Dissertations / Theses on the topic 'S100A12'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'S100A12.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Goyette, Jesse Davis Medical Sciences Faculty of Medicine UNSW. "The extracellular functions of S100A12." Publisher:University of New South Wales. Medical Sciences, 2008. http://handle.unsw.edu.au/1959.4/41302.
Full textMoroz, Olga. "Structural studies on human S100A12." Thesis, University of York, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.403963.
Full textChapeton, Montes Julie Andrea. "Caractérisation des voies alternatives de sécrétion des protéines S100A8/A9 et S100A12 par les neutrophiles humains." Master's thesis, Université Laval, 2015. http://hdl.handle.net/20.500.11794/26156.
Full textAlthough S100A8/A9 (calprotectin) and S100A12 proteins expressed by neutrophils lack a signal peptide, they are found in the serum of patients with various inflammatory diseases. However, the mechanisms of secretion and the agonists that promote their secretion are still unknown. We hypothesized that several alternative secretory pathways and several agonists of neutrophils may participate in the release of S100A8/A9 and S100A12 protein. Initially, we studied the stimuli inducing the secretion of calprotectin and / or S100A12. In a second part, we were interested in signals and alternative mechanisms of secretion involved in the release of the calprotectin and S100A12. In conclusion, this study shows the complexity of alternative secretion pathways involved in S100 secretion and that these pathways are influenced by the activation of neutrophils by various agonists.
Mossel, Dieuwertje Marije [Verfasser], and Julia [Akademischer Betreuer] Kzhyshkowska. "Epigenetic regulation of S100A9 and S100A12 expression in monocytes-macrophage system in hyperglycemic conditions / Dieuwertje Marije Mossel ; Betreuer: Julia Kzhyshkowska." Heidelberg : Universitätsbibliothek Heidelberg, 2020. http://d-nb.info/1219303100/34.
Full textMossel, Dieuwertje M. [Verfasser], and Julia [Akademischer Betreuer] Kzhyshkowska. "Epigenetic regulation of S100A9 and S100A12 expression in monocytes-macrophage system in hyperglycemic conditions / Dieuwertje Marije Mossel ; Betreuer: Julia Kzhyshkowska." Heidelberg : Universitätsbibliothek Heidelberg, 2020. http://d-nb.info/1219303100/34.
Full textDubois, Christelle. "Confirmation de biomarqueurs pour le pronostic du sepsis et développement de tests rapides High plasma level of S100A8/S100A9 and S100A12 at admission indicates a higher risk of death in septic shock patients Top-down and bottom-up proteomics of circulating S100A8/S100A9 complexes in plasma of septic shock patients." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS521.
Full textSepsis is the 3rd leading cause of death in Western countries, with a mortality rate between 20 and 50% depending on the severity. The 'prediction' of the patient's clinical outcome is essential to establish the most appropriate treatment. Some inflammation or infection markers protein (CRP, procalcitonin) are cited for clinical follow-up of patients but lack specificity for sepsis. On the other hand, "omics" studies have generated lists of potential biomarkers of sepsis prognosis. However, none have yet been validated and/or confirmed based on the severity of the sepsis and the patient's fate. This requires access not only to fully characterized patient cohorts but also to robust and validated quantitative methods. Mass spectrometry provides a high level of specificity and high multiplex capacity and that would allow to confirm the interest of one or more of these proteins for sepsis prognosis. Immunological assays provide, in addition to sensitivity and specificity, a simple and rapid routine clinical implementation. First, a list of biomarkers identified with patient cohorts was established from the literature. Then, methods to quantify these candidate biomarkers were developed. On the one hand, we have been interested in quantifying calgranulins in plasma by developing ELISAs and mass spectrometry methods using bottom-up and top-down approaches. On the other hand, two multiplex quantification methods by mass spectrometry with and without immunopurification step according to protein concentrations have been developed to verify the relevance of the list of potential biomarkers. All these methods were applied to a cohort of 49 patients with septic shock
Citadini, Ana Paula da Silva. "Estudos da dinâmica estrutural da proteína ligante de cálcio S100A12 humana e da lisozima T4." Universidade de São Paulo, 2011. http://www.teses.usp.br/teses/disponiveis/76/76132/tde-05072011-134514/.
