Academic literature on the topic 'Rust disease'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Rust disease.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Rust disease"

1

Journal, Baghdad Science. "Virulence surveillance of wheat black stem rust fungus." Baghdad Science Journal 11, no. 2 (June 1, 2014): 803–12. http://dx.doi.org/10.21123/bsj.11.2.803-812.

Full text
Abstract:
General survey for wheat rust diseases in Iraqi fields was done during the seasons of 2010, 2011 and 2012. The survey covered different fields in southern, middle and northern regions. Results of the first season indicated that most of Iraqi cultivars such as Tmmoze2, IPA 99 and Mexipak showed different types of susceptibility to both yellow and leaf rust infection. Disease severity increased when the conditions were favorable for infections with using susceptible cultivars. The severity of leaf rust was less in the north region comparing with the middle and south regions. Most of the introduced cultivars such as Sham6 and Cimmyto showed susceptible reaction to yellow and leaf rust. Yellow rust was in epiphytotic form at the Iraqi-Syrian-Turkish triangle where the disease severity was 100%. Low disease severity of stem rust was observed on some cultivars (1-5%), except for the cultivar Mexipak which showed 40%S in Najaf. Rusts at season of 2011 were restricted mostly in Baghdad and the yellow rust was dominant. The AUDPC of 15 wheat cultivars showed that Sawa and Sali were highly susceptible to the three types of rusts while Babil113 and Tamoze2 were resistant. No rusts were detected at season 2012.
APA, Harvard, Vancouver, ISO, and other styles
2

Meyer, M., N. Bacha, T. Tesfaye, Y. Alemayehu, E. Abera, B. Hundie, G. Woldeab, et al. "Wheat rust epidemics damage Ethiopian wheat production: A decade of field disease surveillance reveals national-scale trends in past outbreaks." PLOS ONE 16, no. 2 (February 3, 2021): e0245697. http://dx.doi.org/10.1371/journal.pone.0245697.

Full text
Abstract:
Wheat rusts are the key biological constraint to wheat production in Ethiopia—one of Africa’s largest wheat producing countries. The fungal diseases cause economic losses and threaten livelihoods of smallholder farmers. While it is known that wheat rust epidemics have occurred in Ethiopia, to date no systematic long-term analysis of past outbreaks has been available. We present results from one of the most comprehensive surveillance campaigns of wheat rusts in Africa. More than 13,000 fields have been surveyed during the last 13 years. Using a combination of spatial data-analysis and visualization, statistical tools, and empirical modelling, we identify trends in the distribution of wheat stem rust (Sr), stripe rust (Yr) and leaf rust (Lr). Results show very high infection levels (mean incidence for Yr: 44%; Sr: 34%; Lr: 18%). These recurrent rust outbreaks lead to substantial economic losses, which we estimate to be of the order of 10s of millions of US-D annually. On the widely adopted wheat variety, Digalu, there is a marked increase in disease prevalence following the incursion of new rust races into Ethiopia, which indicates a pronounced boom-and-bust cycle of major gene resistance. Using spatial analyses, we identify hotspots of disease risk for all three rusts, show a linear correlation between altitude and disease prevalence, and find a pronounced north-south trend in stem rust prevalence. Temporal analyses show a sigmoidal increase in disease levels during the wheat season and strong inter-annual variations. While a simple logistic curve performs satisfactorily in predicting stem rust in some years, it cannot account for the complex outbreak patterns in other years and fails to predict the occurrence of stripe and leaf rust. The empirical insights into wheat rust epidemiology in Ethiopia presented here provide a basis for improving future surveillance and to inform the development of mechanistic models to predict disease spread.
APA, Harvard, Vancouver, ISO, and other styles
3

Pivonia, Shimon, and X. B. Yang. "Relating Epidemic Progress from a General Disease Model to Seasonal Appearance Time of Rusts in the United States: Implications for Soybean Rust." Phytopathology® 96, no. 4 (April 2006): 400–407. http://dx.doi.org/10.1094/phyto-96-0400.

Full text
Abstract:
Soybean rust, Phakopsora pachyrhizi, has been considered a threat to the production of the U.S. soybean, Glycine max. During the past decade, this disease gradually spread to Africa, South America, and recently to the United States. Previous soybean rust risk assessments with an assumption of availability of spores early in a season showed that weather conditions (dew and temperature) during a growing season, in general, are suitable for disease development in U.S. soybean-growing regions. Predicting the time of rust appearance in a field is critical to determining the destructive potential of rusts, including soybean rust. In this study, comparative epidemiology was used to assess likely rust incipient time in four locations within the U.S. Soybean Belt from south to north: Baton Rouge, LA; Charlotte, NC; Indianapolis, IN; and Minneapolis, MN. Temperature effects on the infection cycle of five rusts occurring in the Midwest were evaluated using a general disease model. The likely incipient times were examined with the modeling results. Among the rusts studied, early-appearing rusts had suitable conditions for development earlier in a season. However, a lag period of several weeks to more than 3 months was found from the time when conditions are suitable for a rust to develop or when hosts are available to the time when the rust was detected in fields. Length of the lag period differed among the rust species examined. If nature of long-distance dispersal is not significantly different among the rusts, implications of our study to the expected seasonal soybean rust incipience in fields lead to two possible scenarios: (i) average appearance time of soybean rust across the Soybean Belt should be somewhere between appearance times of common corn rust and southern corn rust, and (ii) with late appearance of the disease, late-planted soybean in the south has greater risk.
APA, Harvard, Vancouver, ISO, and other styles
4

Sanjel, Santosh, Bhim Chaulagain, Ian M. Small, Jack C. Comstock, Martha Hincapie, Richard N. Raid, and Philippe Rott. "Comparison of Progress of Brown Rust and Orange Rust and Conditions Conducive for Severe Epidemic Development During the Sugarcane Crop Season in Florida." Plant Disease 103, no. 5 (May 2019): 825–31. http://dx.doi.org/10.1094/pdis-05-18-0862-re.

Full text
Abstract:
Brown rust (caused by Puccinia melanocephala) and orange rust (caused by P. kuehnii) are two major diseases of sugarcane in Florida. To better understand the epidemiology of these two rusts, disease severity and weather variables were monitored for two seasons in cultivars CL90-4725 (susceptible to brown rust and resistant to orange rust) and CL85-1040 (susceptible to orange rust and resistant to brown rust). Brown rust was most severe during mid-May to mid-July, whereas orange rust severity peaked during two periods: mid-May to early August and then November to December. Overall, disease severity was higher for orange rust than for brown rust. Maximum disease severity was correlated with the number of hours at night with an average temperature of 20 to 22.2°C for brown rust one season and orange rust both seasons. Slightly higher correlation was obtained when relative humidity above 90% was included in the number of hours at night with an average temperature of 20 to 22.2°C for brown rust but not orange rust, suggesting that leaf wetness is not a limiting factor for either disease in Florida. Epidemics of brown rust began at lower night temperatures (16.7 to 22.2°C) in one season, but epidemics of orange rust lasted longer under higher temperatures. The correlation of rust severity on recently emerged leaves with conducive temperatures recorded in 10-, 20-, or 30-day windows starting 7 days before disease assessment suggested that earlier inoculum production is needed to create severe epidemics that result in yield loss.
APA, Harvard, Vancouver, ISO, and other styles
5

Alemu, Gadisa. "Wheat Breeding for Disease Resistance: Review." Open Access Journal of Microbiology & Biotechnology 4, no. 2 (2019): 1–10. http://dx.doi.org/10.23880/oajmb-16000142.

Full text
Abstract:
Breeding for disease resistance is a central focus of plant breeding programs, as any successful variety must have the complete package of high yield, disease resistance, agronomic performance, and end - use quality. Wheat breeding is focused on high yield, pathogen resistance and abiotic stress tolerance. Among diseases of wheat yellow rust, stem rust, and leaf rust are the most damaging diseases of wheat and other small grain cereals . Disease resistance in wheat breeding with one exception, the diseases of wheat that is important because of their effect on yield. Resistance to all diseases together can is important to avoid an unexpected loss in effectiveness of the resistance of a cu ltivar to a major disease. The genetic resistance to stem rust, leaf rust and yellow rust can be characterized as qualitative and quantitative resistances. Vertical resistance is specific to pathogen isolates based on single or very few genes. Race - specifi c is used to describe resistance that interacts differentially with pathogen races. Quantitative resistance is defined as resistance that varies in continuous way between the various phenotypes of the host population, from almost imperceptible to quite str ong. With the need to accelerate the development of improved varieties, genomics - assisted breeding is becoming an important tool in breeding programs. With marker - assisted selection, there has been success in breeding for disease resistance. Generally, bre eding programs have successfully implemented molecular markers to assist in the development of cultivars with stem, leaf and stripe rust resistance genes. When new rust resistance genes are to be deployed in wheat breeding programs, it unfortunately takes several years before the new sources of resistance will become available in commercial wheat cultivars. This is due to the long process involved in the establishment of pure breeding wheat lines. Biotechnology based techniques are available to accelerate t he breeding process via doubled haploid production.
APA, Harvard, Vancouver, ISO, and other styles
6

Ali, Yasir, Muhammad A. Khan, Muhammad Atiq, Waseem Sabir, Arslan Hafeez, and Faizan A. Tahir. "OPTIMIZATION OF ENVIRONMENTAL FACTORS CONDUCIVE FOR STRIPE RUST OF WHEAT." Pakistan Journal of Phytopathology 29, no. 2 (December 30, 2017): 239. http://dx.doi.org/10.33866/phytopathol.029.02.0400.

Full text
Abstract:
Wheat rusts are the significant diseases of wheat crop and potential threats worldwide. Among all major wheat diseases occurring in all wheat growing areas of the world, yellow rust caused by Puccinia striiformis f. sp. tritici is a big hazard when it occurs in severe condition. The susceptible germplasm and conducive environmental conditions contribute towards wide outbreak of rust diseases. In the present study, eight wheat lines were screened out and correlated with epidemiological factors (temperature, relative humidity, rainfall and wind speed). Results showed that maximum disease severity was observed at minimum and maximum temperature ranging from 13.7-16.7 and 23.5-27.65 0C respectively. Their disease severity was increased with increase in relative humidity ranging from 52-64 %. Similarly, rain fall ranging from 5.7-21.99 mm and wind speed 6.88-11.73 km/h respectively proved conducive for yellow rust development in Sargodha. A positive correlation was observed between disease severity and all environmental factors.
APA, Harvard, Vancouver, ISO, and other styles
7

Ogbonnaya, F. C., M. Imtiaz, H. S. Bariana, M. McLean, M. M. Shankar, G. J. Hollaway, R. M. Trethowan, E. S. Lagudah, and M. van Ginkel. "Mining synthetic hexaploids for multiple disease resistance to improve bread wheat." Australian Journal of Agricultural Research 59, no. 5 (2008): 421. http://dx.doi.org/10.1071/ar07227.

Full text
Abstract:
A collection of 253 synthetic hexaploid wheats (SHWs) produced from 192 Aegilops tauschii accessions and 39 elite durum varieties were studied to identify, characterise, and evaluate potentially untapped diversity of disease resistance in wheat. The diseases for which resistance was sought included cereal cyst nematode (CCN), root lesion nematode (RLN), Stagonospora nodorum blotch (SNB), Septoria tritici blotch (STB), and the 3 rusts, leaf rust, stem rust, and stripe rust, all important diseases of bread wheat worldwide, which can severely reduce wheat yield and quality. The SHWs exhibited a wide spectrum of resistance to the 8 pathogens. The frequency of disease-resistant SHWs ranged from 1% for one species of RLN (Pratylenchus neglectus), 3% and 10% for Septoria nodorum leaf and glume blotch, 10% for seedling resistance to yellow leaf spot, 16% for CCN, 21% for the second species of RLN (Pratylenchus thornei), 73% for Septoria tritici blotch, and 15%, 40%, and 24% for leaf rust, stem rust, and stripe rust, respectively. Five SHWs, Aus26860, Aus30258, Aus30294, Aus30301, and Aus30304, exhibited high levels of resistance to CCN, YLP, STB, LR, and SR, while 56 SHWs showed resistance to either 3 or 4 diseases. The genetics of resistance to CCN in some of the SHWs revealed that some of the accessions carry the same CCN gene(s) against pathotype Ha13, while others may carry different resistance gene(s). Additional studies were carried out to understand the relationship between the resistances identified in SHWs and the ones already present in common wheat, in particular the resistance genes Cre1 and Cre3 against CCN. The use of perfect markers associated with Cre1 and Cre3 suggested that some SHWs may carry a new CCN resistance gene(s), which could be deployed in breeding programs to increase the diversity of available resistance. The identification of SHWs with resistance to a range of diseases provides an opportunity to generate genetic knowledge and resistant germplasm to be used in future variety development.
APA, Harvard, Vancouver, ISO, and other styles
8

Kharouf, Shoula, Shadi Hamzeh, and Mohamad Fawaehz Azmeh. "Races Identification of Wheat Rusts in Syria during the 2019 Growing Season." Arab Journal for Plant Protection 39, no. 1 (March 2021): 1–13. http://dx.doi.org/10.22268/ajpp-39.1.001013.

Full text
Abstract:
Kharouf, Sh., Sh. Hamzeh and M.F. Azmeh. 2021. Races Identification of Wheat Rusts in Syria during the 2019 Growing Season. Arab Journal of Plant Protection, 39(1): 1-13. Wheat rust diseases, caused by Puccinia striiformis f. sp. tritici (stripe or yellow rust), P. triticina f. sp. tritici (leaf or brown rust) and P. graminis f. sp. tritici (stem or black rust) are important factors affecting both durum and bread wheat production in Syria. Considerable losses were caused by these diseases, especially stripe rust, estimated at more than one million metric tons, in the 2010 season, out of 5 million anticipated production. Therefore, it is essential to monitor and follow the movement of these three rust physiological races. In the 2019 growing season, 165 wheat fields were surveyed, and 312 samples were collected and characterized. Ten races of stripe rust were identified in ten locations, of which, four represent new record in Syria, namely the races 16E154, 69E150, 264E46 and 258E64. In addition, four races of leaf rust were identified in four locations, one of which (BKLP) is a new record in Syria. In addition, three previously recorded stem rust races were identified from three different locations. It should be mentioned that the newly recorded races of stripe rust are able to overcome resistance genes Yr1 and Yr5, on which the resistance of durum wheat cultivars such as "Cham3" depended, with a disease severity of 40S recorded in the same locations. It is also worth noting that the stripe rust race 462E128 (warrior) was not detected in the isolates studied. Likewise, the stem rust race Ug99 was also not identified, and because of the aggressiveness of this race, continuous inspection through field surveys accompanied with pathogenicity tests is essential during the coming seasons. Keywords: Stripe (yellow) rust, Leaf (brown) rust, stem (black) rust, race identification, wheat, Syria
APA, Harvard, Vancouver, ISO, and other styles
9

Pfender, W. "Demonstration of Pathotype Specificity in Stem Rust of Perennial Ryegrass." Phytopathology® 99, no. 10 (October 2009): 1185–89. http://dx.doi.org/10.1094/phyto-99-10-1185.

Full text
Abstract:
Rust diseases cause significant damage in forage and seed crops of perennial ryegrass (Lolium perenne), which is highly heterozygous and heterogeneous and thus presents difficulty in genetic analysis. There has been no definitive demonstration of the existence of pathotypes for stem rust or other rusts of perennial ryegrass, although experiments with crown rust (Puccinia coronata) of this host are strongly suggestive of pathotype specificity. We made single-pustule isolates of P. graminis subsp. graminicola, and applied them individually to a set of genetically diverse, clonally propagated individuals of L. perenne. There were clear examples of different patterns of virulence among isolates across the different plant clones, including qualitative and quantitative differences in resistance. These data demonstrate the existence of pathotype specificity in stem rust of L. perenne, information which will be useful in breeding for disease resistance.
APA, Harvard, Vancouver, ISO, and other styles
10

Beirn, Lisa A., William A. Meyer, Bruce B. Clarke, and Jo Anne Crouch. "A Greenhouse-based Inoculation Protocol for Fungi Causing Crown Rust and Stem Rust Diseases of Kentucky Bluegrass Turf." HortScience 50, no. 10 (October 2015): 1509–13. http://dx.doi.org/10.21273/hortsci.50.10.1509.

Full text
Abstract:
Rusts are destructive fungal diseases that can cause severe thinning and unattractive discoloration of kentucky bluegrass (KBG; Poa pratensis L.). Currently, turfgrass breeding programs rely on field evaluations to screen KBG germplasm for rust resistance; methods that are expensive, labor intensive, and require large turf areas. The availability of a greenhouse-based assay to perform prescreening of KBG germplasm for resistance to rust diseases before field trials would allow breeders to remove the poorest performing plants before field evaluations thus enhancing breeding efficiency. In this study, we set out to develop a reliable, low-cost greenhouse inoculation protocol for the two most common rust pathogens of KBG in temperate growing regions: Puccinia coronata and Puccinia graminis, the causal agents of crown and stem rust, respectively. Using a modified inoculation assay and custom-built plexi-glass chambers adapted from protocols used for cereal rust pathogens, urediniospores of crown and stem rust fungi developed on inoculated plants 10 to 14 days postinoculation. Real-time polymerase chain reaction (PCR) assays, disease symptomology, and morphology of urediniospores confirmed the presence and identity of both rust pathogens from inoculated host tissue. The inoculation protocols described here represent an effective method to accelerate screening of KBG germplasm for resistance to crown and stem rust diseases. Infection of KBG plants in the greenhouse will also allow breeders to maintain populations of crown and stem rust fungi throughout the year, providing a reliable and ongoing source of pathogen inoculum for experimentation and screening in the future.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Rust disease"

1

Olsen, Mary W., and Deborah Young. "Comandra Blister Rust." College of Agriculture and Life Sciences, University of Arizona (Tucson, AZ), 2009. http://hdl.handle.net/10150/146721.

Full text
Abstract:
3 pp.
Mondell pine should not be planted within a mile of Comandra populations. Infection of pine occurs through needles by spores produced on Comandra, but spores produced on pine cannot re-infect pine. This article gives information about the disease cycle, the symptoms and prevention and control methods for blister rust.
APA, Harvard, Vancouver, ISO, and other styles
2

Grabow, Bethany. "Environmental conditions associated with stripe rust and leaf rust epidemics in Kansas winter wheat." Diss., Kansas State University, 2016. http://hdl.handle.net/2097/32835.

Full text
Abstract:
Doctor of Philosophy
Department of Plant Pathology
Erick D. DeWolf
Stripe rust (caused by Puccinia striiformis f. sp. tritici) and leaf rust (caused by Puccinia triticina) are the top two diseases of winter wheat (Triticum aestivum) with a 20-year average yield loss of 4.9% in Kansas. Due to the significant yield losses caused by these diseases, the overall objective of this research was to identify environmental variables that favor stripe and leaf rust epidemics. The first objective was to verify the environmental conditions that favor P. triticina infections in an outdoor field environment. Wheat was inoculated with P. triticina and exposed to ambient weather conditions for 16 hours. Number of hours with temperature between 5 to 25°C and relative humidity >87% were highly correlated and predicted leaf rust infections with 89% accuracy. The results of this outdoor assay were used to develop variables to evaluate the association of environment with regional leaf rust epidemics. Before regional disease models can be developed for a forecast system, suitable predictors need to be identified. Objectives two and three of this research were to identify environmental variables associated with leaf rust and stripe rust epidemics and to evaluate these predictors in models. Mean yield loss on susceptible varieties was estimated for nine Kansas crop reporting districts (CRD’s). Monthly environmental variables were evaluated for association with stripe rust epidemics (>1% yield loss), leaf rust epidemics (>1% yield loss), severe stripe rust epidemics (>14% yield loss) and severe leaf rust epidemics (>7% yield loss) at the CRD scale. Stripe rust and leaf rust epidemics were both strongly associated with soil moisture conditions; however, the timing differed between these diseases. Stripe rust epidemics were associated with soil moisture in fall and winter, and leaf rust epidemics during winter and spring. Severe stripe rust and leaf rust epidemics were associated with favorable temperature (7 to 12°C) and temperature (15 to 20°C) with relative humidity (>87%) or precipitation in May using tree-based methods of classification, respectively. The preliminary models developed in this research could be coupled with disease observations and varietal resistance information to advise growers about the need for foliar fungicides against these rusts in Kansas winter wheat.
APA, Harvard, Vancouver, ISO, and other styles
3

Kermani, Maryam Jafarkhani. "Chromosome doubling and the breeding of disease-resistant roses." Thesis, University of East London, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.390605.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wellings, Colin Ross. "Host: pathogen studies of wheat stripe rust in Australia." Thesis, Department of Agricultural Genetics and Biometry, 1986. http://hdl.handle.net/2123/14544.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wells, Vanessa. "Discovery and Molecular Mapping of Rust Resistance in Wheat." Thesis, The University of Sydney, 2018. http://hdl.handle.net/2123/18829.

Full text
Abstract:
This investigation covers genetics of rust resistance in common wheat and durum wheat. Stripe rust resistance in AUS26615 was conferred by three QTL and these were temporarily named; QYr.sun-1B, QYr.sun-3D and QYr.sun-6B. QYr.sun-1B represented the previously named APR gene Yr29. The other two QTL appear to be new. The detection of QYr.sun-3D in late sown experiment points to its better expression at relatively higher temperature regimes. The all stage resistance gene, YrAW12, carried by AUS26674, was shown to be Yr34 based on its co-segregation with Yr34-linked marker sunKASP_112 and similar seedling expression. AUS26674/Avocet S RIL population was genotyped with Yr18 and Yr29 linked markers, and responses of RILs carrying different combination of these loci were compared. The RILs carrying combination of YrAW12, Yr18 and Yr29 produced adult plant responses equal to the parent AUS266674. Among the two gene combinations, YrAW12 and Yr18 combination, produced adult plant stripe rust score 3, lower than the score 4 exhibited by other two dual combinations). Four RILs that lacked YrAW12, Yr18 and Yr29 displayed stripe rust response scores 5 to 7 indicating the presence of an additional APR locus in AUS266674. Eight leaf rust genes (Lr1, Lr13, Lr16, Lr24, Lr26, Lr27+Lr31, Lr37 and Lr73) and 11 stem rust resistance genes (Sr2, Sr8a, Sr8b, Sr9b, Sr9g, Sr17, Sr23, Sr24, Sr30, Sr31 and Sr38) were postulated singly or in different combinations among a set 85 genotypes. Nine and five lines, respectively, appear to carry uncharacterised leaf rust and stem rust resistance. Adult plant leaf rust responses ranged from 2 to 6, while stem rust scores varied from 2 to 8. Genetic analysis of stem rust resistance in a durum landrace AUS26677 indicated involvement of a single resistance gene, temporarily named SrAW4. SrAW4 was located on chromosome 4B.
APA, Harvard, Vancouver, ISO, and other styles
6

Allen, Chanel Yvonne. "Characterisation of Melampsora rust disease of willow clones grown for biomass." Thesis, Queen's University Belfast, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.264088.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Golegaonkar, Prashant G. "Genetic and molecular analysis of resistance to rust diseases in barley." Thesis, The University of Sydney, 2007. http://hdl.handle.net/2123/3549.

Full text
Abstract:
The responses of 92 barley genotypes to selected P. hordei pathotypes was assessed in greenhouse tests at seedling growth stages and in the field at adult plant growth stages to determine known or unknown resistances. On the basis of multipathotype tests, 35 genotypes were postulated to carry Rph2, Rph4, Rph5, Rph12, RphCantala alone or combinations of Rph2 + Rph4 and Rph1 + Rph2, whereas 52 genotypes lacked detectable seedling resistance to P. hordei. Five genotypes carried seedling resistance that was effective to all pathotypes tested, of which four were believed to carry uncharacterised resistance based on pedigree information. Field tests at adult plant growth stages indicated that while 28 genotypes were susceptible, 57 carried uncharacterised APR to P. hordei. Pedigree analysis indicated that APR in the test genotypes could have been derived from three different sources. The resistant responses of seven cultivars at adult plant growth stages were believed to be due to the presence of seedling resistance effective against the field pathotypes. Genetic studies conducted on 10 barley genotypes suggested that ‘Vada’, ‘Nagrad’, ‘Gilbert’, ‘Ulandra (NT)’ and ‘WI3407’ each carry one gene providing adult plant resistance to P. hordei. Genotypes ‘Patty’, ‘Pompadour’ ‘Athos’, ‘Dash’ and ‘RAH1995’ showed digenic inheritance of APR at one field site and monogenic inheritance at a second. One of the genes identified in each of these cultivars provided high levels of APR and was effective at both field sites. The second APR gene was effective only at one field site, and it conferred low levels of APR. Tests of allelism between resistant genotypes confirmed a common APR gene in all genotypes with the exception of ‘WI3407’, which based on pedigree information was genetically distinct from the gene common in ‘Vada’, ‘Nagrad’, ‘Patty’, ‘RAH1995’ and ‘Pompadour’. An incompletely dominant gene, Rph14, identified previously in an accession of Hordeum vulgare confers resistance to all known pathotypes of P. hordei in Australia. The inheritance of Rph14 was confirmed using 146 and 106 F3 lines derived from the crosses ‘Baudin’/ ‘PI 584760’ (Rph14) and ‘Ricardo’/‘PI 584760’ (Rph14), respectively. Bulk segregant analysis on DNA from the parental genotypes and resistant and susceptible DNA bulks from F3 lines using diversity array technology (DArT) markers located Rph14 to the short arm of chromosome 2H. Polymerase chain reaction (PCR) based marker analysis identified a single simple sequence repeat (SSR) marker, Bmag692, linked closely to Rph14 at a map distance of 2.1 and 3.8 cM in the populations ‘Baudin’/ ‘PI 584760’and ‘Ricardo’/‘PI 584760’, respectively. Seedlings of 62 Australian and two exotic barley cultivars were assessed for resistance to a variant of Puccinia striiformis, referred to as BGYR, which causes stripe rust on several wild Hordeum species and some genotypes of cultivated barley. With the exception of six Australian barley cultivars and an exotic cultivar, all displayed resistance to the pathogen. Genetic analyses of six Australian barley cultivars and the Algerian barley ‘Sahara 3771’, suggested that they carried either one or two major seedling resistance genes to the pathogen. A single recessive seedling resistance gene, Bgyr1, identified in ‘Sahara 3771’ was located on the long arm of chromosome 7H and flanked by restriction fragment length polymorphism (RFLP) markers wg420 and cdo347 at genetic distances of 12.8 and 21.9 cM, respectively. Mapping resistance to BGYR at adult plant growth stages using a doubled haploid population derived from the cross ‘Clipper’/‘Sahara 3771’ identified two major QTLs on the long arms of chromosomes 3H and 7H that explained 26 and 18% of total phenotypic variation, respectively. The QTL located on chromosome 7HL corresponded to the seedling resistance gene Bgyr1. The second QTL was concluded to correspond to a single adult plant resistance gene designated Bgyr2, originating from cultivar ‘Clipper’.
APA, Harvard, Vancouver, ISO, and other styles
8

Golegaonkar, Prashant G. "Genetic and molecular analysis of resistance to rust diseases in barley." University of Sydney, 2007. http://hdl.handle.net/2123/3549.

Full text
Abstract:
Doctor of Philosophy
The responses of 92 barley genotypes to selected P. hordei pathotypes was assessed in greenhouse tests at seedling growth stages and in the field at adult plant growth stages to determine known or unknown resistances. On the basis of multipathotype tests, 35 genotypes were postulated to carry Rph2, Rph4, Rph5, Rph12, RphCantala alone or combinations of Rph2 + Rph4 and Rph1 + Rph2, whereas 52 genotypes lacked detectable seedling resistance to P. hordei. Five genotypes carried seedling resistance that was effective to all pathotypes tested, of which four were believed to carry uncharacterised resistance based on pedigree information. Field tests at adult plant growth stages indicated that while 28 genotypes were susceptible, 57 carried uncharacterised APR to P. hordei. Pedigree analysis indicated that APR in the test genotypes could have been derived from three different sources. The resistant responses of seven cultivars at adult plant growth stages were believed to be due to the presence of seedling resistance effective against the field pathotypes. Genetic studies conducted on 10 barley genotypes suggested that ‘Vada’, ‘Nagrad’, ‘Gilbert’, ‘Ulandra (NT)’ and ‘WI3407’ each carry one gene providing adult plant resistance to P. hordei. Genotypes ‘Patty’, ‘Pompadour’ ‘Athos’, ‘Dash’ and ‘RAH1995’ showed digenic inheritance of APR at one field site and monogenic inheritance at a second. One of the genes identified in each of these cultivars provided high levels of APR and was effective at both field sites. The second APR gene was effective only at one field site, and it conferred low levels of APR. Tests of allelism between resistant genotypes confirmed a common APR gene in all genotypes with the exception of ‘WI3407’, which based on pedigree information was genetically distinct from the gene common in ‘Vada’, ‘Nagrad’, ‘Patty’, ‘RAH1995’ and ‘Pompadour’. An incompletely dominant gene, Rph14, identified previously in an accession of Hordeum vulgare confers resistance to all known pathotypes of P. hordei in Australia. The inheritance of Rph14 was confirmed using 146 and 106 F3 lines derived from the crosses ‘Baudin’/ ‘PI 584760’ (Rph14) and ‘Ricardo’/‘PI 584760’ (Rph14), respectively. Bulk segregant analysis on DNA from the parental genotypes and resistant and susceptible DNA bulks from F3 lines using diversity array technology (DArT) markers located Rph14 to the short arm of chromosome 2H. Polymerase chain reaction (PCR) based marker analysis identified a single simple sequence repeat (SSR) marker, Bmag692, linked closely to Rph14 at a map distance of 2.1 and 3.8 cM in the populations ‘Baudin’/ ‘PI 584760’and ‘Ricardo’/‘PI 584760’, respectively. Seedlings of 62 Australian and two exotic barley cultivars were assessed for resistance to a variant of Puccinia striiformis, referred to as BGYR, which causes stripe rust on several wild Hordeum species and some genotypes of cultivated barley. With the exception of six Australian barley cultivars and an exotic cultivar, all displayed resistance to the pathogen. Genetic analyses of six Australian barley cultivars and the Algerian barley ‘Sahara 3771’, suggested that they carried either one or two major seedling resistance genes to the pathogen. A single recessive seedling resistance gene, Bgyr1, identified in ‘Sahara 3771’ was located on the long arm of chromosome 7H and flanked by restriction fragment length polymorphism (RFLP) markers wg420 and cdo347 at genetic distances of 12.8 and 21.9 cM, respectively. Mapping resistance to BGYR at adult plant growth stages using a doubled haploid population derived from the cross ‘Clipper’/‘Sahara 3771’ identified two major QTLs on the long arms of chromosomes 3H and 7H that explained 26 and 18% of total phenotypic variation, respectively. The QTL located on chromosome 7HL corresponded to the seedling resistance gene Bgyr1. The second QTL was concluded to correspond to a single adult plant resistance gene designated Bgyr2, originating from cultivar ‘Clipper’.
APA, Harvard, Vancouver, ISO, and other styles
9

Beruski, Gustavo Castilho. "Disease warning systems for rational management of Asian soybean rust in Brazil." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/11/11152/tde-25072018-163838/.

Full text
Abstract:
The Asian soybean rust (ASR), caused by the fungus Phakopsora pachyrhizi, may promote significant damages in soybean crop. The disease is mainly controlled by sequential applications of fungicides following a calendarbased system. However, this practice disregards the weather favorability to recommend spraying to ASR control. The proposition of fungicide schemes to make the ASR control more efficient can be reached by the use of diseasewarning systems. Thus, the current study aimed to assess the performance of different disease-warning systems to determine better fungicide spraying schemes for the ASR control. The experiment was conducted in Piracicaba, SP, Ponta Grossa, PR, Campo Verde and Pedra Preta, MT, Brazil, over the 2014/2015 and 2015/2016 soybean growing seasons. The treatments were: Unsprayed check treatment; Calendar-based sprays in a 14-day interval from R1 stage (CALEND); Disease warning system based on rainfall data with less conservative threshold (PREC_1 - 80% severity cut-off); and more conservative threshold (PREC_2 - 50% severity cut-off); Disease warning system based on air temperature and leaf wetness duration with less conservative threshold (TLWD_1 - 6 lesions cm-2) and more conservative threshold (TLWD_2 - 9 lesions cm-2). The results confirmed that weather conditions in the field trials were favorable to ASR progress. Among the weather elements correlated to severity leaf wetness duration, cumulative rainfall and air temperature during leaf wetness duration influenced positively the ASR. By testing warning systems to control ASR it ones was evidenced that those based on rainfall data presented highest performances. PREC_2 showed a high performance considering all sowing dates; whereas, PREC_1 was better treatment during sowing dates between October and November. The TLWD diseasewarning systems, with both thresholds, overestimated the ASR, recommending more sprays compared to other treatments. Empirical models were efficient for estimation of LWD in Ponta Grossa, Campo Verde and Pedra Preta. High performances in estimating LWD were identified by using number of hours with relative humidity above 90% (NHRH>=90%), being these able to be use as input in the disease-warning systems (RMSE less than 2.0 h). The profitability of use rainfall based warning systems was conditioned by variations in the rainfalls regimes at the studied sites. PREC_1 and PREC_2 presented the highest relative yield gains in relation to CALEND during the period with the highest rainfalls in Piracicaba, Campo Verde and Pedra Preta. However, in Ponta Grossa, the rainfall based warning systems were not effective to control ASR.
A ferrugem asiática da soja (ASR), causada pelo fungo Phakopsora pachyrhizi, pode ocasionar elevados prejuízos às lavouras de soja. O controle da doença é realizado por meio de aplicações sequenciais de fungicidas em sistema calendarizado. Este, por sua vez, não considera a favorabilidade climática para recomendar pulverizações. A proposição de esquemas de pulverização mais eficientes pode ser obtida pelo uso de sistemas de alerta fitossanitário. Assim, objetivou-se avaliar o desempenho de diferentes sistemas de alerta fitossanitário, visando à determinação de esquemas de pulverização de defensivos químicos para o controle de ASR nos estados de São Paulo, Paraná e Mato Grosso, Brasil. O experimento foi conduzido em Piracicaba, SP, Ponta Grossa, PR, Campo Verde e Pedra Preta, MT, Brasil ao longo das safras de 2014/2015 e 2015/2016. Os tratamentos foram: Testemunha (sem aplicação); Aplicações calendarizadas a partir de R1, espaçadas em 14 dias (CALEND); Sistema de alerta baseado em dados de chuva limiar menos conservador (PREC_1 - 80% de severidade) e mais conservador (PREC_2 - 50% de severidade); Sistema de alerta baseado em dados de temperatura do ar e a duração do período de molhamento foliar com limiar menos conservador (TDPM_1 - 6 lesões cm2) e com limiar menos conservador (TDPM_2 - 9 lesões cm2). Os resultados obtidos confirmaram que as condições meteorológicas nas localidades estudadas foram favoráveis para o progresso da ASR. Verificou-se que a duração do período de molhamento foliar (DPM), temperatura do ar durante o molhamento e chuva acumulada influenciaram positivamente a ASR. Ao testar os sistemas de alerta no controle de ASR verificou-se que aqueles baseados em dados de chuva apresentaram os melhores desempenhos. O PREC_2 apresentou melhor desempenho em análise geral considerando todas as épocas de semeadura, ao passo que PREC_1 foi melhor quando em semeadura de outubro a novembro. Os sistemas TDPM, com ambos os limiares de ação, superestimaram os valores de ASR acusando um número maior de pulverizações comparada aos demais tratamentos. Modelos empíricos mostraram ser eficientes na estimação da DPM em Ponta Grossa, Campo Verde e Pedra Preta. Estimações pelo método de número de horas com umidade relativa acima de 90% (NHUR>=90%) apresentaram RMSE menor que 2,0 h viabilizando o uso da DPM estimada como variável de entrada de sistema de alerta. A rentabilidade do uso dos sistemas de alerta baseado em dados de chuva foi condicionada às variações no regime dessa variável nas localidades estudadas. PREC_1 e PREC_2 apresentaram maior ganho de produtividade em relação à CALEND durante o período com maior índice pluviométrico nas localidades de Piracicaba, Campo Verde e Pedra Preta. Em contrapartida os sistemas de alerta não foram efetivos no controle de ASR em Ponta Grossa.
APA, Harvard, Vancouver, ISO, and other styles
10

Elahinia, S. A. "Resistance to wheat to Puccinia striiformis." Thesis, University of Salford, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.384166.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Rust disease"

1

C, Chen F., Wei C. C, and Asian Vegetable Research and Development Center., eds. Bibliography of soybean rust, 1895-1986. Shanhua, Taiwan: Tropical Vegetable Information Service, The Asian Vegetable Research and Development Center, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Goddard, Ray E. Measurement of field resistance, rust hazard, and deployment of blister rust-resistant western white pine. [Ogden, Utah]: U.S. Dept. of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ratcliffe, Susan T. Soybean rust, Phakopsora pachyrhizi and P. meibomiae. East Lansing, Mich.?: North Central Pest Management Center, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

1958-, Dorrance Anne E., Draper Martin Alan, and Hershman Donald E, eds. Using foliar fungicides to manage soybean rust. [United States]: USDA, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

United States. Congress. House. Committee on Agriculture. Subcommittee on Conservation, Credit, Rural Development, and Research. The economic impact of Asian soybean rust on the U.S. farm sector: Joint hearing before the Subcommittee on Conservation, Credit, Rural Development, and Research and the Subcommittee on General Farm Commodities and Risk Management of the Committee on Agriculture, House of Representatives, One Hundred Ninth Congress, first session, April 27, 2005. Washington: U.S. G.P.O., 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hoff, R. J. Susceptibility of ponderosa pine to western gall rust within the middle Columbia River system. Ogden, UT: U.S. Dept. of Agriculture, Forest Service, Intermountain Research Station, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

North Central Forest Experiment Station (Saint Paul, Minn.), ed. How to identify white pine blister rust and remove cankers. [St. Paul, MN]: North Central Forest Experiment Station, Forest Service, U.S. Dept. of Agriculture, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hoff, R. J. How to recognize blister rust infection on whitebark pine. Ogden, UT (324 25th Street, Ogden 84401): U.S. Dept. of Agriculture, Forest Service, Intermountain Research Station, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Walkinshaw, C. H. Promising resistance to fusiform rust from southeastern slash pines. Asheville, NC: U.S. Dept. of Agriculture, Forest Service, Southern Research Station, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Panamerican Soybean Rust Workshop (2nd 2005 Buenos Aires, Argentina). Roya asiática de la soja en América: El libro. Tucumán, Argentina: Estación Experimental Agroindustrial "Obispo Colombres", 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Rust disease"

1

Gupta, A. K., and R. G. Saini. "Leaf Rust Resistance in Wheat." In Durability of Disease Resistance, 235–37. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-2004-3_25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Saharan, Govind Singh, Prithwi Raj Verma, Prabhu Dayal Meena, and Arvind Kumar. "Disease Management." In White Rust of Crucifers: Biology, Ecology and Management, 203–15. New Delhi: Springer India, 2014. http://dx.doi.org/10.1007/978-81-322-1792-3_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Saharan, Govind Singh, Prithwi Raj Verma, Prabhu Dayal Meena, and Arvind Kumar. "The Disease." In White Rust of Crucifers: Biology, Ecology and Management, 7–54. New Delhi: Springer India, 2014. http://dx.doi.org/10.1007/978-81-322-1792-3_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gold, Randall E., and Kurt Mendgen. "Rust Basidiospore Germlings and Disease Initiation." In The Fungal Spore and Disease Initiation in Plants and Animals, 67–99. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-2635-7_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Saharan, Govind Singh, Prithwi Raj Verma, Prabhu Dayal Meena, and Arvind Kumar. "Disease Development (Epidemiology)." In White Rust of Crucifers: Biology, Ecology and Management, 113–31. New Delhi: Springer India, 2014. http://dx.doi.org/10.1007/978-81-322-1792-3_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Van Silfhout, C. H. "Durable Resistance in the Pathosystem: Wheat — Stripe Rust." In Durability of Disease Resistance, 135–45. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-2004-3_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Subrahmanyam, P., D. McDonald, L. J. Reddy, S. N. Nigam, and D. H. Smith. "Origin and Utilization of Rust Resistance in Groundnut." In Durability of Disease Resistance, 147–58. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-2004-3_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ayliffe, Michael, Ming Luo, Justin Faris, and Evans Lagudah. "Disease Resistance." In Wheat Improvement, 341–60. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-90673-3_19.

Full text
Abstract:
AbstractWheat plants are infected by diverse pathogens of economic significance. They include biotrophic pathogens like mildews and rusts that require living plant cells to proliferate. By contrast necrotrophic pathogens that cause diseases such as tan spot, Septoria nodurum blotch and spot blotch require dead or dying cells to acquire nutrients. Pioneering studies in the flax plant-flax rust pathosystem led to the ‘gene-for-gene’ hypothesis which posits that a resistance gene product in the host plant recognizes a corresponding pathogen gene product, resulting in disease resistance. In contrast, necrotrophic wheat pathosystems have an ‘inverse gene-for-gene’ system whereby recognition of a necrotrophic fungal product by a dominant host gene product causes disease susceptibility, and the lack of recognition of this pathogen molecule leads to resistance. More than 300 resistance/susceptibility genes have been identified genetically in wheat and of those cloned the majority encode nucleotide binding, leucine rich repeat immune receptors. Other resistance gene types are also present in wheat, in particular adult plant resistance genes. Advances in mutational genomics and the wheat pan-genome are accelerating causative disease resistance/susceptibility gene discovery. This has enabled multiple disease resistance genes to be engineered as a transgenic gene stack for developing more durable disease resistance in wheat.
APA, Harvard, Vancouver, ISO, and other styles
9

Mohapatra, Sudhir Kumar, Srinivas Prasad, and Sarat Chandra Nayak. "Wheat Rust Disease Detection Using Deep Learning." In Data Science and Data Analytics, 191–202. Boca Raton: Chapman and Hall/CRC, 2021. http://dx.doi.org/10.1201/9781003111290-11-14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Broers, L. H. M. "Breeding for Partial Resistance in Wheat to Stripe Rust." In Durability of Disease Resistance, 179–83. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-2004-3_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Rust disease"

1

UI Haq, Ihsan, Rafia Mumtaz, Muhammad Talha, Zunaira Shafaq, and Muhammad Owais. "Wheat Rust Disease Classification using Edge-AI." In 2022 2nd International Conference on Artificial Intelligence (ICAI). IEEE, 2022. http://dx.doi.org/10.1109/icai55435.2022.9773489.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dewi, Ratih Kartika, and R. V. Hari Ginardi. "Feature extraction for identification of sugarcane rust disease." In 2014 International Conference on Information, Communication Technology and System (ICTS). IEEE, 2014. http://dx.doi.org/10.1109/icts.2014.7010565.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Andreis, José Henrique, Felipe Borella, Willingthon Pavan, Carlos A. Holbig, Cláudia Vieira Godoy, Jaqson Dalbosco, and José Maurício Fernandes. "Mobile Application for Asian Soybean Rust Tracking in Brazil." In VII Workshop de Computação Aplicada à Gestão do Meio Ambiente e Recursos Naturais. Sociedade Brasileira de Computação - SBC, 2020. http://dx.doi.org/10.5753/wcama.2016.9550.

Full text
Abstract:
Brazil is the second-largest soybean producer. With the arrival of Asian soybean rust in the Western Hemisphere in 2001, a considerable amount of resources has been allocated to understand and control this important yield-limiting disease. Due its rapidly dissemination, in 2004, the federal government led an effort to create the Asian soybean rust consortium, with the main goal of coordinating research activities involving public and private sector. This paper describes the development of a mobile application, designed to support the Asian Soybean Rust Consortium to monitor, in time and space, occurrences of Asian soybean rust in Brazil.
APA, Harvard, Vancouver, ISO, and other styles
4

Sumartini and Kurnia Paramita Sari. "Screening of soybean genotypes resistance to rust disease (Phakopsora pachyrhizi)." In THE SECOND INTERNATIONAL CONFERENCE ON GENETIC RESOURCES AND BIOTECHNOLOGY: Harnessing Technology for Conservation and Sustainable Use of Genetic Resources for Food and Agriculture. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0075674.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kumar, Deepak, and Vinay Kukreja. "An Instance Segmentation Approach for Wheat Yellow Rust Disease Recognition." In 2021 International Conference on Decision Aid Sciences and Application (DASA). IEEE, 2021. http://dx.doi.org/10.1109/dasa53625.2021.9682257.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Dias, Jeferson de Souza, and José Hiroki Saito. "Coffee plant image segmentation and disease detection using JSEG algorithm." In Workshop de Visão Computacional. Sociedade Brasileira de Computação - SBC, 2021. http://dx.doi.org/10.5753/wvc.2021.18887.

Full text
Abstract:
Brazil is the largest coffee producer in the world, and then there are many challenges to maintain the high quality and purity of the beans. Thus, it is important to study coffee plants, and help agronomists to detect diseases, such as rust, with resources of computer science. In this work, it is described experiments using image segmentation algorithm JSEG, which is capable to segment images in multi-scale. Using a coffee tree image database RoCoLe (Robusta Coffee Leaf Images), the JSEG algorithm is used to segment these images in four scales. It is selected typical segments in each scale and they are grouped using similarity of normalized color histograms. In this way the several scales segmentations are compared. It is concluded that the segments in scales 1 and 2, in which the colors are more homogeneous then in scales 3 and 4, are adequate to use as training samples for the detection of rust diseases.
APA, Harvard, Vancouver, ISO, and other styles
7

Maid, Monali K., and Ratnadeep R. Deshmukh. "Statistical Analysis of WLR(Wheat Leaf Rust) Disease using ASD FieldSpec4 Spectroradiometer." In 2018 3rd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT). IEEE, 2018. http://dx.doi.org/10.1109/rteict42901.2018.9012563.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lyimo, Doreen A., V. Lakshmi Narasimhan, and Zablon A. Mbero. "Sensitivity Analysis of Coffee Leaf Rust Disease using Three Deep Learning Algorithms." In 2021 IEEE AFRICON. IEEE, 2021. http://dx.doi.org/10.1109/africon51333.2021.9571007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lisboa, Eduardo, Givanildo Lima, and Fabiane Queiroz. "Coffee Leaf Diseases Identification and Severity Classification using Deep Learning." In Anais Estendidos da Conference on Graphics, Patterns and Images. Sociedade Brasileira de Computação - SBC, 2021. http://dx.doi.org/10.5753/sibgrapi.est.2021.20039.

Full text
Abstract:
In this paper, we propose a method for automatic identification and classification of leaf diseases and pests in the Brazilian Arabica Coffee leaves. We developed a Machine Learning model, trained with the BRACOL public image dataset, to evaluate if a given image of a leaf has a disease or pest — Miner, Phoma, Cercospora and Rust — or if it is healthy. We then compared our model with other famous and well-known classification models, and we were able to achieve an accuracy of 98,04%, which greatly exceeds the accuracy of the other methods implemented. In addition, we developed an assessment to perform a classification related to the percentage of each leaf that is affected by the disease, achieving an accuracy of approximately 90%.
APA, Harvard, Vancouver, ISO, and other styles
10

Da Silva, Gercina, Alessandro Ferreira, Denilson Guilherme, José Fernando Grigolli, Vanessa Weber, and Hemerson Pistori. "Recognition of Soybean Diseases Using Machine Learning Techniques Based on Segmentation of Images Captured By UAVs." In Workshop de Visão Computacional. Sociedade Brasileira de Computação - SBC, 2020. http://dx.doi.org/10.5753/wvc.2020.13476.

Full text
Abstract:
Soybean is an important product for the Brazilian economy, however it has factors that can limit its productive income, like the diseases that are generally difficult to control. Thus, this article aims to use a computer program to recognize diseases in images obtained by a UAV in a soybean plantation. The program is based on computer vision and machine learning, using the SLIC algorithm to segment the images into superpixels. To achieve the objective, after the segmentation of the images, an image dataset was created with the following classes: mildew, target spot, Asian rust, soil, straw and healthy leaves, totaling 22,140 images. Diagrammatic scales were used to assess disease severity. The disease recognition computer program explored four supervised learning techniques: SVM, J48, Random Forest and KNN. The techniques that obtained the best performance were SVM and Random Forests, taking into account the results obtained with all the evaluation metrics used. It was found that the program is efficient to differentiate the classes of diseases treated in this article.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Rust disease"

1

Breiman, Adina, Jan Dvorak, Abraham Korol, and Eduard Akhunov. Population Genomics and Association Mapping of Disease Resistance Genes in Israeli Populations of Wild Relatives of Wheat, Triticum dicoccoides and Aegilops speltoides. United States Department of Agriculture, December 2011. http://dx.doi.org/10.32747/2011.7697121.bard.

Full text
Abstract:
Wheat is the most widely grown crop on earth, together with rice it is second to maize in total global tonnage. One of the emerging threats to wheat is stripe (yellow) rust, especially in North Africa, West and Central Asia and North America. The most efficient way to control plant diseases is to introduce disease resistant genes. However, the pathogens can overcome rapidly the effectiveness of these genes when they are wildly used. Therefore, there is a constant need to find new resistance genes to replace the non-effective genes. The resistance gene pool in the cultivated wheat is depleted and there is a need to find new genes in the wild relative of wheat. Wild emmer (Triticum dicoccoides) the progenitor of the cultivated wheat can serve as valuable gene pool for breeding for disease resistance. Transferring of novel genes into elite cultivars is highly facilitated by the availability of information of their chromosomal location. Therefore, our goals in this study was to find stripe rust resistant and susceptible genotypes in Israeli T. dicoccoides population, genotype them using state of the art genotyping methods and to find association between genetic markers and stripe rust resistance. We have screened 129 accessions from our collection of wild emmer wheat for resistance to three isolates of stripe rust. About 30% of the accessions were resistant to one or more isolates, 50% susceptible, and the rest displayed intermediate response. The accessions were genotyped with Illumina'sInfinium assay which consists of 9K single nucleotide polymorphism (SNP) markers. About 13% (1179) of the SNPs were polymorphic in the wild emmer population. Cluster analysis based on SNP diversity has shown that there are two main groups in the wild population. A big cluster probably belongs to the Horanum ssp. and a small cluster of the Judaicum ssp. In order to avoid population structure bias, the Judaicum spp. was removed from the association analysis. In the remaining group of genotypes, linkage disequilibrium (LD) measured along the chromosomes decayed rapidly within one centimorgan. This is the first time when such analysis is conducted on a genome wide level in wild emmer. Such a rapid decay in LD level, quite unexpected for a selfer, was not observed in cultivated wheat collection. It indicates that wild emmer populations are highly suitable for association studies yielding a better resolution than association studies in cultivated wheat or genetic mapping in bi-parental populations. Significant association was found between an SNP marker located in the distal region of chromosome arm 1BL and resistance to one of the isolates. This region is not known in the literature to bear a stripe rust resistance gene. Therefore, there may be a new stripe rust resistance gene in this locus. With the current fast increase of wheat genome sequence data, genome wide association analysis becomes a feasible task and efficient strategy for searching novel genes in wild emmer wheat. In this study, we have shown that the wild emmer gene pool is a valuable source for new stripe rust resistance genes that can protect the cultivated wheat.
APA, Harvard, Vancouver, ISO, and other styles
2

Wahl, Izhak, J. G. Moseman, Yehushua Anikster, and R. D. Wilcoxson. Elucidation of Types and Mechanisms of Resistance to the Brown Leaf Rust Disease in Natural Populations of Wild Barley, Hordeum spontaneum c. koch. United States Department of Agriculture, May 1988. http://dx.doi.org/10.32747/1988.7598907.bard.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sela, Hanan, Eduard Akhunov, and Brian J. Steffenson. Population genomics, linkage disequilibrium and association mapping of stripe rust resistance genes in wild emmer wheat, Triticum turgidum ssp. dicoccoides. United States Department of Agriculture, January 2014. http://dx.doi.org/10.32747/2014.7598170.bard.

