Journal articles on the topic 'Ruthenium phosphide nanoparticles'

To see the other types of publications on this topic, follow the link: Ruthenium phosphide nanoparticles.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 20 journal articles for your research on the topic 'Ruthenium phosphide nanoparticles.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Guo, Long, Fang Luo, Fei Guo, Quan Zhang, Konggang Qu, Zehui Yang, and Weiwei Cai. "Robust hydrogen evolution reaction catalysis by ultrasmall amorphous ruthenium phosphide nanoparticles." Chemical Communications 55, no. 53 (2019): 7623–26. http://dx.doi.org/10.1039/c9cc03675j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Si, Chong-Dian, Ze-Xing Wu, Jing Wang, Zhi-Hua Lu, Xiu-Feng Xu, and Ji-Sen Li. "Enhanced the Hydrogen Evolution Performance by Ruthenium Nanoparticles Doped into Cobalt Phosphide Nanocages." ACS Sustainable Chemistry & Engineering 7, no. 11 (May 10, 2019): 9737–42. http://dx.doi.org/10.1021/acssuschemeng.9b00817.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Liu, Xiaofei, Yanglong Guo, Wangcheng Zhan, and Tian Jin. "Ball Milling-Assisted Synthesis of Ultrasmall Ruthenium Phosphide for Efficient Hydrogen Evolution Reaction." Catalysts 9, no. 3 (March 5, 2019): 240. http://dx.doi.org/10.3390/catal9030240.

Full text
Abstract:
The development of scalable hydrogen production technology to produce hydrogen economically and in an environmentally friendly way is particularly important. The hydrogen evolution reaction (HER) is a clean, renewable, and potentially cost-effective pathway to produce hydrogen, but it requires the use of a favorable electrocatalyst which can generate hydrogen with minimal overpotential for practical applications. Up to now, ruthenium phosphide Ru2P has been considered as a high-performance electrocatalyst for the HER. However, a tedious post-treatment method as well as large consumption of solvents in conventional solution-based synthesis still limits the scalable production of Ru2P electrocatalysts in practical applications. In this study, we report a facile and cost-effective strategy to controllably synthesize uniform ultrasmall Ru2P nanoparticles embedded in carbon for highly efficient HER. The key to our success lies in the use of a solid-state ball milling-assisted technique, which overcomes the drawbacks of the complicated post-treatment procedure and large solvent consumption compared with solution-based synthesis. The obtained electrocatalyst exhibits excellent Pt-like HER performance with a small overpotential of 36 mV at current density of 10 mA cm−2 in 1 M KOH, providing new opportunities for the fabrication of highly efficient HER electrocatalysts in real-world applications.
APA, Harvard, Vancouver, ISO, and other styles
4

Xiao, X., X. Wang, B. Li, X. Jiang, Y. Zhang, M. Li, S. Song, et al. "Regulating the electronic configuration of ruthenium nanoparticles via coupling cobalt phosphide for hydrogen evolution in alkaline media." Materials Today Physics 12 (March 2020): 100182. http://dx.doi.org/10.1016/j.mtphys.2020.100182.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Luo, Qian, Caili Xu, Qian Chen, Jie Wu, Yi Wang, Yun Zhang, and Guangyin Fan. "Synthesis of ultrafine ruthenium phosphide nanoparticles and nitrogen/phosphorus dual-doped carbon hybrids as advanced electrocatalysts for all-pH hydrogen evolution reaction." International Journal of Hydrogen Energy 44, no. 47 (October 2019): 25632–41. http://dx.doi.org/10.1016/j.ijhydene.2019.08.028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wu, Zhifeng, and Heyan Jiang. "Efficient palladium and ruthenium nanocatalysts stabilized by phosphine functionalized ionic liquid for selective hydrogenation." RSC Advances 5, no. 44 (2015): 34622–29. http://dx.doi.org/10.1039/c5ra01893e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bresó-Femenia, Emma, Cyril Godard, Carmen Claver, Bruno Chaudret, and Sergio Castillón. "Selective catalytic deuteration of phosphorus ligands using ruthenium nanoparticles: a new approach to gain information on ligand coordination." Chemical Communications 51, no. 91 (2015): 16342–45. http://dx.doi.org/10.1039/c5cc06984j.

Full text
Abstract:
Selective deuteration of phenyl rings in phenyl-alkyl phosphines, including diphosphines, was achieved using Ru/PVP nanoparticles and D2, which enables the comprehension of how different phosphorus ligands coordinate to the nanoparticle surface.
APA, Harvard, Vancouver, ISO, and other styles
8

Jiang, He-yan, and Xu-xu Zheng. "Tuning the chemoselective hydrogenation of aromatic ketones, aromatic aldehydes and quinolines catalyzed by phosphine functionalized ionic liquid stabilized ruthenium nanoparticles." Catalysis Science & Technology 5, no. 7 (2015): 3728–34. http://dx.doi.org/10.1039/c5cy00293a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ma, Ge, Na Yang, Yafei Xue, Guofu Zhou, and Xin Wang. "Ethylene Glycol Electrochemical Reforming Using Ruthenium Nanoparticle-Decorated Nickel Phosphide Ultrathin Nanosheets." ACS Applied Materials & Interfaces 13, no. 36 (September 2, 2021): 42763–72. http://dx.doi.org/10.1021/acsami.1c10971.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