Full textThe work presented here was conceived with two main objectives. The first one, more general, involved the implementation of a new methodology for the study of conformational changes in proteins, i.e., its structural dynamics. The technique of Site-directed Spin Labeling combined with Electronic Paramagnetic Resonance (SDSL-EPR) are the pillars of this new method, which is now part of the set of techniques available at the Grupo de Biofísica Molecular Sérgio Mascarenhas, Instituto de Física de São Carlos (USP). The second objective, more specific, represented the path actually taken to achieve the overall goal. Therefore, it was proposed to study the structure-function correlation in two interesting biological systems. The first involved the study of the movement of the helices that form the structure of the human calcium binding protein S100A12 (HS100A12) induced by calcium and zinc ions. Knowing that, besides Ca+2, human S100A12 has also affinity for other divalent metals, such as Zn+2 and Cu+2 ions, and that the formation of different protein oligomers is governed by the concentration of Ca+2 and Zn+2, we performed spectroscopic studies using circular dichroism (CD) to investigate the thermal stability of protein HS100A12 in the presence and absence of calcium and zinc. Conformational changes in the structure of HS100A12 were monitored by producing a series of mutants (singles and doubles) in which residues in helices B, C and D were replaced by cysteine and subsequently labeled with a magnetic probe MTSSL and then analyzed via SDSL-EPR. The latter consisted of the EPR spectra measurement of many mutants at room temperature to study the effects of the presence of ions on the dynamics experienced by the probe in different positions. In addition, we performed measurements of the distance between two probes inserted in the protein structure, thereby, seeking to improve the understanding of the effect of the ions presence on the protein. Finally, due to the fact that HS100A12 is involved in some events of cell signaling and interaction with the Receptor for Advanced Glycation End Products (RAGE), we also decided to study the interaction of protein with models of biomembranes using Langmuir monolayers. In the other problem of interest, we used a variety of mutants of the enzyme T4 lysozyme, a protein standard, in order to obtain more details about its structure-function correlation and make more solid the understanding of SDSL technique. Initially, we conducted a study about the alleged creation of a cavity in the hydrophobic C-terminal portion of the enzyme, when we replaced the Leu 133 by Ala and/or Gly, or when we changed a large residue for a smaller one, because it is believed that the protein undergoes a structural adjustment in order to fill the gap created by this substitution. For this, we studied by SDSL the α-helix H motion, inserting the spin label in a neighbor position of the mutated residue. Additionally, we performed an experiment of \"transmutation\" with the enzyme T4L in order to investigate the nature of contributions for different dynamic modes experienced by the spin label when it is introduced in topologically similar sites.
Reis, Renata Almeida Garcia. "Estudo dinâmico conformacional da proteína calgranulina C (S100A12) mediante interação com íons e receptor RAGE." Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/60/60136/tde-03072012-163222/.
Full textCalgranulin C (S100A12) is a member of the S100 family of EF-hand calcium-binding proteins. Human S100A12 is predominantly expressed by granulocytes and is markedly overexpressed in inflammatory compartments. Elevated serum levels of S100A12 are found in patients suffering from various inflammatory, neurodegenerative, metabolic, and neoplasic disorders. Intracellular S100A12 exists as an anti-parallel homodimer. Each monomer is composed of a C-terminal, classic EF-hand (HI - LI - HII), an N-terminal, pseudo EF-hand (HIII - LIII - HIV). The motifs are linked by the hinge-region. Calgranulin C also binds zinc and copper ions in a site formed by both subunits of dimer. Changes in cytosolic ions concentrations regulate a wide variety of cellular process, and ions-binding proteins are the key molecules in signal transduction, differentiation, and cell cycle control. The mechanism by which calgranulin C modulates the course of inflammatory process is related to its interaction with the receptor for advanced glycated products (RAGE). In order to obtain details about the mechanism involved in cell signaling steps in which S100A12 participates, our goal was to qualify and quantify the activity conformational of S100A12 domains, induced by variations of intensive thermodynamic parameters, as changes in the concentration of ions. Furthermore we investigated the details of the interaction between S100A12 and RAGE in order to elucidate the region of the receptor which interacts with S100A12 and what are the residues involved in this interaction. In order to access the influence of the presence of ions over the conformational dynamics of S100A12, molecular dynamics simulations were performed using the GROMACS suite with the OPLS-AA force field and NVT ensemble. The initial structures used were experimentally determined by X-ray crystallography (PDB ID: 2WCE and 1E8A). They were separately submitted to different concentrations of sodium, calcium and zinc chloride and solvated with the SPC water model. Our results suggest that at low concentrations of Ca²?, LI remains occupied by Na?. During calcium-waves, it can reach the protein exclusively through LIII (in EF-2). As the Zn²? concentration rises, it contributes to the Na? unbinding from LI, an event that involves the residue ASP-25, which allows LI to open and the Na? to unbind. Furthermore, because of its high structural deformability, HIII is strongly influenced by both Na? and Ca²? ions which, in certain concentrations, leads to partial loss of this helix and of HIIa (Hinge-Region) and increases in the flexibility of this region, although only Ca²? is able to bind, through HIII, to the region near LIII. Regarding the RAGE studies, molecular docking essays and SMD (Steered Molecular Dynamics) simulations were performed. Our data analysis suggests that the interaction between S100A12 and RAGE takes place through both V and C1 RAGE domains and depends upon the interdomain region. Additionally, we observed that higher oligomeric states, e.g. S100A12 hexamers (PDB ID: 1GQM), have more interaction possibilites with RAGE and that, according to our results, in this case the interacting region of S100A12 comprises the N- and C-terminal portions of HI and Cterminal of HIV.
Augner, Kerstin Verfasser], and Monika [Akademischer Betreuer] [Pischetsrieder. "Auswirkung nicht-enzymatischer posttranslationaler Modifikationen auf Konstitution, Oligomerisierung und Biofunktionalität von S100A12 / Kerstin Augner. Gutachter: Monika Pischetsrieder." Erlangen : Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2013. http://d-nb.info/1054164886/34.
Full textGarcia, Assuero Faria. "Estudo da estabilidade estrutural de uma proteína recombinante ligante de zinco e cálcio - Calgranulina C (S100A12) porcina." Universidade de São Paulo, 2007. http://www.teses.usp.br/teses/disponiveis/76/76132/tde-30042007-141038/.
Full textPorcine S100A12 is a member of S100 family, a small acidic calcium-binding proteins group characterized by the presence of two EF-hand motifs. These proteins are involved in many cellular events as the regulation of protein phosphorylation, enzymatic activity, Ca+2 homeostasis, inflammatory processes and intermediate filament polymerization. In addition, some of these proteins can bind Zn+2, which can affect the binding of Ca+2 particularly to S100 proteins. In this study, the gene sequence encoding S100A12 was obtained by the synthetic gene approach using E. coli codon bias allowing the recombinant production of large amounts of the protein. We report here a thermodynamic study on the structural stability of this recombinant protein and its interaction with divalent ions using circular dichroism and extrinsic fluorescence. The folding/unfolding induced by urea or temperature indicated a reversible process and the binding of Zn+2 or Zn+2 and Ca+2 to S100A12 increasing its stability. The interaction of the ANS probe with the protein in the ligant presence can lead to exposition of hydrofobic regions allowing its interaction with target macromolecules. Taken together, the results indicated that porcine S100A12 may assume different conformations that could be correlated to its physiological function.
Augner, Kerstin [Verfasser], and Monika [Akademischer Betreuer] Pischetsrieder. "Auswirkung nicht-enzymatischer posttranslationaler Modifikationen auf Konstitution, Oligomerisierung und Biofunktionalität von S100A12 / Kerstin Augner. Gutachter: Monika Pischetsrieder." Erlangen : Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2013. http://d-nb.info/1054164886/34.
Full textBrockmeyer, Sonja [Verfasser], and Dirk [Akademischer Betreuer] Föll. "Einfluss der S100A12-Oligomerisierung auf die Interaktion und Aktivierung der Rezeptoren RAGE und TLR-4 / Sonja Brockmeyer ; Betreuer: Dirk Föll." Münster : Universitäts- und Landesbibliothek Münster, 2016. http://d-nb.info/1140169033/34.
Full textZwicker, Stephanie. "Psoriasin (S100A7) and koebnerisin (S100A15) in the model of inflammation." Diss., Ludwig-Maximilians-Universität München, 2014. http://nbn-resolving.de/urn:nbn:de:bvb:19-185702.
Full textEinem, Gina Franziska von [Verfasser]. "Eignen sich die Proteine S100a12 und Calprotectin bei kontrastmittelinduziertem Nierenversagen als Biomarker im Urin? : Untersuchung anhand einer prospektiven klinischen Studie / Gina Franziska von Einem." Berlin : Medizinische Fakultät Charité - Universitätsmedizin Berlin, 2015. http://d-nb.info/1079841083/34.
Full textLeukert, Nadja. "Molekulare Charakterisierung verschiedener Komplexformen der Calcium-bindenden Proteine S100A8 und S100A9." [S.l. : s.n.], 2003. http://deposit.ddb.de/cgi-bin/dokserv?idn=967777062.
Full textRaquil, Marie-Astrid. "Études des rôles pro-inflammatoires et prolifératifs des protéines S100A8 et S100A9." Thesis, Université Laval, 2008. http://www.theses.ulaval.ca/2008/25415/25415.pdf.
Full textSikora, Kristin [Verfasser]. "RAGE-abhängige S100A8- und S100A9-Expression in humanen THP-1 Zellen / Kristin Sikora." Berlin : Medizinische Fakultät Charité - Universitätsmedizin Berlin, 2009. http://d-nb.info/1023749920/34.
Full textDefrêne, Joan. "Fonctions des protéines S100A8 et S100A9 dans la réponse inflammatoire associée aux maladies auto-immunes." Doctoral thesis, Université Laval, 2020. http://hdl.handle.net/20.500.11794/66869.
Full textLaouedj, Malika. "Effets des protéines S100A8 et S100A9 dans la différenciation cellulaire dans la leucémie myéloïde aiguë." Doctoral thesis, Université Laval, 2017. http://hdl.handle.net/20.500.11794/27761.
Full textLes leucémies myéloïdes aiguës (LMA) sont des hémopathies rares, mais très agressives. Elles résultent d’un dérèglement du processus d’hématopoïèse qui se caractérise par une prolifération incontrôlée de cellules sanguines immatures engagées dans la lignée myéloïde. En dépit des traitements actuels qui reposent sur l’utilisation d’agents chimiothérapeutiques ciblant les cellules en prolifération, le pronostic des patients souffrants de LMA est très sombre. En effet, seuls 30% des patients souffrants de LMA survivent au-delà de 5 ans suivant la prise en charge thérapeutique. L’identification des acteurs participant au développement et au maintien des LMA est donc cruciale pour l’élaboration d’une stratégie thérapeutique efficace et ciblée. S100A8 et S100A9 sont des protéines fixatrices de calcium exprimées par les neutrophiles et les monocytes. Ce sont des alarmines jouant des rôles clés dans l’inflammation et dans des pathologies causées par une inflammation excessive. Les protéines S100A8 et S100A9 exercent également de multiples fonctions dans divers tumeurs solides. Elles favorisent la formation de niche pré-métastasique et inhibe la réponse immunitaire antitumorale. Une analyse du génome par séquençage a mis en évidence que S100A8 et S100A9 sont fortement exprimées chez les patients atteints de LMA. De plus, l’expression de la protéine S100A8 chez les patients souffrants de LMA serait corrélée avec un faible taux de survie. Principalement étudiées dans les tumeurs solides, les fonctions des protéines S100A8 et S100A9 dans les néoplasies hématologiques telles que les leucémies sont très peu documentées. Dans ces travaux de thèse, nous nous sommes donc intéressés aux rôles exercés par les protéines S100A8 et S100A9 dans les leucémies myéloïdes aiguës. À l’aide d’un modèle murin de LMA induit par la surexpression des facteurs HOXA9 et MEIS1 dans des cellules souches/progénitrices hématopoïétiques, nous avons démontré l’existence d’une fraction de cellules exprimant les protéines S100A8 et S100A9. Celle-ci est également retrouvée chez les patients atteints de leucémies aiguës myélomonocytaires et monocytaires (M4-M5 d’après la classification FAB). Les études menées in vivo et in vitro révèlent que la protéine S100A9 induit la différenciation des cellules leucémiques, tandis que la protéine S100A8, préviens l’effet de S100A9 permettant de maintenir ainsi le phénotype immature des cellules LMA. Le traitement par la protéine recombinante S100A9 permet d’accroitre la maturation des cellules LMA, diminue leur prolifération et prolonge la survie des souris LMA. De la même façon le traitement par les anticorps anti-S100A8 provoque un effet similaire au traitement par la protéine S100A9. Nos résultats suggèrent que de forts ratios de S100A9 sur S100A8 sont requis pour induire la différenciation des cellules LMA. Le mécanisme intracellulaire par lequel S100A9 induit la différenciation des cellules leucémiques a également été étudié dans le cadre de cette thèse. Nous avons identifié que S100A9 via la liaison au récepteur TLR (Toll-like receptor) active les voies de signalisations Mitogen Activated Protein Kinase p38, Jun N-terminal Kinase et extracellular signal-regulated kinases 1 et 2 et provoque la différenciation des cellules leucémiques. Les essais menés sur des cellules primaires de patients malades ont permis de confirmer la capacité de S100A9 et de S100A8 à réguler la différenciation des cellules leucémiques. En somme, les données présentées dans cette thèse contribuent à une meilleure compréhension des rôles des protéines S100A8 et S100A9 dans la différenciation des cellules myéloïdes. Par ailleurs, nos données permettent également d’entrevoir les bénéfices thérapeutiques liés au blocage de S100A8 ou à l’augmentation de S100A9 dans les LMA.
Acute myeloid leukemias (AMLs) are rare but still aggressive hematological diseases. They are the result of a perturbed hematopoietic process characterized by an uncontrolled proliferation of hematopoietic cells committed to the myeloid lineage. Despite current therapy based on chemotherapeutic agents, aimed at killing proliferating cells, prognosis of AML patients is dismal and only 30 % of patients survived beyond 5 years. Identification of actors involved in the initiation and sustaining LMA is crucial to the development of efficient and targeted therapy strategy. S100A8 and S100A9 are calcium-binding proteins predominantly expressed by neutrophils and monocytes, and play key roles in both normal and pathological inflammation. Recently, both proteins were found to promote tumor progression through the establishment of pre-metastatic niches and to inhibit antitumor immune responses. Although S100A8 and S100A9 have been studied in solid cancers, their functions in hematological malignancies remain poorly understood. However, S100A8 and S100A9 are highly expressed in acute myeloid leukemia (AML), and S100A8 expression has been linked to a poor prognosis in AML. Although the roles of these proteins were studies in solid tumor, little is known in their functions in hematological malignancies. We studied in this thesis the role of S100A8 and S100A9 in acute myeloid leukemia. Using AML mouse model of AML surexpressing HOXA9 and MEIS1 in hematopoietic stem and progenitor cells, we identified a small subpopulation of cells expressing S100A8 and S100A9. This subpopulation was consistently found in AML samples from patients with myelomonocytic and monocytic leukemias (M4 and M5 according FAB classification). In vitro and in vivo analyses revealed that S100A9 induces AML cell differentiation, whereas S100A8 prevents differentiation induced by S100A9 activity and maintains AML immature phenotype. Treatment with recombinant S100A9 proteins increased AML cell maturation, induced growth arrest, and prolonged survival in an AML mouse model. Interestingly, anti-S100A8 antibody treatment had effects similar to S100A9 therapy in vivo, suggesting that high ratios of S100A9 over S100A8 are required to induce differentiation. In this thesis, the mechanism of S100A9 leading to differentiation of leukemic cells was also study. Our in vitro studies on the mechanisms/pathways involved in leukemic cell differentiation revealed that binding of S100A9 to toll-like receptor 4 (TLR4) promotes activation of p38 mitogen-activated protein kinase, extracellular signal-regulated kinases 1 and 2, and Jun N-terminal kinase signaling pathways, leading to myelomonocytic and monocytic AML cell differentiation. Overall, our findings indicate that S100A8 and S100A9 are regulators of myeloid differentiation in leukemia and have therapeutic potential in myelomonocytic and monocytic AMLs.
Belot, Nathalie. "Caractérisation du rôle des protéines S100A4 et S100A6 dans la migration de cellules gliales tumorales." Doctoral thesis, Universite Libre de Bruxelles, 2004. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/211198.
Full textBetz, Christine [Verfasser], and Oliver [Akademischer Betreuer] Einsle. "Structural characterization of the metal-binding ligands S100A8/S100A9 and S100B of the receptor for advanced glycation end products = Strukturelle Charakterisierung der metallbindenden Liganden S100A8/S100A9 und S100B des Rezeptors für Advanced Glycation End Products." Freiburg : Universität, 2013. http://d-nb.info/1115813455/34.
Full textZwicker, Stephanie [Verfasser], and Ronald [Akademischer Betreuer] Wolf. "Psoriasin (S100A7) and koebnerisin (S100A15) in the model of inflammation : functional characterization in the inflammation cascade / Stephanie Zwicker. Betreuer: Ronald Wolf." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2014. http://d-nb.info/1075456991/34.
Full textMalamis, Dimitrios. "Systemic levels of inflammatory mediators in periodontitis." The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1436961245.
Full textOkada, Kouki. "CD68 on rat macrophages binds tightly to S100A8 and S100A9 and helps to regulate the cells’ immune functions." 京都大学 (Kyoto University), 2017. http://hdl.handle.net/2433/225517.
Full textBerrocal, Almanza Luis Carlos [Verfasser]. "The impact of the serum levels of soluble receptor for advanced glycation end products (sRAGE) and its ligand S100A12 for the course and extent of lung involvement in smear positive pulmonary tuberculosis in a cohort study in Hyderabad - India. / Luis Carlos Berrocal Almanza." Berlin : Freie Universität Berlin, 2015. http://d-nb.info/1070570729/34.
Full textFoulkes, T. "The role of p11 (S100A10) in nociception." Thesis, University College London (University of London), 2007. http://discovery.ucl.ac.uk/1445486/.
Full textLudwig, Stefan [Verfasser]. "Die S100-Proteine S100A8 und S100A9 sowie der Heterodimerkomplex S100A8/A9 im Serum und Plasma als Marker des Prostatakarzinoms : Untersuchungen zu präanalytischen Einflussfaktoren und zur diagnostischen Differenzierung zwischen benigner Prostatahyperplasie und Prostatakarzinom / Stefan Ludwig." Berlin : Medizinische Fakultät Charité - Universitätsmedizin Berlin, 2008. http://d-nb.info/1023022486/34.
Full textEggers, Kai. "S100A8-S100A9 abhängige Akivierung der RAGE-MAPK-NF-kB-Signaltransduktionssequenz [RAGE-MAPK-NF-kappa-B-Signaltransduktionssequenz] ein neues Modell der chronischen Inflammation am humanen Endothel /." [S.l.] : [s.n.], 2003. http://deposit.ddb.de/cgi-bin/dokserv?idn=974453455.
Full textBaillet, Athan. "Régulation de l'activité de la NADPH oxydase des neutrophiles par des enzymes du métabolisme du glucose et l'hétérocomplexe S100A8/S100A9 : application à la polyarthrite rhumatoïde." Phd thesis, Université de Grenoble, 2011. http://tel.archives-ouvertes.fr/tel-00680093.
Full textBaker, Jonathan Richard. "S100A8 in development." Thesis, University College London (University of London), 2008. http://discovery.ucl.ac.uk/1444146/.
Full textHerwig, Nadine. "Der RAGE-Ligand S100A4." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-214035.
Full textMyrvang, Helene Karin. "The annexin A2-S100A10 cell surface complex : molecular and functional characterisation." Thesis, University of Nottingham, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.546681.
Full textMeschin, Pierre. "Régulations monoaminergiques AMPc-dépendantes du coeur sain et pathologique." Thesis, Montpellier 1, 2014. http://www.theses.fr/2014MON1T010.
Full textCardiac function is tightly regulated by hormones such as monoamines which are substantial modulators of cardiac activity (chronotropy and inotropy). These hormones, derived from aromatic amino acids, maintain myocardial activity in a physiological range and allow the cardiac adaptation to environmental conditions. The cellular receptors to monoamines are coupled to signaling pathways involving a cyclic nucleotide, cAMP, and modulate cardiac activity by phosphorylating several key proteins of calcium handling (L-type calcium channel, RyR2 or phospholamban) by the cAMP-dependent protein kinase A. Deregulation of monoamines in pathological conditions such as heart failure (HF) or during antidepressanttreatment leads to a hyperstimulation of their specific receptors. It therefore induces alterations of the cAMP signaling pathway and calcium handling leading to the occurrence of proarrhythmogenic ectopic cellular events known as afterdepolarizations. These dysfunctions in cellular contractility and calcium handling may cause tissue arrhythmias andeven sudden cardiac death. Calcium handling alterations leading to cardiac arrhythmias remain a clinically relevant issue despite the current therapeutical approaches (!-blockers, angiotensin-converting-enzyme inhibitors) which slow the post-ischemic myocardial remodeling and thus represent an active target in the cardiovascular research field. Rycals, RyR2 pharmacological stabilisers, are a new approach to prevent these alterations. In this work, we focused on the two major monoaminergic cAMP-dependent pathways in the heart, the adrenergic and serotoninergic pathways. In the first part of this work, we aimed to evaluate the potential benefits of a new Rycal, S44121, on cellular and tissue arrhythmias occurrence in post-myocardial infarction rat model. These effects were compared to those of the well-known !-blocker, metoprolol. This study failed to show any strong benefit of S44121 but confirmed the cardioprotection associated with the metoprolol use. In a second part of the work presented here, we aimed to evaluate the potential involvement of the S100A10 protein in the modulation of the cardiac serotonin receptor 4 pathway (5-HT4R) in physiological conditions or during HF. This original study unraveled for the first time a new role for S100A10 in the healthy heart by revealing a functional 5-HT4R pathway when S100A10 expression is induced by neurotrophins such as brain-derived neurotrophic factor or by antidepressant drugs such as imipramine. However, we failed to conclude on a direct evidence for a role of S100A10 in the modulation of the 5-HT4R pathway in the failingheart
Pietas, Agnieszka. "Identification of the tumour associated gene S100A14 and analysis of its regulation." [S.l.] : [s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=974140813.
Full textPietas, Agnieszka. "Identification of the tumour-associated gene S100A14 and analysis of its regulation." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2005. http://dx.doi.org/10.18452/15196.
Full textBy analysing a human lung tumour cell line subtraction cDNA library, we have identified and characterized a novel member of the human S100 gene family that we designated S100A14. The full-length cDNA is 1067 bp and encodes a putative protein of 104 amino acids. The predicted protein contains the S100-specific EF-hand calcium-binding domain. The gene is ubiquitously expressed in normal human tissues of epithelial origin. S100A14 transcript was found to be down-regulated in many immortalized and tumour cell lines from diverse tissues. In contrast to the tumour cell lines, S100A14 shows up-regulation at the mRNA and protein level in many human primary tumours, including lung and breast carcinomas. To elucidate mechanisms whereby S100A14 expression is enhanced in lung and breast tumours, we studied the effects of epidermal growth factor (EGF) and transforming growth factor-alpha (TGF-alpha) on its expression. Both are ligands of ERBB receptor and induced S100A14 expression in the immortalized bronchial epithelial cells. By use of specific inhibitors, we found that EGF-mediated transcriptional induction of S100A14 involves extracellular signal-regulated kinase (ERK1/2) signalling and requires de novo protein synthesis. In support of these findings, we demonstrated by immunohistochemistry a significant correlation between ERBB2 and S100A14 protein overexpression in primary breast carcinomas. Our studies showed that the phorbol ester 12-myristate 13-acetate (PMA) increases S100A14 mRNA expression in immortalized bronchial epithelial cells suggesting regulation by protein kinase C (PKC). Similar to TGF-alpha/EGF induction, the PMA-induced S100A14 expression was also mediated by activation of the ERK1/2 signalling cascade. Considering the importance of the ERK1/2 and PKC signalling pathways in tumour development and progression we suggest that it is the aberrant regulation of these signalling cascades that couples S100A14 to malignant transformation.
Mondet, Julie. "Impacts cliniques et physiopathologiques de l'équilibre redox et de la protéine S100A8 extracellulaire dans les leucémies aiguës myéloïdes de novo de l'adulte (hors LAM3)." Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAS007/document.
Full textAcute myeloid leukemia (AML) is characterized by clonal expansion of leukemic(s) cell(s) blocked at an early stage of maturation. Despite therapeutic advances, their prognosis remains poor and therapeutic improvements are needed. In AML, reactive oxygen species (ROS) are considered to contribute to leukemogenesis and, on the opposite, standard chemotherapies exert cytotoxicity via ROS. In addition, the redox balance acts on metabolic dysregulation in AML and depends on many regulators, such as S100A8 protein, associated with worst prognostic in AML and known to stimulate NADPH oxidase.In this context, this work focuses on oxidative disorders, and S100A8 expression in bone marrow microenvironment according to clinical-biological characteristics and evaluate their prognostic impact in AML. In addition, we investigated the impact of exogenous S100A8 on ROS production, mitochondrial respiration, and metabolism in leukemia cell lines.In a cohort of 84 de novo AML at diagnosis, we demonstrate the existence of redox balance disorders on leukemic cells, on normal cells from bone marrow microenvironment, and on antioxidant systems (SOD, GPX, glutathione ...). In addition, ROS production observed in response to mitochondrial modulators indirectly reflects mitochondrial functionality plays a prognostic role independent of the current prognostic factors. The analysis of S100A8 in bone marrow plasmas shows a higher expression in AML than in healthy controls or other hematological neoplasms. This hyperexpression is predominantly of monocytic origin and is associated with molecular abnormalities of good prognosis such as (inv (16), NPM1) or with a subgroup of mutated FLT3-ITD patients with better survival. Finally, the study of S100A8 on leukemia cell lines highlights its heterogeneous effect on cell growth, apoptosis, ROS production and on NOX regulation. Furthermore, we observe a S100A8-phosphocholine change which remains to be explored.In conclusion, this work provides original information on bio-energetic balance in AML and their prognostic impacts, emphasizing that these metabolic alterations impact AML prognosis through complex interactions
Jansen, Sandra [Verfasser]. "Expression und Regulation des antimikrobiellen Proteins Psoriasin und S100A15 im ZNS / Sandra Jansen." Aachen : Hochschulbibliothek der Rheinisch-Westfälischen Technischen Hochschule Aachen, 2013. http://d-nb.info/1038602599/34.
Full textMüller, Irene [Verfasser], Carsten [Akademischer Betreuer] Tschöpe, Sophie Van [Akademischer Betreuer] Linthout, Jens [Gutachter] Kurreck, Roland [Gutachter] Lauster, Carsten [Gutachter] Tschöpe, and Sophie Van [Gutachter] Linthout. "Role of NOD2 and S100A8/S100A9 in the pathogenesis of Coxsackievirus B3-induced myocarditis / Irene Müller ; Gutachter: Jens Kurreck, Roland Lauster, Carsten Tschöpe, Sophie Van Linthout ; Carsten Tschöpe, Sophie Van Linthout." Berlin : Technische Universität Berlin, 2017. http://d-nb.info/1156013542/34.
Full textEndoh, Yasumi Medical Sciences Faculty of Medicine UNSW. "New mechanisms modulating S100A8 gene expression." Publisher:University of New South Wales. Medical Sciences, 2008. http://handle.unsw.edu.au/1959.4/42942.
Full textMcNeill, Eileen. "Neutrophil function in S100A9 null mice." Thesis, University College London (University of London), 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.423552.
Full textNogueira, Thiago de Oliveira. "Efeito antinociceptivo induzido pelo glicogênio em ratos submetidos ao modelo de pressão de pata: relação com a migração neutrofílica e a expressão da proteína S100A9." Universidade de São Paulo, 2011. http://www.teses.usp.br/teses/disponiveis/10/10133/tde-08102012-151355/.
Full textNeutrophilic peritonitis induced by glycogen causes antinociception in mice subjected to the writhing test, which is médiated by a calcium-binding protein with a molecular mass of 14 kDa, named S100A9. The purpose of this study was to deepen the study on the involvement of neutrophils in glycogen-induced antinociception in rats subjected to the paw pressure test and evaluate the expression of S100A9 protein in time periods when this effect was detected. Glycogen induces antinociception in rats between 2 and 12 hours after intraplantar injection. Pretreatment of animals with fucoidan, a selectin inhibitor, not only reversed the antinociceptive effect, but also induces hyperalgesia between 2 and 6 hours after glycogen injection. Eight hours after treatment with glycogen, fucoidan only inhibited the antinociception induced by the inflammatory agent. Histological analysis showed an increased migration of polymorphonuclear cells between 2 and 8 hours after glycogen administration, which was inhibited by pretreatment with fucoidan. Both intraplantar and subcutaneous injection of naloxone, a nonspecific inhibitor of opioid receptors, did not affect the antinociceptive effect induced by glycogen at all evaluated times. In relation to the expression of S100A9 analyzed by Western blotting, it was observed that the samples obtained from the footpad injected with glycogen, between 2 and 12 hours, had a band with a molecular weight of 14 kDa, which is similar to molecular weight of S100A9. Relative quantification of the bands marked with anti-S100A9 in the time periods between 2 and 12 hours showed a significant increase in protein expression in samples obtained from animals treated with glycogen, compared with those treated with saline. Intraperitoneal injection of glycogen induced a significant increase in the total number of cells in the abdominal cavity of animals between 2 and 12 hours after treatment, represented by increased numbers of migrated polymorphonuclear cells. The supernatants obtained from peritoneal exudate between 2 and 12 hours after injection of glycogen, administered intraplantarly, not only reversed the hyperalgesia induced by carrageenan (Cg) but also induced antinociceptive effect. Already, the supernatant obtained 24 hours after injection of glycogen only partially reversed the hyperalgesic effect induced by Cg. The treatment of the supernatant obtained 4 hours after injection of glycogen with anti-S100A9 abolished the antinociceptive effect observed with the supernatant on hyperalgesia induced by Cg. These data suggest that antinociception entailed by glycogen in rats submitted to the paw pressure is dependent on neutrophil migration. Moreover, this effect is not related to the release of opioid peptides but possibly to the S100A9 protein secretion by these cells. In addition, the results obtained with the supernatants of peritoneal exudate after glycogen injection show that during neutrophilic peritonitis a molecule able to inhibit carrageenan-induced hyperalgesia is secreted and induce antinociception entailed by glycogen, which is possibly the S100A9 protein.
Pleger, Sven Torsten. "Entwicklung klinisch experimenteller Ansätze zur therapeutischen Nutzung des kalziumbindenden Proteins S100A1 im Herzen." [S.l.] : [s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=974507091.
Full textKaralekas, Panagiotis. "Is S100A1 involved in the programming effects of fetal hypoxia on cardiac function in chickens?" Thesis, Linköpings universitet, Biologi, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-111556.
Full textMoraes, Natassja Foizer. "O C-terminal da proteína S100A9 murina modula os eventos envolvidos na angiogênese e na progressão tumoral em modelos in vitro." Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/10/10133/tde-09122015-114330/.
Full textThe S100A8/A9 proteins are expressed in different cell types and alone or when complexed, and at low concentrations promoted proliferation, cell migration and formation of capillary structures. On the other hand, at higher concentrations, this compound inhibits the growth of many types of murine and human tumor cells. Moreover, both human S100A9 protein and a synthetic peptide identical to the C-terminal portion of murine S100A9 (mS100A9p) present antinociceptive and immunomodulatory effects. Despite these evidences, the effect of mS100A9p on angiogenesis and tumorigenesis has not been investigated. Therefore, the aim of this study was to investigate the in vitro effect of mS100A9p on crucial events involved in angiogenesis and tumor development. For this, in order to evaluate the effect of mS100A9p on angiogenesis was used the murine endothelial cell line derived from thymus hemangioma (tEnd.1) for proliferation assays, endothelial cell migration in the presence of culture medium (scratch wound healing and chemotaxis assays) or in conditioned medium prevenient from LLC WRC256 tumor cells (chemotaxis assays), adhesion assay (on extracellular matrix components, such as type I collagen, fibronectin and laminin) and tube like-structure formation in 3D matrix. For the analyzes of the effect of mS100A9p on tumor cells, the cell line LLC WRC256 was used to perform functional assays such as proliferation, migration (scratch wound healing model) and adhesion (on components of the extracellular matrix). The results showed that the mS100A9p inhibits the proliferation, migration and adhesion of endothelial cells to the matrix components and consequently the formation of capillary structures in 3D matrix. Regarding LLC WRC256 tumor cells, it was observed again the inhibitory action of the mS100A9p on proliferation and migration events. In relation to cellular adhesion, this peptide increased this parameter of tumor cells on type I collagen and fibronectin. However mS100A9p inhibited the adhesion of these cells on laminin. In conclusion, the data obtained show that the mS100A9p inhibits in vitro crucial events involved in angiogenesis and tumor progression. Thus, the C-terminal portion of murine S100A9 protein may be considered as a new tool for the study of tumorigenesis and angiogenesis besides presenting potential to a possible therapeutic application in these processes
Sack, Ulrike. "New insights into S100A4-induced colon cancer metastasis." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2011. http://dx.doi.org/10.18452/16313.
Full textS100A4 promotes metastasis in colon cancer patients thereby reducing their five-year survival chances to less than 10%. Consequently, inhibition of S100A4 expression is a promising strategy for anti-metastatic treatment of colon cancer patients. The present study characterizes the small molecules niclosamide and calcimycin as transcriptional inhibitors of S100A4 which reduced S100A4 expression concentration- and time-dependently. Niclosamide and calcimycin treatment restricted cell migration, invasion and wound healing capabilities in a S100A4-specific manner, and inhibited cell proliferation and colony formation of colon cancer cells. Both small molecule inhibitors interfere with the constitutively active Wnt pathway. Targeting β-catenin expression by calcimycin or interfering with the β-catenin/TCF transcription activating complex by niclosamide resulted in reduced Wnt target gene transcription, among them S100A4. The study further presents a human colon cancer xenograft mouse model for monitoring S100A4-induced metastasis formation via non-invasive bioluminescence imaging. Treatment of xenograft mice with niclosamide resulted in a significant reduction of the S100A4 mRNA level in the tumor accompanied by inhibition of metastasis formation. Moreover, this study presents evidence that S100A4 is an inhibitor of DKK-1 expression. In colon cancer cells DKK-1 and S100A4 expression was negatively correlated. Ectopic S100A4 overexpression inhibited DKK-1 expression. Targeting S100A4 via shRNA recovered the repressed DKK-1 expression and vice versa. In summary, the study describes a novel positive feedback loop in the Wnt pathway regulation formed by S100A4 repressing its antagonist DKK-1. This novel mechanism further strengthens the need for S100A4 inhibitors such as niclosamide or calcimycin. Consequently, such small molecules provide immense potential for the treatment of colon cancer patients who are at high risk for S100A4-induced colon cancer metastasis.
Liu, Yidong. "Design, synthesis and evaluation of S100A4 protein inhibitors." Thesis, University of Nottingham, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.738338.
Full textDidrihsone, Ieva [Verfasser], and Gudrun [Akademischer Betreuer] Rappold. "S100A1 from Damaged Cardiomyocytes Elicits a Chemoattractant Cardiac Fibroblast Phenotype / Ieva Didrihsone ; Betreuer: Gudrun Rappold." Heidelberg : Universitätsbibliothek Heidelberg, 2017. http://d-nb.info/1180985532/34.
Full textBernotat, Juliane. "Beeinflussung der sarkoplasmatischen Ca2+-ATPase-Aktivität im Herz- und Skelettmuskel durch das Ca2+-bindende Protein S100A1." [S.l.] : [s.n.], 2003. http://deposit.ddb.de/cgi-bin/dokserv?idn=974453048.
Full textJervis, T. J. "Crystallisation and structural studies of bifunctional enzyme and S100A4." Thesis, Keele University, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.267460.
Full textWache, Christina. "Rolle von S100A8/A9 in der Immunpathogenese der Pneumokokkenmeningitis." Diss., Ludwig-Maximilians-Universität München, 2015. http://nbn-resolving.de/urn:nbn:de:bvb:19-179585.
Full text