Full text
Abstract:
The primary goals of this project were: (1) development of a genetically characterized association panel of wild emmer for high resolution analysis of the genetic basis of complex traits; (2) characterization and mapping of genes and QTL for seedling and adult plant resistance to stripe rust in wild emmer populations; (3) characterization of LD patterns along wild emmer chromosomes; (4) elucidation of the multi-locus genetic structure of wild emmer populations and its correlation with geo-climatic variables at the collection sites. Introduction In recent years, Stripe (yellow) rust (Yr) caused by Pucciniastriiformis f. sp. tritici(PST) has become a major threat to wheat crops in many parts of the world. New races have overcome most of the known resistances. It is essential, therefore, that the search for new genes will continue, followed by their mapping by molecular markers and introgression into the elite varieties by marker-assisted selection (MAS). The reservoir of genes for disease and pest resistance in wild emmer wheat (Triticumdicoccoides) is an important resource that must be made available to wheat breeders. The majority of resistance genes that were introgressed so far in cultivated wheat are resistance (R) genes. These genes, though confering near-immunity from the seedling stage, are often overcome by the pathogen in a short period after being deployed over vast production areas. On the other hand, adult-plant resistance (APR) is usually more durable since it is, in many cases, polygenic and confers partial resistance that may put less selective pressure on the pathogen. In this project, we have screened a collection of 480 wild emmer accessions originating from Israel for APR and seedling resistance to PST. Seedling resistance was tested against one Israeli and 3 North American PST isolates. APR was tested on accessions that did not have seedling resistance. The APR screen was conducted in two fields in Israel and in one field in the USA over 3 years for a total of 11 replicates. We have found about 20 accessions that have moderate stripe rust APR with infection type (IT<5), and about 20 additional accessions that have novel seedling resistance (IT<3). We have genotyped the collection using genotyping by sequencing (GBS) and the 90K SNP chip array. GBS yielded a total 341K SNP that were filtered to 150K informative SNP. The 90K assay resulted in 11K informative SNP. We have conducted a genome-wide association scan (GWAS) and found one significant locus on 6BL ( -log p >5). Two novel loci were found for seedling resistance. Further investigation of the 6BL locus and the effect of Yr36 showed that the 6BL locus and the Yr36 have additive effect and that the presence of favorable alleles of both loci results in reduction of 2 grades in the IT score. To identify alleles conferring adaption to extreme climatic conditions, we have associated the patterns of genomic variation in wild emmer with historic climate data from the accessions’ collection sites. The analysis of population stratification revealed four genetically distinct groups of wild emmer accessions coinciding with their geographic distribution. Partitioning of genomic variance showed that geographic location and climate together explain 43% of SNPs among emmer accessions with 19% of SNPs affected by climatic factors. The top three bioclimatic factors driving SNP distribution were temperature seasonality, precipitation seasonality, and isothermality. Association mapping approaches revealed 57 SNPs associated with these bio-climatic variables. Out of 21 unique genomic regions controlling heading date variation, 10 (~50%) overlapped with SNPs showing significant association with at least one of the three bioclimatic variables. This result suggests that a substantial part of the genomic variation associated with local adaptation in wild emmer is driven by selection acting on loci regulating flowering. Conclusions: Wild emmer can serve as a good source for novel APR and seedling R genes for stripe rust resistance. APR for stripe rust is a complex trait conferred by several loci that may have an additive effect. GWAS is feasible in the wild emmer population, however, its detection power is limited. A panel of wild emmer tagged with more than 150K SNP is available for further GWAS of important traits. The insights gained by the bioclimatic-gentic associations should be taken into consideration when planning conservation strategies.
APA, Harvard, Vancouver, ISO, and other styles
4

Fahima, Tzion, and Jorge Dubcovsky. Map-based cloning of the novel stripe rust resistance gene YrG303 and its use to engineer 1B chromosome with multiple beneficial traits. United States Department of Agriculture, January 2013. http://dx.doi.org/10.32747/2013.7598147.bard.

Full text
Abstract:
Research problem: Bread wheat (Triticumaestivum) provides approximately 20% of the calories and proteins consumed by humankind. As the world population continues to increase, it is necessary to improve wheat yields, increase grain quality, and minimize the losses produced by biotic and abiotic stresses. Stripe rust, caused by Pucciniastriiformisf. sp. tritici(Pst), is one of the most destructive diseases of wheat. The new pathogen races are more virulent and aggressive than previous ones and have produced large economic losses. A rich source for stripe-rust resistance genes (Yr) was found in wild emmer wheat populations from Israel. Original Project goals: Our long term goal is to identify, map, clone, characterize and deploy in breeding, novel wild emmer Yr genes, and combine them with multiple beneficial traits. The current study was aiming to map and clone YrG303 and Yr15, located on chromosome 1BS and combine them with drought resistance and grain quality genes. Positional cloning of YrG303/Yr15: Fine mapping of these genes revealed that YrG303 is actually allelic to Yr15. Fine genetic mapping using large segregating populations resulted in reduction of the genetic interval spanning Yr15 to less than 0.1 cM. Physical mapping of the YrG303/Yr15 locus was based on the complete chromosome 1BS physical map of wheat constructed by our group. Screening of 1BS BAC library with Yr15 markers revealed a long BAC scaffold covering the target region. The screening of T. dicoccoidesaccession-specific BAC library with Yr15 markers resulted in direct landing on the target site. Sequencing of T. dicoccoidesBAC clones that cover the YrG303/Yr15 locus revealed a single candidate gene (CG) with conserved domains that may indicate a role in disease resistance response. Validation of the CG was carried out using EMS mutagenesis (loss-of- function approach). Sequencing of the CG in susceptible yr15/yrG303 plants revealed three independent mutants that harbour non-functional yr15/yrG303 alleles within the CG conserved domains, and therefore validated its function as a Pstresistance gene. Evaluation of marker-assisted-selection (MAS) for Yr15. Introgressions of Yr15 into cultivated wheat are widely used now. Recently, we have shown that DNA markers linked to Yr15 can be used as efficient tools for introgression of Yr15 into cultivated wheat via MAS. The developed markers were consistent and polymorphic in all 34 tested introgressions and are the most recommended markers for the introgression of Yr15. These markers will facilitate simultaneous selection for multiple Yr genes and help to avoid escapees during the selection process. Engineering of improved chromosome 1BS that harbors multiple beneficial traits. We have implemented the knowledge and genetic resources accumulated in this project for the engineering of 1B "super-chromosome" that harbors multiple beneficial traits. We completed the generation of a chromosome including the rye 1RS distal segment associated with improved drought tolerance with the Yr gene, Yr15, and the strong gluten allele 7Bx-over-expressor (7Bxᴼᴱ). We have completed the introgression of this improved chromosome into our recently released variety Patwin-515HP and our rain fed variety Kern, as well as to our top breeding lines UC1767 and UC1745. Elucidating the mechanism of resistance exhibited by Yr36 (WKS1). The WHEAT KINASE START1 (WKS1) resistance gene (Yr36) confers partial resistance to Pst. We have shown that wheat plants transformed with WKS1 transcript are resistant to Pst. WKS1 is targeted to the chloroplast where it phosphorylates the thylakoid-associatedascorbateperoxidase (tAPX) and reduces its ability to detoxify peroxides. Based on these results, we propose that the phosphorylation of tAPX by WKS1 reduces the ability of the cells to detoxify ROS and contributes to cell death. Distribution and diversity of WKS in wild emmer populations. We have shown that WKS1 is present only in the southern distribution range of wild emmer in the Fertile Crescent. Sequence analysis revealed a high level of WKS1 conservation among wild emmer populations, in contrast to the high level of diversity observed in NB-LRR genes. This phenomenon shed some light on the evolution of genes that confer partial resistance to Pst. Three new WKS1 haplotypes displayed a resistance response, suggesting that they can be useful to improve wheat resistance to Pst. In summary, we have improved our understanding of cereals’ resistance mechanisms to rusts and we have used that knowledge to develop improved wheat varieties.
APA, Harvard, Vancouver, ISO, and other styles
5

López-Valverde, Nansi, Antonio López-Valverde, Ana Suarez, Bruno Macedo de Sousa, and Juan Manuel Aragoneses. Association of gastric infection and periodontal disease through Helicobacter pylori as a common denominator: A systematic review and meta-analysi. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, October 2021. http://dx.doi.org/10.37766/inplasy2021.10.0097.

Full text
Abstract:
Review question / Objective: Is gastric helicobacter pylori infection related to periodontal diseases? Condition being studied: Therefore, the aim of this systematic review and meta-analysis was to identify and analyze clinical studies to determine the direct correlation between Helicobacter Pylori gastric infection andPeriodontal Disease. Study designs to be included: Clinical studies that provided data on Helicobacter Pylori infection in both the stomach and oral cavity, confirmed by polymerase chain reaction (PCR), rapid urease test (RUT) or enzyme-linked immunosorbent assay (ELISA). Clinical studies that associated PD with Helicobacter Pylori. The diagnosis of PD was confirmed ac-cording to the diagnostic criteria in periodontology.
APA, Harvard, Vancouver, ISO, and other styles
6

Dubcovsky, Jorge, Tzion Fahima, and Ann Blechl. Molecular characterization and deployment of the high-temperature adult plant stripe rust resistance gene Yr36 from wheat. United States Department of Agriculture, November 2013. http://dx.doi.org/10.32747/2013.7699860.bard.