González-Gálvez, David, Pau Nolis, Karine Philippot, Bruno Chaudret, and Piet W. N. M. van Leeuwen. "Phosphine-Stabilized Ruthenium Nanoparticles: The Effect of the Nature of the Ligand in Catalysis." ACS Catalysis 2, no. 3 (January 27, 2012): 317–21. http://dx.doi.org/10.1021/cs200633k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Sun, Peng, Xiangdong Long, Hao He, Chungu Xia, and Fuwei Li. "Conversion of Cellulose into Isosorbide over Bifunctional Ruthenium Nanoparticles Supported on Niobium Phosphate." ChemSusChem 6, no. 11 (September 20, 2013): 2190–97. http://dx.doi.org/10.1002/cssc.201300701.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Ganji, Prasad, and Piet W. N. M. van Leeuwen. "Phosphine Supported Ruthenium Nanoparticle Catalyzed Synthesis of Substituted Pyrazines and Imidazoles from α-Diketones." Journal of Organic Chemistry 82, no. 3 (January 25, 2017): 1768–74. http://dx.doi.org/10.1021/acs.joc.6b03032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Gutmann, Torsten, Eric Bonnefille, Hergen Breitzke, Pierre-Jean Debouttière, Karine Philippot, Romuald Poteau, Gerd Buntkowsky, and Bruno Chaudret. "Investigation of the surface chemistry of phosphine-stabilized ruthenium nanoparticles – an advanced solid-state NMR study." Physical Chemistry Chemical Physics 15, no. 40 (2013): 17383. http://dx.doi.org/10.1039/c3cp52927d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Durap, Feyyaz, Salim Caliskan, Saim Özkar, Kadir Karakas, and Mehmet Zahmakiran. "Dihydrogen Phosphate Stabilized Ruthenium(0) Nanoparticles: Efficient Nanocatalyst for The Hydrolysis of Ammonia-Borane at Room Temperature." Materials 8, no. 7 (July 10, 2015): 4226–38. http://dx.doi.org/10.3390/ma8074226.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Zhang, Ge, Jingwen Liu, Chengying Liu, Fan Ding, Yingqian Li, Hao Tang, and Ming Ma. "Phosphate Group-Derivated Bipyridine–Ruthenium Complex and Titanium Dioxide Nanoparticles for Electrochemical Sensing of Protein Kinase Activity." ACS Sensors 6, no. 12 (December 6, 2021): 4451–60. http://dx.doi.org/10.1021/acssensors.1c01908.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Sun, Peng, Xiangdong Long, Hao He, Chungu Xia, and Fuwei Li. "Back Cover: Conversion of Cellulose into Isosorbide over Bifunctional Ruthenium Nanoparticles Supported on Niobium Phosphate (ChemSusChem 11/2013)." ChemSusChem 6, no. 11 (October 25, 2013): 2198. http://dx.doi.org/10.1002/cssc.201301044.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Dmowski, Wojtek, Takeshi Egami, Karen E. Swider-Lyons, Wen-Fu Yan, Sheng Dai, and Steven H. Overbury. "Local atomic structure in disordered and nanocrystalline catalytic materials." Zeitschrift für Kristallographie - Crystalline Materials 222, no. 11/2007 (January 1, 2007). http://dx.doi.org/10.1524/zkri.2007.222.11.617.

Full text
Abstract:
The power of the atomic pair density function method to study the local atomic structure of dispersed materials is discussed for three examples (I) supercapacitor hydrous ruthenia, (II) electroctalyst platinum-iron phosphate and (III) nanoparticle gold catalyst. Hydrous ruthenia appears to be amorphous, but was found to be nanocomposite with RuO
APA, Harvard, Vancouver, ISO, and other styles
18

Doherty, S., J. G. Knight, T. Backhouse, T. S. T. Tran, R. Paterson, F. Stahl, H. Y. Alharbi, et al. "Highly efficient and selective aqueous phase hydrogenation of aryl ketones, aldehydes, furfural and levulinic acid and its ethyl ester catalyzed by phosphine oxide-decorated polymer immobilized ionic liquid-stabilized ruthenium nanoparticles." Catalysis Science & Technology, 2022. http://dx.doi.org/10.1039/d2cy00205a.

Full text
Abstract:
Phosphine oxide-decorated polymer immobilized ionic liquid stabilized RuNPs catalyse the hydrogenation of aryl ketones with remarkable selectivity for the CO bond, complete hydrogenation to the cyclohexylalcohol and hydrogenation of levulinic acid to γ-valerolactone.
APA, Harvard, Vancouver, ISO, and other styles
19

Paterson, Reece, Hussam Alharbi, Corinne Wills, Thomas W. Chamberlain, Richard A. Bourne, Anthony Griffiths, Sean M. Collins, et al. "Highly Efficient and Selective Reduction of Nitroarenes to N-Arylhydroxylamines Catalysed by Phosphine Oxide-Decorated Polymer Immobilized Ionic Liquid Stabilized Ruthenium Nanoparticles." SSRN Electronic Journal, 2022. http://dx.doi.org/10.2139/ssrn.4253029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Paterson, Reece, Husam Y. Alharbi, Corinne Wills, Thomas W. Chamberlain, Richard A. Bourne, Anthony Griffiths, Sean M. Collins, et al. "Highly Efficient and Selective Partial Reduction of Nitroarenes to N-Arylhydroxylamines Catalysed by Phosphine Oxide-Decorated Polymer Immobilized Ionic Liquid Stabilized Ruthenium Nanoparticles." Journal of Catalysis, November 2022. http://dx.doi.org/10.1016/j.jcat.2022.11.023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography