding yeast as a model organism to examine the effects of overexpression of Bmh1, a yeast homolog of 14-3-3γ. We found that in the presence of modest DNA damage, Bmh1 overexpression had its most prominent effect during G2/M-phase of the cell cycle. We also observed that overexpression of Bmh1 concurrent with the induction of DNA damage partially rescued the G2/M arrest defect caused by the absence of Rad9, a key component of the G2/M DNA damage checkpoint pathway. When RAD53, a gene in the "Rad53 pathway" of the G2/M checkpoint, was deleted, overexpression of Bmh1 had
APA, Harvard, Vancouver, ISO, and other styles
23

BUSTI, STEFANO. "Glucose and regulation of cell cycle in saccharomyces cerevisiae: analisys of mutans impaired in sugar uptake mechanisms." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2009. http://hdl.handle.net/10281/7482.

Full text
Abstract:
Glucose and regulation of cell cycle in S. cerevisiae: analysis of mutants impaired in sugar uptake mechanisms Requisito fondamentale per la sopravvivenza di microrganismi a vita libera come il lievito S. cerevisiae è la capacità di regolare il proprio metabolismo e la progressione del ciclo cellulare in modo tale che la crescita sia rapida in presenza di abbondanti nutrienti e si arresti all’esaurirsi degli stessi. Perché questo sia possibile, nutrienti come il glucosio devono generare segnali che vengano recepiti ed elaborati dal complesso macchinario che governa il ciclo cellulare. S. cer
APA, Harvard, Vancouver, ISO, and other styles
24

Münzner, Ulrike Tatjana Elisabeth. "From birth to birth A cell cycle control network of S. cerevisiae." Doctoral thesis, Humboldt-Universität zu Berlin, 2017. http://dx.doi.org/10.18452/18566.

Full text
Abstract:
Der Zellzyklus organisiert die Zellteilung, und kontrolliert die Replikation der DNA sowie die Weitergabe des Genoms an die nächste Zellgeneration. Er unterliegt einer strengen Kontrolle auf molekularer Ebene. Diese molekularen Kontrollmechanismen sind für das Überleben eines Organismus essentiell, da Fehler Krankheiten begüngstigen können. Vor allem Krebs ist assoziiert mit Abweichungen im Ablauf des Zellzyklus. Die Aufklärung solcher Kontrollmechanismen auf molekularer Ebene ermöglicht einerseits das Verständnis deren grundlegender Funktionsweise, andererseits können solche Erkenntnisse
APA, Harvard, Vancouver, ISO, and other styles
25

Escoté, Miró Xavier. "Control of cell cycle progression by the last MAPK Hog1." Doctoral thesis, Universitat Pompeu Fabra, 2005. http://hdl.handle.net/10803/7186.

Full text
Abstract:
Exposure of yeast to increases in extracellular osmolarity activates the stress-activated Hog1 MAP kinase, which is essential for cell survival upon osmotic stress. Activation of the Hog1 MAPK results in cell growth arrest, suggesting a possible role of the MAP kinase in the control of the cell cycle. Our results have shown that Hog1 activation resulted in accumulation of cells in the G1/S and G2/M transitions. At G1, Hog1 regulates the cell cycle progression by a dual mechanism that involves downregulation of G1 cyclin expression and direct targeting of the CDK-inhibitor protein Sic1. The MAP
APA, Harvard, Vancouver, ISO, and other styles
26

Knockleby, James. "A role for the «Saccharomyces cerevisiae» kinetochore protein Ame1 in cell cycle control and MT-kinetochore attachment." Thesis, McGill University, 2008. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=22031.

Full text
Abstract:
High fidelity chromosome segregation in all cells requires the formation of bi-oriented attachments between spindle microtubules (MT) and chromosomes. The kinetochore provides a bridge between the MTs and chromosomes. Ame1 is an essential but undercharacterized component of the central kinetochore COMA sub-complex (Ctf19, Okp1, Mcm21, Ame1). In order to characterize Ame1, I used two conditional alleles of the COMA, ame1-4 and okp1-5. I examined the role of Ame1 in the context of the kinetochore and in the maintenance of the spindle assembly checkpoint (SAC) and the formation and repair of kine
APA, Harvard, Vancouver, ISO, and other styles
27

Pathak, Ritu. "Regulation of initiation of division in Saccharomyces cerevisiae: characterization of the role of DCR2, GID8, and KEM1 in completion of START." Texas A&M University, 2006. http://hdl.handle.net/1969.1/4819.

Full text
Abstract:
The decision to initiate division is very important, as once cells have initiated division they are committed to complete it. In Saccharomyces cerevisiae, commitment to a new round of cell division occurs at a regulatory point in late G1 called START. Progression through START requires the activation of the cyclin dependent kinase Cdc28p by the G1 cyclins. G1 cyclins in complex with Cdc28p activate the transcription of approximately 100 genes involved in the G1 to S transition and degradation of Sic1p, an inhibitor of B type cyclins, and thus are important for initiation of DNA replication. De
APA, Harvard, Vancouver, ISO, and other styles
28

Dauban, Lise. "Organisation du génome par le complexe cohésine chez la levure Saccharomyces cerevisiae." Thesis, Toulouse 3, 2019. http://www.theses.fr/2019TOU30100.

Full text
Abstract:
La cohésine est un complexe protéique conservé dans l'évolution composé d'un anneau capable d'embrasser l'ADN et de protéines auxiliaires régulant son association avec l'ADN. D'une part, la cohésine confère la cohésion des chromatides sœurs nécessaire à leur ségrégation, d'autre part elle établit et maintient des boucles de chromatine. Ces boucles sont requises pour la formation de domaines topologiques, l'expression génique et la stabilité du génome. Cependant les mécanismes régissant leur formation ne sont pas entièrement élucidés. Selon le modèle d'extrusion de boucles, la cohésine capturer
APA, Harvard, Vancouver, ISO, and other styles
29

Eckert, Carrie Ann. "Implications and dynamics of pericentric cohesin association during mitosis in Saccharomyces cerevisiae /." Connect to full text via ProQuest. IP filtered, 2006.

Find full text
Abstract:
Thesis (Ph.D. in Molecular Biology) -- University of Colorado, 2006.<br>Typescript. Includes bibliographical references (leaves 126-147). Free to UCDHSC affiliates. Online version available via ProQuest Digital Dissertations;
APA, Harvard, Vancouver, ISO, and other styles
30

TRIPODI, FARIDA. "Protein Kinase CK2: a major regulator of the G1/S transition in Saccharomyces cerevisiae." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2009. http://hdl.handle.net/10281/7478.

Full text
Abstract:
Casein kinase 2 (CK2) is a ubiquitous, essential and highly conserved eukaryotic kinase. It phosphorylates more than 300 substrates, but its physiological role and regulation mechanism are still poorly understood (Meggio and Pinna, 2003). CK2 is traditionally considered to be a tetrameric enzyme, composed of two catalytic subunits and two regulatory subunits, which are encoded in yeast by CKA1 and CKA2 genes, CKB1 and CKB2 genes respectively. Deletion of regulatory subunits, or of either catalytic subunit gene alone has few phenotypic effects, but simultaneous disruption of both CKA1 and CKA2
APA, Harvard, Vancouver, ISO, and other styles
31

Bolte, Melanie. "Regulation of the anaphase promoting complex (APC-C) in the mitotic and meiotic cell cycle of Saccharomyces cerevisiae." Doctoral thesis, [S.l.] : [s.n.], 2004. http://webdoc.sub.gwdg.de/diss/2004/bolte/bolte.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Semple, Jeffrey. "Characterization of the role of Orc6 in the cell cycle of the budding yeast Saccharomyces cerevisiae." Thesis, University of Waterloo, 2006. http://hdl.handle.net/10012/2969.

Full text
Abstract:
The heterohexameric origin recognition complex (ORC) acts as a scaffold for the G1 phase assembly of pre-replicative complexes. Only the Orc1-5 subunits are required for origin binding in budding yeast, yet Orc6 is an essential protein for cell proliferation. In comparison to other eukaryotic Orc6 proteins, budding yeast Orc6 appears to be quite divergent. Two-hybrid analysis revealed that Orc6 only weakly interacts with other ORC subunits. In this assay Orc6 showed a strong ability to self-associate, although the significance of this dimerization or multimerization remains unclear.
APA, Harvard, Vancouver, ISO, and other styles
33

Peyran, Landry. "Rôle de l’activation de la GTPase Rho à la membrane plasmique sur la progression du cycle cellulaire chez Saccharomyces cerevisiae." Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0184.

Full text
Abstract:
Une prolifération cellulaire saine nécessite un ordre correct des événements du cycle cellulaire et la surveillance de ces événements par des points de contrôle qui retardent la progression du cycle cellulaire lorsque des problèmes surviennent. Cependant, les cellules peuvent contourner l'activation persistante des points de contrôle et poursuivre le cycle cellulaire malgré des défauts du nombre de chromosomes ou des dommages de l'ADN. Il est donc essentiel de comprendre comment les cellules contrôlent l'ordre des événements du cycle cellulaire, comment les points de contrôle surveillent ces é
APA, Harvard, Vancouver, ISO, and other styles
34

Pietruszka, Patrycja. "Role of Tem1 phosphorylation in the control of mitotic exit and spindle positioning." Thesis, Montpellier 1, 2013. http://www.theses.fr/2013MON1T021.

Full text
Abstract:
Dans la levure S. cerevisiae, la mitose nécessite le positionnement du fuseau mitotique le long de l’axe cellule mère-bourgeon (future cellule fille) afin d‘assurer une bonne ségrégation des chromosomes. Ce phénomène requiert le fonctionnement de deux mécanismes impliquant les protéines Kar9 et Dyn1. Durant la métaphase, Kar9 se positionne de manière asymétrique le long du fuseau mitotique, avec une accumulation notable sur les microtubules qui émanent de l’ancien « spindle pole body » (SPB; l’équivalent du centrosome dans les vertébrés), qui est normalement dirigé vers le bourgeon. Dans le ca
APA, Harvard, Vancouver, ISO, and other styles
35

Teufel, Lotte. "Cyclins and their roles in cell cycle progression, transcriptional regulation and osmostress adaptation in Saccharomyces cerevisiae. A transcriptome-wide and single cell approach." Doctoral thesis, Humboldt-Universität zu Berlin, 2020. http://dx.doi.org/10.18452/21205.

Full text
Abstract:
Der eukaryotische Zellzyklus ist ein streng regulierter Prozess, für dessen zeitlichen Ablauf unter anderem oszillierende Genexpression notwendig ist. Die Regulation und die zeitliche Koordination des Zellzyklus sind nach wie vor fundamentale Fragen der Zellbiologie. Spezifische Ereignisse, wie DNA Replikation und Zellkernteilung, können vier Zellzyklusphasen zugeordnet werden, welche durch Cyclin-abhängige Kinasen, Cycline und deren Inhibitoren reguliert werden. Während in Saccharomyces cerevisiae Cyclin-abhängige Kinasen (Cdc28, Pho85) über den gesamten Zellzyklus zu Verfügung stehen, wer
APA, Harvard, Vancouver, ISO, and other styles
36

Buchanan, Christina Diane. "Identification and characterization of a checkpoint triggered by delayed replication in S. cerevisiae /." Thesis, Connect to this title online; UW restricted, 2001. http://hdl.handle.net/1773/10253.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Pope, Patricia A. "Investigation of Multiple Concerted Mechanisms Underlying Stimulus-induced G1 Arrest in Yeast: A Dissertation." eScholarship@UMMS, 2013. https://escholarship.umassmed.edu/gsbs_diss/680.

Full text
Abstract:
Progression through the cell cycle is tightly controlled, and the decision whether or not to enter a new cell cycle can be influenced by both internal and external cues. For budding yeast one such external cue is pheromone treatment, which can induce G1 arrest. Two distinct mechanisms are known to be involved in this arrest, one dependent on the arrest protein Far1 and one independent of Far1, but the exact mechanisms have remained enigmatic. The studies presented here further elucidate both of these mechanisms. We looked at two distinct aspects of the Far1-independent arrest mechanism. First,
APA, Harvard, Vancouver, ISO, and other styles
38

Pope, Patricia A. "Investigation of Multiple Concerted Mechanisms Underlying Stimulus-induced G1 Arrest in Yeast: A Dissertation." eScholarship@UMMS, 2006. http://escholarship.umassmed.edu/gsbs_diss/680.

Full text
Abstract:
Progression through the cell cycle is tightly controlled, and the decision whether or not to enter a new cell cycle can be influenced by both internal and external cues. For budding yeast one such external cue is pheromone treatment, which can induce G1 arrest. Two distinct mechanisms are known to be involved in this arrest, one dependent on the arrest protein Far1 and one independent of Far1, but the exact mechanisms have remained enigmatic. The studies presented here further elucidate both of these mechanisms. We looked at two distinct aspects of the Far1-independent arrest mechanism. First,
APA, Harvard, Vancouver, ISO, and other styles
39

Bhaduri, Samyabrata. "Regulation of CDK1 Activity during the G1/S Transition in S. cerevisiae through Specific Cyclin-Substrate Docking: A Dissertation." eScholarship@UMMS, 2014. http://escholarship.umassmed.edu/gsbs_diss/871.

Full text
Abstract:
Several cell cycle events require specific forms of the cyclin-CDK complexes. It has been known for some time that cyclins not only contribute by activating the CDK but also by choosing substrates and/or specifying the location of the CDK holoenzyme. There are several examples of B-type cyclins identifying certain peptide motifs in their specific substrates through a conserved region in their structure. Such interactions were not known for the G1 class of cyclins, which are instrumental in helping the cell decide whether or not to commit to a new cell cycle, a function that is non-redundant wi
APA, Harvard, Vancouver, ISO, and other styles
40

Lázari, Lucas Cardoso. "Modelagem do ciclo celular e influência dos lncRNAs em Saccharomyces cerevisiae expostas a altas concentrações de etanol." Botucatu, 2020. http://hdl.handle.net/11449/192925.

Full text
Abstract:
Orientador: Guilherme Targino Valente<br>Resumo: A intensa utilização de combustíveis fósseis gerapreocupações constantes devido aos impactos de sua combustão ao meio ambiente. Os biocombustíveis são uma alternativa viável aos combustíveis fósseis por apresentarem vantagens como serem menos agressivos ao meio ambiente. O bioetanol é um dos biocombustíveis mais utilizados no mundo e sua produção pode ser feita pela fermentação realizada pela levedura Saccharomyces cerevisiae. No entanto, altas concentrações de etanol inibem diversos mecanismos biológicos da levedura, causando a diminuição da pr
APA, Harvard, Vancouver, ISO, and other styles
41

Rai, Urvashi. "Spindle Assembly Checkpoint Stability Depends on Integrity of the Nucleolus and Septins in Saccharomyces cerevisiae." Case Western Reserve University School of Graduate Studies / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=case1491568383512984.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Parsons, Michelle L. "The Role of SIR4 in the Establishment of Heterochromatin in the Budding Yeast Saccharomyces cerevisiae." Thesis, Université d'Ottawa / University of Ottawa, 2014. http://hdl.handle.net/10393/31028.

Full text
Abstract:
Heterochromatin in the budding yeast Saccharomyces cerevisiae is composed of polymers of the SIR (Silent Information Regulator) complex bound to nucleosomal DNA. Assembly of heterochromatin requires all three proteins of the Sir complex: the histone deacetylase Sir2, and histone binding proteins Sir3 and Sir4. Heterochromatin establishment requires passage through at least one cell cycle, but is not dependent on replication. Inhibition of chromatin modifying enzymes may be a mechanism for how cells limit assembly. Dot1 dependent methylation of H3K79 is suggested to inhibit de novo assembly. Ha
APA, Harvard, Vancouver, ISO, and other styles
43

Deniz, Ozgen. "Nucleosome Positioning in Budding Yeast = Posicionamiento de nucleosomas en Saccharomyces cerevisiae." Doctoral thesis, Universitat de Barcelona, 2014. http://hdl.handle.net/10803/145763.

Full text
Abstract:
The nucleosome is the fundamental structural unit of DNA compaction in eukaryotic cells and is formed by the wrapping of 147 bp double stranded DNA around a histone octamer. Nucleosome organization plays a major role in controlling DNA accessibility to regulatory proteins, hence affecting cellular processes such as transcription, DNA replication and repair. Our study focuses on genome-wide nucleosome positioning in S. cerevisiae to explore nucleosome determinants and plasticity throughout the cell cycle and their interplay with gene expression based on cell mRNA abundance. We pursued t
APA, Harvard, Vancouver, ISO, and other styles
44

Pessoa-Brandão, Luis. "Genetic and molecular studies of Saccharomyces cerevisiae Cdc7-Dbf4 kinase function in DNA damage-induced mutagenesis /." Connect to full text via ProQuest. IP filtered, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
45

GOTTI, LAURA. "Nutritional modulation of cell size at s phase initiation in the buddine yeast saccharomyces cerevisiae: a role for glucose sensing and the cyclin dependent kinase inhibitor." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2011. http://hdl.handle.net/10281/19573.

Full text
Abstract:
The budding yeast Saccharomyces cerevisiae is a model organism for studies on cell cycle. For the survival of this cells a tight coordination of cell growth and division occurs at Start, a regulatory area of the cell cycle positioned immediately before beginning of S phase, at the G1-S boundary. Start is the event, or set of events, that commits a cell to a round of division. This mechanism is based on achieving of a critical cell size (protein content per cell at the onset of DNA replication, Ps) to enter into S phase. Ps increases in proportion with ploidy and is modulated by nutrients. In
APA, Harvard, Vancouver, ISO, and other styles
46

Charton, Romain. "Étude du comportement de la chromatine, de la régulation de la transcription et réparation des gènes de l’ARNr avant la réplication de l’ADN et assemblage de la réparation par excision de nucléotides chez Saccharomyces cerevisiae." Thèse, Université de Sherbrooke, 2016. http://hdl.handle.net/11143/9527.

Full text
Abstract:
Résumé : Le nucléole est considéré comme étant une « usine » à produire des ribosomes. Cette production est la fonction la plus énergivore de la cellule. Elle met en jeu les trois ARN polymérases et représente 80% de l’activité de transcription au sein d’une cellule. Les trois quarts de cette activité de transcription correspondent à la synthèse des ARNr par l’ARN polymérase I (ARNPI). Ainsi mieux comprendre les mécanismes cellulaires se déroulant à l’intérieur de ce compartiment permettra le développement de nouveaux traitements contre le cancer. La synthèse d’ARNr par l’ARNPI est régulée à t
APA, Harvard, Vancouver, ISO, and other styles
47

Müller, Dirk [Verfasser]. "Model-Assisted Analysis of Cyclic AMP Signal Transduction in Saccharomyces cerevisiae – cAMP as Dynamic Coordinator of Energy Metabolism and Cell Cycle Progression / Dirk Müller." Aachen : Shaker, 2006. http://d-nb.info/1170528538/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Adkins, Melissa Wess. "The role of histone chaperones in chromatin structure and gene expression /." Connect to full text via ProQuest. Limited to UCD Anschutz Medical Campus, 2006.

Find full text
Abstract:
Thesis (Ph.D. in Biochemistry & Molecular Genetics) -- University of Colorado at Denver and Health Sciences Center, 2006.<br>Typescript. Includes bibliographical references (leaves 147-164). Free to UCDHSC affiliates. Online version available via ProQuest Digital Dissertations;
APA, Harvard, Vancouver, ISO, and other styles
49

Flaman, Jean-Michel. "La levure Saccharomyces cerevisiae : un modèle pour l'étude de l'activité transcriptionnelle de p53 et de son altération dans les cancers." Rouen, 1997. http://www.theses.fr/1997ROUES084.

Full text
Abstract:
Les mutations du gène suppresseur de tumeur p53 représentent l'anomalie moléculaire la plus fréquemment observée dans les cancers suggérant que l'inactivation de ce gène constitue une étape clé de la transformation maligne. Le gène p53 code pour un facteur de transcription capable, en réponse à des conditions génotoxiques, de réguler l'expression des gènes p21 et Bax respectivement impliquées dans l'arrêt du cycle cellulaire et l'activation de l'apoptose. Les données à la fois structurales et fonctionnelles suggèrent que la conséquence majeure des mutations du gène p53 dans les cancers est la
APA, Harvard, Vancouver, ISO, and other styles
50

Dražková, Jana. "Emergentní vlastnosti sítě G1/S." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2010. http://www.nusl.cz/ntk/nusl-229035.

Full text
Abstract:
Tato práce se zabývá buněčným cyklem kvasinky Saccgaromyces cerevisiae. Oblastí našeho zájmu je přechod mezi G1 a S fází, kde je naším cílem identifikovat velikosti buňky v době počátku DNA replikace. Nejprve se věnujeme nedávno publikovanému matematickému modelu, který popisuje mechanismy vedoucí k S fázi. Práce poskytuje detailní popis tohoto modelu, stejně jako časový průběh některých důležitých proteinů či jejich sloučenin. Dále se zabýváme pravděpodobnostním modelem aktivace replikačních počátků DNA. Nově uvažujeme vliv šíření DNA replikace mezi sousedícími počátky a analyzujeme jeho důsl
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!