Full text
Abstract:
Stripe rust, caused by Puccinia striiformis f. sp. tritici is one of the most destructive fungal diseases of wheat. Virulent races that appeared within the last decade caused drastic cuts in yields. The incorporation of genetic resistance against this pathogen is the most cost-effective and environmentally friendly solution to this problem. However, race specific seedling resistance genes provide only a temporary solution because fungal populations rapidly evolve to overcome this type of resistance. In contrast, high temperature adult plant (HTAP) resistance genes provide a broad spectrum resistance that is partial and more durable. The cloning of the first wheat HTAP stripe rust resistance gene Yr36 (Science 2009, 323:1357), funded by our previous (2007-2010) BARD grant, provided us for the first time with an entry point for understanding the mechanism of broad spectrum resistance. Two paralogous copies of this gene are tightly linked at the Yr36 locus (WKS1 and WKS2). The main objectives of the current study were to characterize the Yr36 (WKS) resistance mechanism and to identify and characterize alternative WKSgenes in wheat and wild relatives. We report here that the protein coded by Yr36, designated WKS1, that has a novel architecture with a functional kinase and a lipid binding START domain, is localized to chloroplast. Our results suggest that the presence of the START domain may affect the kinase activity. We have found that the WKS1 was over-expressed on leaf necrosis in wheat transgenic plants. When the isolated WKS1.1 splice variant transcript was transformed into susceptible wheat it conferred resistance to stripe rust, but the truncated variant WKS1.2 did not confer resistance. WKS1.1 and WKS1.2 showed different lipid binding profiling. WKS1.1 enters the chloroplast membrane, while WKS1.2 is only attached outside of the chloroplast membrane. The ascorbate peroxidase (APX) activity of the recombinant protein of TmtAPXwas found to be reduced by WKS1.1 protein in vitro. The WKS1.1 mature protein in the chloroplast is able to phosphorylate TmtAPXprotein in vivo. WKS1.1 induced cell death by suppressing APX activity and reducing the ability of the cell to detoxify reactive oxygen. The decrease of APX activity reduces the ability of the plant to detoxify the reactive H2O2 and is the possible mechanism underlying the accelerated cell death observed in the transgenic plants overexpressing WKS1.1 and in the regions surrounding a stripe rust infection in the wheat plants carrying the natural WKS1.1 gene. WKS2 is a nonfunctional paralog of WKS1 in wild emmer wheat, probably due to a retrotransposon insertion close to the alternative splicing site. In some other wild relatives of wheat, such as Aegilops comosa, there is only one copy of this gene, highly similar to WKS2, which is lucking the retrotransposon insertion. WKS2 gene present in wheat and WKS2-Ae from A. showed a different pattern of alternative splice variants, regardless of the presence of the retrotransposon insertion. Susceptible Bobwhite transformed with WKS2-Ae (without retrotansposon insertion in intron10), which derived from Aegilops comosaconferred resistance to stripe rust in wheat. The expression of WKS2-Ae in transgenic plants is up-regulated by temperature and pathogen infection. Combination of WKS1 and WKS2-Ae shows improved stripe rust resistance in WKS1×WKS2-Ae F1 hybrid plants. The obtained results show that WKS1 protein is accelerating programmed cell death observed in the regions surrounding a stripe rust infection in the wheat plants carrying the natural or transgenic WKS1 gene. Furthermore, characterization of the epistatic interactions of Yr36 and Yr18 demonstrated that these two genes have additive effects and can therefore be combined to increase partial resistance to this devastating pathogen of wheat. These achievements may have a broad impact on wheat breeding efforts attempting to protect wheat yields against one of the most devastating wheat pathogen.
APA, Harvard, Vancouver, ISO, and other styles
7

Dolbeer, Richard A., and George M. Llnz. Blackbirds. U.S. Department of Agriculture, Animal and Plant Health Inspection Service, August 2016. http://dx.doi.org/10.32747/2016.7207732.ws.

Full text
Abstract:
The term blackbird loosely refers to a diverse group of about 10 species of North American birds that belong to the avian family Icteridae. The most common species include: Red-winged blackbird (Agelaius phoeniceus, Common grackle (Quiscalus quiscula), Great-tailed grackle (Quiscalus mexicanus), Brown-headed cowbird (Molothrus ater), Yellow-headed blackbird (Xanthocephalus xanthocephalus), Brewer’s blackbird (Euphagus cyanocephalus), and Rusty blackbird (Euphagus carolinus). They can cause damage to crops and fruits. Some of them may cause damage to livestock feed in feedlots and some of them may be a cause for concern in the future, due to the potential for disease transmission, with their expanding range. There is potential to amplify and spread disease to humans such as avian influenza although there is no evidence that this happened. Blackbirds are native migratory birds, and thus come under the jurisdiction of the Federal Migratory Bird Treaty Act (MBTA), a formal treaty with Canada, Mexico, Japan, and Russia. Blackbirds have federal protection in the U.S.
APA, Harvard, Vancouver, ISO, and other styles
8

Boyle, M., and Elizabeth Rico. Terrestrial vegetation monitoring at Cumberland Island National Seashore: 2020 data summary. National Park Service, September 2022. http://dx.doi.org/10.36967/2294287.

Full text
Abstract:
The Southeast Coast Network (SECN) conducts long-term terrestrial vegetation monitoring as part of the nationwide Inventory and Monitoring Program of the National Park Service (NPS). The vegetation community vital sign is one of the primary-tier resources identified by SECN park managers, and it is currently conducted at 15 network parks (DeVivo et al. 2008). Monitoring plants and their associated communities over time allows for targeted understanding of ecosystems within the SECN geography, which provides managers information about the degree of change within their parks’ natural vegetation. 2020 marks the first year of conducting this monitoring effort at Cumberland Island National Seashore (CUIS). Fifty-six vegetation plots were established throughout the park from May through July. Data collected in each plot included species richness across multiple spatial scales, species-specific cover and constancy, species-specific woody stem seedling/sapling counts and adult tree (greater than 10 centimeters [3.9 inches {in}]) diameter at breast height (DBH), overall tree health, landform, soil, observed disturbance, and woody biomass (i.e., fuel load) estimates. This report summarizes the baseline (year 1) terrestrial vegetation data collected at Cumberland Island National Seashore in 2020. Data were stratified across three dominant broadly defined habitats within the park, including Coastal Plain Upland Open Woodlands, Maritime Open Upland Grasslands, and Maritime Upland Forests and Shrublands. Noteworthy findings include: 213 vascular plant taxa (species or lower) were observed across 56 vegetation plots, including 12 species not previously documented within the park. The most frequently encountered species in each broadly defined habitat included: Coastal Plain Upland Open Woodlands: longleaf + pond pine (Pinus palustris; P. serotina), redbay (Persea borbonia), saw palmetto (Serenoa repens), wax-myrtle (Morella cerifera), deerberry (Vaccinium stamineum), variable panicgrass (Dichanthelium commutatum), and hemlock rosette grass (Dichanthelium portoricense). Maritime Open Upland Grasslands: wax-myrtle, saw greenbrier (Smilax auriculata), sea oats (Uniola paniculata), and other forbs and graminoids. Maritime Upland Forests and Shrublands: live oak (Quercus virginiana), redbay, saw palmetto, muscadine (Muscadinia rotundifolia), and Spanish moss (Tillandsia usneoides) Two non-native species, Chinaberry (Melia azedarach) and bahiagrass (Paspalum notatum), categorized as invasive by the Georgia Exotic Pest Plant Council (GA-EPPC 2018) were encountered in four different Maritime Upland Forest and Shrubland plots during this monitoring effort. Six vascular plant species listed as rare and tracked by the Georgia Department of Natural Resources (GADNR 2022) were observed in these monitoring plots, including the state listed “Rare” Florida swampprivet (Forestiera segregata var. segregata) and sandywoods sedge (Carex dasycarpa) and the “Unusual” green fly orchid (Epidendrum conopseum). Longleaf and pond pine were the most dominant species within the tree stratum of Coastal Plain Upland Open Woodland habitat types; live oak was the most dominant species of Maritime Upland Forest and Shrubland types. Saw palmetto and rusty staggerbush (Lyonia ferruginea) dominated the sapling stratum within Maritime Upland Forest and Shrubland habitat types. Of the 20 tree-sized redbay trees measured during this monitoring effort only three were living and these were observed with severely declining vigor, indicating the prevalence and recent historical impact of laurel wilt disease (LWD) across the island’s maritime forest ecosystems. There was an unexpectedly low abundance of sweet grass (Muhlenbergia sericea) and saltmeadow cordgrass (Spartina patens) within interdune swale plots of Maritime Open Upland habitats on the island, which could be a result of grazing activity by feral horses. Live oak is the dominant tree-sized species across...
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography